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Introduction

The Monge–Ampère equation is a fully nonlinear, degenerate elliptic equation that
draws its name from its initial formulation in two dimensions, by the French mathe-
maticians Monge [92] and Ampère [8], about two hundred years ago. The classical
form of this equation is

det D2u = f (x, u,∇u) in Ω, (1.1)

whereΩ ⊂ Rn is an open set, u : Ω→ R is a convex function, and f : Ω×R×Rn →
R+ is given. As we shall explain below, the convexity of u is a necessary condition
to make the equation elliptic and to hope for regularity results.

The prototypical place where the Monge–Ampère equation appears is the “pre-
scribedGaussian curvature equation", also known as the “Minkowski problem”: if we
take f = K(x)(1+ |∇u|2)(n+2)/2, then (1.1) corresponds to imposing that the Gaussian
curvature of the graph of u at the point (x, u(x)) is equal to K(x) (see Section 2.6).

Other classical appearances of the Monge–Ampère equation can be found in
affine geometry (for instance, in the “affine sphere problem” and the “affine maximal
surfaces” problem; see [25, 98, 27, 115, 116, 117] and the references in [118]) and in
convex geometry (see, for instance, Section 4.4). More recently, the Monge–Ampère
equation has found important applications in optimal transportation (see Section 4.6)
and inmeteorology (see Section 4.9). The goal of this book is to develop the existence,
uniqueness, and regularity theory for (1.1), and to show how this equation appears in
the above-mentioned problems.

1.1 On the degeneracy of the Monge–Ampère equation

Before entering into the theory of Monge–Ampère, we wish to discuss the terms
“fully nonlinear” and “degenerate elliptic” that we have used above. Also, we want
to explain why we are considering this equation only on convex functions.

1.1.1 A classification of second-order elliptic PDEs. The model second-order
elliptic PDE is the Laplace equation

∆u = 0,
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or, more generally, the Poisson equation

∆u = f ,

where f : Ω→ R is some given function. These equations are called linear as they
depend linearly on the unknown function u.

Given a family of coefficients ai j : Ω → R, bi : Ω → R, c : Ω → R, i, j =
1, . . . , n, the linear equation∑

i j

ai j∂i ju +
∑
i

bi∂iu + cu = f

is called uniformly elliptic provided the coefficients ai j define positive-definite
bounded matrices, that is,

λ |ξ |2 ≤
∑
i j

ai j(x)ξiξ j ≤ Λ|ξ |2 ∀ ξ = (ξ1, . . . , ξn) ∈ Rn, x ∈ Ω, (1.2)

for some constants 0 < λ ≤ Λ < ∞, and degenerate elliptic if λ can be equal to zero
orΛ can be equal to infinity. When (1.2) holds, we shall also write λ Id ≤ ai j ≤ Λ Id.

When PDEs are nonlinear in the unknown u, one can classify them depending on
the kind of nonlinear structure.

More precisely, if the leading-order term (the term involving the second deriva-
tives of u) is linear in u, one says that the equation is semilinear; the model example is

∆u = f (x, u,∇u)

for some given function f : Ω × R × Rn → R.
Instead, if the leading-order term is linear in the Hessian of u but depends nonlin-

early on u via lower-order terms, the equation is called quasilinear: elliptic equations
of this form are ∑

i j

ai j(x, u,∇u)∂i ju = f (x, u,∇u),

where the coefficients ai j = ai j(x, z, p) satisfy (1.2) for all (x, z, p) ∈ Ω × R × Rn. A
classical example is the p-Laplace equation.

Finally, a PDE is fully nonlinear if it is nonlinear in the Hessian of u. Model
elliptic examples are the Bellman equation

0 = sup
α∈A

{∑
i j

aαi j∂i ju +
∑
i

bαi ∂iu + cαu − f α
}
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and the Isaacs’ equation

0 = inf
β∈B

sup
α∈A

{∑
i j

aα,βi j ∂i ju +
∑
i

bα,βi ∂iu + cα,βu − f α,β
}
,

where the coefficients aαi j, a
α,β
i j satisfy (1.2) with constants independent of α and β.

Since the Monge–Ampère equation depends nonlinearly on the Hessian of u, it
falls into the last category.

1.1.2 Degeneracy and convexity. To understand the degenerate elliptic structure
of Monge–Ampère, we consider u : Ω → R a smooth solution of (1.1) with f =
f (x) > 0 smooth.

A standard technique to deal with nonlinear equations is to differentiate the
equation solved by u to obtain a linear second-order equation for its derivatives.
More precisely, fix a direction e ∈ Sn−1 and differentiate (1.1) in the direction e.
To simplify notation, we shall use subscripts to denote partial derivatives, that is,
ue = ∂eu, fe = ∂e f , ui j = ∂i ju, etc.

Since D2u(x + εe) = D2u(x) + εD2ue(x) + o(ε), we see that

d
dε

���
ε=0

det
(
D2u(x + εe)

)
=

d
dε

���
ε=0

det
(
D2u(x) + εD2ue(x)

)
.

Then using (A.1), we get

d
dε

���
ε=0

det
(
D2u(x + εe)

)
= det

(
D2u(x)

)
tr
(
(D2u(x))−1D2ue(x)

)
.

Hence, if we use ui j to denote the inverse matrix of ui j = ∂i ju and we use Einstein’s
convention of summing over repeated indices (ai jbi j =

∑
i j ai jbi j), we deduce that

(det D2u)ui j∂i jue = fe in Ω.

Recalling that det D2u = f > 0, we can rewrite the above equation as

ui j∂i jue =
fe
f

in Ω. (1.3)

Thus, setting
ai j := ui j, v := ue, g :=

fe
f
,

we see that v solves the linear equation

ai j∂i jv = g.
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Now, if we want this equation to be uniformly elliptic, we need ai j = ui j to be positive
definite as in (1.2), which can be written in terms of its inverse ui j = ∂i ju as follows:

1
Λ
|ξ |2 ≤ D2u(x)[ξ, ξ] ≤ 1

λ
|ξ |2 ∀ ξ = (ξ1, . . . , ξn) ∈ Rn, x ∈ Ω.

So, u must be uniformly convex and C1,1. In particular, in order for the coefficients
ai j to be at least nonnegative definite, we are forced to restrict our attention to convex
functions. However, since ai j may vanish or be unbounded at some points, the
equation is degenerate elliptic.

Notice that if
1
C

Id ≤ D2u ≤ C Id inside Ω (1.4)

for some constant C > 0, then Id/C ≤ ui j ≤ C Id and the linearized equation (1.3)
becomes uniformly elliptic. For this reason, proving the bound Id/C ≤ D2u ≤ C Id
is key for the regularity of solutions to (1.1).

We shall use a crucial observation in the sequel:
Remark 1.1. Let u solve (1.1) with f ≥ a0 > 0, and assume that

‖D2u(x)‖ := sup
e∈Sn−1

∂eeu(x) ≤ A ∀ x ∈ Ω.

Then (1.4) holds. Indeed, given x ∈ Ω, we can choose a system of coordinates so
that D2u(x) is a diagonal matrix with eigenvalues (λ1, . . . , λn). Since det D2u(x) =∏n

i=1 λi , it follows that

n∏
i=1

λi = f (x) ≥ a0 and max
1≤k≤n

λk ≤ A,

and we get that

λi =

∏
j λj∏

k,i λk
≥ a0

An−1 ∀ i = 1, . . . , n,

which proves (1.4) with C := max{A, An−1/a0}.

1.2 Some history

The first notable results on the Monge–Ampère equation are due to Minkowski
[90, 91]. At the end of the 19th and the beginning of the 20th century, he proved
the existence of weak solutions to the “prescribed Gaussian curvature problem” (this
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is now called the “Minkowski problem”): Given a function K on the sphere, find
a convex surface whose Gaussian curvature in polar coordinates is equal to K (see
Section 2.6).

Using convex polyhedra with given generalized curvatures at the vertices, forty
years later, Alexandrov proved the existence of a weak solution in all dimensions, as
well as the C1 smoothness of solutions in two dimensions [1, 2, 3, 4]. Then, based on
these results, Alexandrov [5] (and also Bakelman [9] in two dimensions) introduced
the notion of a generalized solution to the Monge–Ampère equation, and proved
existence and uniqueness of solutions to the Dirichlet problem (see Chapter 2). Their
treatment also led to the Alexandrov–Bakelman maximum principle which plays a
fundamental role in the study of non-divergence elliptic equations (see, for instance,
[58, Section 9.8]).

The notion of weak solutions introduced by Alexandrov (now called “Alexandrov
solutions”) has often been used in recent years, and a lot of attention has been given
to proving smoothness of Alexandrov solutions under suitable assumptions on the
right-hand side and the boundary data.

The regularity of Alexandrov solutions in higher dimensions is a very delicate
problem. In the 1960s, Pogorelov found a convex function which is not of class
C2 but satisfies the Monge–Ampère equation (1.1) inside B1/2 with positive analytic
right-hand side (see Section 3.2). As we shall explain in detail in Chapter 4, the main
obstacle to regularity is the presence of a line segment in the graph of u (in other
words, u is not strictly convex). Indeed, Calabi [24] and Pogorelov [97] were able
to prove a priori interior second- and third-derivative estimates for strictly convex
solutions, in turn proving the smoothness of strictly convex Alexandrov solutions
(see Section 3.3, where instead of Calabi’s estimates we use the interior regularity
theory for fully nonlinear uniformly elliptic equations established by Evans [41] and
Krylov [75] in the 1980s).

Later on, using the continuitymethod, Ivochkina [65], Krylov [76], andCaffarelli–
Nirenberg–Spruck [23] were able to show the existence of globally smooth solutions
to the Dirichlet problem. In particular, Alexandrov solutions are smooth up to the
boundary provided all given data are smooth (cf. Section 3.1).

In all the situations mentioned above one assumes that the right-hand side f
is positive and sufficiently smooth, but the many applications of Monge–Ampère
motivated the development of a regularity theory under weaker assumptions on f .

In the 1990s, under only the hypothesis that f is bounded away from zero and
infinity, Caffarelli proved the C1,α regularity of strictly convex solutions [15]. Then,
if in addition f is continuous (resp. C0,α), using a perturbation argument, Caffarelli
proved an interior W2,p estimate for any p > 1 (resp. C2,α interior estimates) [14].
More recently, the author and De Philippis proved interior L log L estimates on D2u
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when f is merely bounded away from zero and infinity [30], and together with Savin
they improved this result showing that u ∈ W2,1+ε

loc [36] (see also [106]). All these
results, as well as some selected applications, are described in Chapter 4.

We also mention that these interior regularity results have a natural counterpart
at the boundary, which is briefly described in Section 5.1.2.

In recent years, applications to optimal transportation and antenna design prob-
lems have motivated the study of a much more general class of Monge–Ampère-type
equations, as well as their boundary regularity and their linearization (cf. Chapter 5).

It is important to remark that, despite all these recent developments, several
important questions on the regularity of solutions to Monge–Ampère are still open,
and the Monge–Ampère equation and its applications remain very active areas of
research.


