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Introduction

“Sans que Gauss s’en soit douté, il a
jeté des semences qui sont tombées sur
une terre qui n’était pas mûre pour les
recevoir. Puis, d’autres ouvriers sont
venus qui ont remué ce sol ingrat, l’ont
amendé, lui ont apporté les sucs
nourriciers nécessaires à sa fécondité,
et un jour, après un long sommeil, la
graine qui n’était pas morte a germé.
La plante qui en est sortie est jeune et
vivante et c’est à ses fruits que l’on voit
en�n la profondeur de la pensée
lointaine d’où elle vient.”1

Charles de la Vallée Poussin

Classical potential theory originated in the 18th century to study the gravitational
potential u generated by some density of mass �, based on Newton’s gravitational
theory. In the beginning of the 19th century, it was discovered that the potential sat-
is�es the Poisson equation [283]

��u D �;

given in terms of the Laplacian

�u D div .ru/ D trace .D2u/:

During the 1830s, Gauss [145] pursued the electrostatic interpretation of the
Poisson equation, where in this case � is a density of electric charges, positive or
not. Even though Gauss’s argument is unsatisfactory to nowadays standards, his fun-
damental ideas would deeply in�uence PDEs and potential theory in the 20th cen-
tury. Subsequent works by Dirichlet [201], Riemann [293], and Thompson [323] also
relied on minimization arguments involving the energy

ˆ

�

jruj2;

1“Without suspecting it, Gauss sowed some seeds that fell on ground that was not ready to receive them.
Later, other workers came along who turned this infertile soil, enriched it and gave it the nourishing juices it
needed to become fertile; and one day, after a long sleep, the seed which had not died sprouted. The plant that
has emerged from it is young and vigorous, and it is by its fruits that we �nally see the profundity of that distant
thought whence it came.”
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but those arguments would not survive Weierstrass’s criticism, see [339] and [289].
Alternative approaches were then developed by Schwarz [301], Neumann [263],
Robin [298] and others to circumvent the lack of rigor around the Dirichlet principle.

Poincaré [280] and [281] gave a major contribution that enables one to solve the
linear Dirichlet problem ´

��u D � in �,

u D 0 on @�,
(0.1)

in the classical sense, using his balayage method. This approach does not rely on
variational methods, which were still unavailable by 1890. The core of his idea con-
sists in moving electric charges from inside an open region ! b � to its boundary
@!, without modifying the electrostatic potential outside !. Poincaré’s paper [281],
published in the freshly founded American Journal of Mathematics, is also a land-
mark in the theory of PDEs, where he calls the attention to the three major models
of second-order equations: elliptic (Laplace equation), parabolic (heat equation) and
hyperbolic (wave equation).

Hilbert tried to rescue the Dirichlet principle by using minimizing sequences of
the energy. He suggested that they would have better convergence properties; for
instance, convergence up to some subsequence. Hilbert’s �rst attempt [167] to justify
the Dirichlet principle based on that idea was sketchy, and the implementation of his
program turned out to be harder than expected, even in dimension two [88], [140],
[153], [168], [193], [203], and [324]. Monna’s book [251] is a good historical source
on the development of the Dirichlet principle in the 19th century.

By introducing the concept of barrier, Lebesgue [195] clari�ed the fact that the
Dirichlet problem should be solved in two steps: �rst �nd a solution of the Poisson
equation inside the domain, and then verify that the boundary condition is indeed sat-
is�ed. Perron [277] and Remak [292] later developed independently an abstract ap-
proach that contains Poincaré’s balayage method, and implements Lebesgue’s strat-
egy as an obstacle problem.

The Perron–Remak method seems to have a different nature compared to vari-
ational tools, since we look for the smallest element in a class of superharmonic
functions. It is nevertheless a disguised minimization of the total charge

ˆ

�

j�uj:

We are no longer in a Hilbert space setting, but from this perspective the Perron–
Remakmethod becomes a natural companion to variational obstacle problems (Chap-
ter 12).

Surprising counterexamples by Zaremba [347] and Lebesgue [196] showed that
the Dirichlet problem need not always have a continuous solution in x�, due to the
possibility of having singular points on the boundary @�. This was the beginning of
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modern potential theory, when the attention turned to the full characterization of the
singular set of @�. A major breakthrough to identify singular points and sets was
made by Wiener [341] and [342], by introducing the Newtonian capacity associated
to the Dirichlet energy.

Generalized solutions of the Poisson equation were also introduced in the 1920s.
An important one is given by the Newtonian potential generated by a �nite Borel
measure �, see [122]:

u.x/ D 1

.N � 2/�N

ˆ

RN

d�.y/

jx � yjN �2
: (0.2)

This approach was motivated by the fact that the Newtonian potential of a smooth
distribution of charges satis�es the Poisson equation (Chapter 1), and that measures
naturally describe densities of mass or electric charge, see p. 24 in [197] or Chapter 2
below. The function u is interpreted as the potential generated by the density �, even
though the Poisson equation need no longer be satis�ed in a pointwise – classical –
sense.

F. Riesz [295] and [296] connected the integral representation (0.2) with the no-
tions of superharmonic and subharmonic functions based on averages (Chapter 2);
de la Vallée Poussin [106] developed Poincaré’s balayage method in the new setting
of densities given by measures (Chapter 7). These advances were being supported by
tools from functional analysis and measure theory.

Frostman in his thesis [139] clari�ed the relation between the capacity, an analytic
tool, and a more geometric object, the Hausdorff measure (Chapter 10). Their non-
equivalence was further investigated by Carleson [77]. Two important notions in this
direction are:

.a/ Sobolev capacities capW k;q , that can be used to identify sets which are effectively
detected by Sobolev functions (Chapter 8 and Appendix A);

.b/ Hausdorff contents Hs
1, that are better suited to investigate density properties,

compared to the usual Hausdorff measures Hs (Appendix B).

It is remarkable that the two concepts can be interchanged in the formalism of
Maz0ya–Adams trace inequalities (Chapter 16). These trace inequalities also provide
the equivalence between the W 1;1 capacity and the HN �1

ı
Hausdorff capacities that

was discovered byMeyers and Ziemer [245], and �rst suggested by Fleming’s pioneer
contribution [133].

Frostman was particularly interested in the existence of minimizers of Gauss’s
energy functional. The solution of Gauss’s problem would play an important role
in the development of the French school on axiomatic potential theory by Brelot,
Cartan, Choquet, Deny, and others, see [46], [47], [48], and [49].

The systematic use of Schwartz’s theory of distributions [303] and [304] after
World War II provided some solid foundation to weak formulations of linear PDEs,
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applied until then as an ad hoc strategy to solve different speci�c problems [216].
A notable exception comes from the work of Sobolev, who introduced the concept of
distribution of �nite order in 1935, which he called fonctionnelle, see [311] and [312];
a few years later, he also de�ned weak derivatives as we use nowadays [313].

Modern PDE methods based on functional analysis, a priori estimates, Sobolev
spaces, �xed point, and variational techniques [57] were later applied by Littman,
Stampacchia, and Weinberger [213] to tackle the linear Dirichlet problem (0.1)
involving measure data. They established in particular the existence and uniqueness
of a solution for every �nite measure � (Chapter 3).

Concerning the regularity of such a solution, Stampacchia’s truncation method
provides zeroth and �rst-order estimates in the setting of weak Lebesgue (Marcinkie-
wicz) spaces. Indeed, solutions are weak L

N
N�2 , and their gradients exist and are

weak L
N

N�1 (Chapter 5). We have in particular the existence of a force �eld �ru
associated to any �nite measure.

These embeddings should be compared to the classical Sobolev–Gagliardo–
Nirenberg inequality, which gives the chain of inclusions:

W 2;1.RN / � W 1; N
N�1 .RN / � L

N
N�2 .RN /:

The picture is completed by the Calderón–Zygmund theory on singular integrals,
which provides a weak L1 estimate for the second-order derivative D2u, see [72]
and [149]. This estimate lies at the heart of the more familiar (strong) Lp regularity
theory for densities � 2 Lp.�/ such that 1 < p < C1, which is obtained by
interpolation.

The companion nonlinear Dirichlet problem
´

��uC g.u/ D � in �,

u D 0 on @�,
(0.3)

has a two-fold motivation. It arises as an L1 accretivity condition in the Crandall–
Liggett theory applied to the porous medium equation, see Section 10.3 in [334],
and is also associated to the Thomas–Fermi theory for densities � given in terms
of �nite sums of Dirac masses, each one representing an electric pointwise charge,
see [208], [206], and [24]. We assume here that the nonlinearity gWR ! R is merely
a continuous function satisfying the sign condition: for every t 2 R,

g.t/t > 0:

This is called an absorption problem, and the nonlinear term in the equation satis�es
the contraction property:

ˆ

�

jg.u/j 6 j�j.�/:
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When the density � belongs to the Lebesgue space L2.�/, this nonlinear
Dirichlet problem is variational: the energy functional is bounded from below in
the Sobolev space W 1;2

0 .�/, minimizers always exist regardless of the growth of g,
and they satisfy the Euler–Lagrange equation (Chapter 4). Solutions also exist when
� merely belongs to L1.�/, see [69] and [144], although the problem is no longer
variational. This requires a different argument based on the contraction property and
the strong L1 approximation of the datum (Chapter 3).

The study of the nonlinear Dirichlet problem with measures is more subtle.
Bénilan and Brezis [24], see also [50] and [51], discovered in 1975 that for non-
linearities of the form g.t/ D jt jp�1t with any exponent p >

N
N �2

, the nonlinear
Dirichlet problem has no solution when � is a Dirac mass, while for p < N

N �2
,

solutions exist for every �nite measure �.
Bénilan and Brezis’s paper [24] on the Thomas–Fermi problem had to wait almost

thirty years to be published in its �nal form, although parts of the manuscript started
to circulate by the end of the 1970s, and had a great in�uence at the time. Since then,
the mathematical landscape concerning elliptic PDEs with L1 and measure data has
drastically evolved and new �elds have been �ourishing:

– equations involving quasilinear or fractional operators;

– nonlinear potential and Calderón–Zygmund theories in Euclidean and metric
spaces;

– obstacle problems and regularity of free boundaries;

– removable singularity principles for linear and nonlinear equations;

– measure valued solutions;

– boundary traces and probabilistic interpretation of nonlinear problems.

Concerning the nonlinear Dirichlet Problem (0.3), we are interested in the full
characterization of measures for which a solution exists. The answer depends on g,
and some techniques involving power ([20] and [24]) and exponential ([333] and [22])
nonlinearities are (Chapter 21):

.a/ maximum principles, adapted to the linear Dirichlet problem, and Kato’s
inequality, to get comparison principles for the nonlinear Dirichlet problem
(Chapter 6);

.b/ removable singularity principles, to deduce necessary conditions for the exis-
tence of solutions (Chapter 11);

.c/ strong approximation of measures, to handle measures that are merely diffuse
with respect to Sobolev capacities or Hausdorff measures (Chapter 14);

.d/ trace inequalities, to have a priori estimates (Chapter 16);

.e/ Perron–Remak methods, based on sub- and supersolutions, to establish the exis-
tence of extremal solutions (Chapter 20).
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Kato introduced his inequality in a seminal paper [175] on Schrödinger operators
�� C V to deal with potentials V 2 Lp , for any exponent p > 1. His goal was
to clarify and avoid unnecessary assumptions usually required by variational tools.
Such a program is far from being completed, since many properties of the solutions
of the Poisson equation associated to the Schrödinger operator depend on the strength
of the singularity of V , see [310]. The Hardy potential V.x/ D c=jxj2, for example,
is critical in many problems, including the strong maximum principle. We explain in
Chapter 22 how the above tools can be successfully adapted to investigate properties
of solutions involving singular potentials.

Convention. We systematically denote by � an open subset of RN in dimension
N > 1. Further assumptions on � will be explicitly stated when needed. For ex-
ample, by a smooth open set � we mean that there exists a smooth (C1) function
�WRN ! R such that � < 0 in �, � > 0 in RN n x�, and r� ¤ 0 everywhere on
@�. The outer normal vector n is then de�ned on @� by

n D r�
jr�j :

We say that a function uW x� ! R is smooth if there exists an in�nitely differentiable
function U WRN ! R such that U D u in x�.


