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Introduction

1.1 Kervaire’s six papers on knot theory

Michel Kervaire wrote six papers on knots: [63], [64], [66], [45], [46], and [69].
The first one is both an account of Kervaire’s talk at a symposium held at Princeton

in spring 1963 in honor ofMarstonMorse and a report of discussions between several
participants in the symposium about Kervaire’s results. Reading this paper is really
fascinating, since one sees higher-dimensional knot theory emerging. The subject is
the fundamental group of knots in higher dimensions.

The second one is the written thesis that Kervaire presented in Paris in June 1964.
In fact Kervaire had already obtained a PhD in Zurich under Heinz Hopf in 1955,
but in 1964 he applied for a position in France and, at that time, a French thesis was
compulsory. In the end, the appointment did not materialize. But the thesis text
remains as an article published in the Bulletin de la S.M.F. ([64]). As this article
is the main reason for writing this text, we name it Kervaire’s Paris paper. It is
the most important one that Kervaire wrote on knot theory. It can be considered to
be the foundational text on knots in higher dimensions, together with contemporary
papers by Jerome Levine ([77], [78], and [79]). One should also add to the list the
Hirsch–Neuwirth paper [50], which seems to be a development of discussions held
during the Morse symposium.

To briefly present the subject of Kervaire’s Paris paper, we need a few definitions.
A knot Kn ⊂ Sn+2 is the image of a differentiable embedding of an n-dimensional
homotopy sphere in Sn+2. Its exterior E(K) is the complement of an open tubular
neighborhood. The exterior has the homology of the circle S1 by Alexander duality.
In short, the subject is the determination of the first homotopy group πq(E(K)), which
is different from πq(S1).

Later, Kervaire complained that he had to rush to complete this Paris paper in
due time and he had doubts about the quality of its redaction. In fact we find this
article to be well written. The exposition is concise and clear, typically in Kervaire’s
style. The pace is slow in parts that present a difficulty and fast when things are
obvious. Now, what was obvious to Kervaire in spring 1964? Among other things,
clearly Pontrjagin’s construction and surgery. As these techniques are possibly not
so well known to a reader fifty years later, we devote Chapters 2 and 3 of this text to
a presentation of these matters.

The last chapter of Kervaire’s Paris paper is a first attempt at understanding the
cobordism of knots in higher dimensions. It contains a complete proof that an even-
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dimensional knot is always cobordant to a trivial knot. For odd-dimensional knots,
the subject has a strong algebraic flavor, much related to the isometry groups of
quadratic forms and to algebraic number theory. Kervaire liked this algebraic aspect
and devoted his third paper [66] to it.

Levine spent the first months of 1977 in Geneva and he gave wonderful lectures
on many aspects of knot theory. His presence had a deep influence on several
members of the audience, including the two authors of this text! Under his initiative
a meeting was organized by Kervaire in Les Plans-sur-Bex in March 1977. The
proceedings are recorded in the Springer Lecture Notes volume 685, edited by Jean-
Claude Hausmann. The irony of history is that it was precisely at this time that
William Thurston made his first announcements, which soon completely shattered
classical knot theory and 3-manifolds. See Cameron Gordon’s paper [38, p. 44] in
the proceedings. The meeting renewed Kervaire’s interest in knot theory, and in the
following months he wrote his last three papers on the subject.

1.2 A brief description of the content of the book

As promised, we devote Chapters 2 and 3 to some background in differential topol-
ogy, mainly vector bundles, Pontrjagin’s construction, and surgery, culminating with
Kervaire–Milnor.

We felt it necessary to devote Chapter 4 to knots in codimension ≥3. Its reading
is optional. One reason to do so is that the subject was flourishing at the time,
thanks to the efforts of André Haefliger and Levine. It is remarkable that Levine was
present in both fields. Another reason is that the two subjects are in sharp contrast.
Very roughly speaking one could say that it is a matter of fundamental group. In
codimension ≥3 the fundamental group of the exterior is always trivial while it is
never so in codimension 2. But more must be said. In codimension ≥3 there are
no PL knots, as proved by Christopher Zeeman [137]. Hence everything is a matter
of comparison between PL and DIFF. This is the essence of Haefliger’s theory of
smoothing, written a bit later. On the contrary, in codimension 2 the theories of PL
knots and of DIFF knots do not differ much.

In Chapter 5 we present Kervaire’s determination of the fundamental group of
knots in higher dimensions, together with some of the results from his two papers
written with Jean-Claude Hausmann about the commutator subgroup and the center
of these groups. Some later developments are also presented.

Chapter 6 exposes Kervaire’s results on the first homotopy group πq(E(K)), which
is different from πq(S1). For q ≥ 2 these groups are in factZ[t, t−1]-modules. Indeed,
Kervaire undertakes a first study of such modules, later to be called knot modules by
Levine. In our presentation, we include several developments due to Levine.
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Up to Kervaire’s Paris paper, most of the effort in knot theory went into the
construction of knot invariants. They produce necessary conditions for two knots
to be equivalent. In Levine’s paper [78] a change took place. From Dale Trotter’s
work it was known that for classical knots, Seifert matrices of equivalent knots are
S-equivalent. Levine introduced a class of odd-dimensional knots (he called them
simple knots) for which the S-equivalence of the Seifert matrices is both necessary
and sufficient for two knots to be isotopic. This is a significant classification result.
Indeed, simple knots are already present in Kervaire’s Paris paper, but he did not
pursue their study that far. Technically, the success of Levine’s study is largely
due to the fact that these knots bound a very special kind of Seifert hypersurface:
a (parallelizable) handlebody. In Chapter 7 we present Levine’s work on odd-
dimensional simple knots.

Chapter 8 is devoted to higher-dimensional knot cobordism. Levine reduced the
determination of these groups to an algebraic problem. A key step in the argument
rests on the fact that each knot is cobordant to a simple knot.

In knot theory, the handlebodies one deals with are parallelizable and their bound-
ary is a homotopy sphere. If we keep the parallelizability condition but admit any
boundary, the Kervaire–Levine arguments are still valid. This immediately applies to
the Milnor fiber of isolated singularities of complex hypersurfaces, as first noticed by
Milnor himself and developed by Alan Durfee. Chapter 9 is devoted to that matter.
It can be considered a prolongation of Kervaire and Levine’s work.

Appendixes A to E are of the kind that can be read independently. They provide
basics, comments, and variations on subjects treated elsewhere in our book. In
Appendix A we give our conventions on signs, which agree with those in Kauffman–
Neumann [57]. This allows us to justify the signs for invariants of some basic
algebraic links (examples are given at the end of Chapter 9). Often, authors do not
mention their sign conventions and hence one can find other signs in the literature. In
Appendix Bwe prove the existence of Seifert hypersurfaces in amore general context.
In Appendixes C and D, we present basics about open book decompositions and
parallelizable handlebodies, which are useful in knot theory. Our aim in Appendix E
is to present the beautiful result by Mike Hill, Mike Hopkins, and Doug Ravenel
about the Kervaire invariant and to explain how this affects the theory of knots in
higher dimensions. It is a spectacular way to conclude this book.

A few figures, related to several sections of the book, are available in Appendix F.

1.3 What is a knot?

We use the following definitions.
Definition 1.1. An n-link in Sn+q is a compact oriented differential submanifold
without boundary Ln ⊂ Sn+q . The integer q ≥ 1 is the codimension of the link. The



4 1 Introduction

n-links Ln
1 and Ln

2 are equivalent if there exists a diffeomorphism f : Sn+q → Sn+q

such that f (Ln
1 ) = Ln

2 , respecting the orientation of Sn+q and of the links.
When Ln is a homotopy sphere, we say that Ln⊂Sn+q is an n-knot in codimen-

sion q.
When Ln is the standard sphere Sn embedded in Sn+2, we say that Ln ⊂ Sn+2 is

a standard n-knot.
The group of an n-link (resp. n-knot), Ln ⊂ Sn+2, is the fundamental group of

Sn+2 \ Ln.
At the beginning of Chapter 4, we present the well-known proof that if two links

are equivalent there always exists a diffeomorphism f : Sn+q → Sn+q that is isotopic
to the identity and moves one link to the other. Hence n-links are equivalent if and
only if they are isotopic.

In general the boundary of a Milnor fiber is not a homotopy sphere. It is a
motivation to explain, in Chapter 7, how Kervaire and Levine’s works on simple
odd-dimensional knots can be generalized to simple links.

A link Ln ⊂ Sn+2 in codimension 2 is always the boundary of a (n+1)-dimensional
oriented smooth submanifold Fn+1 in Sn+2. We say that Fn+1 is a Seifert hypersur-
face for Ln ⊂ Sn+2 ( some authors name it Seifert surface even when n ≥ 2).

1.4 Knots in the early 1960s

In the early 1960s, knots and links in S3 (which we call classical knots and links)
had been deeply studied. Two objects played a central role in classical knot theory:
the group of the knot and the Seifert surfaces. Despite the fact that, at that time,
higher-dimensional topology was flourishing, knowledge about higher-dimensional
knots and links was very poor. The only interesting examples were obtained by the
spinning construction, which goes back to Emil Artin, and by its generalization by
Christopher Zeeman, called twist spinning. For example, if G is the group of a
classical knot, the spinning produces, for all n ≥ 2, an n-dimensional knot in Sn+2

having G as knot group. At that time, specialists knew that an n-link is always
the boundary of an oriented, smooth, (n + 1)-dimensional submanifold of Sn+2.
Here we call it a Seifert hypersurface of the link. A Seifert hypersurface is always
parallelizable.

1.5 Higher-dimensional knots and homotopy spheres

We recall, in Chapter 3, the results of Kervaire and Milnor [67] concerning the group
bPn+1 of n-dimensional homotopy spheres, which bound parallelizable manifolds.
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In particular, bPn+1 is trivial when (n + 1) is odd, and is a finite cyclic group
when (n + 1) is even. We also recall, in Appendix E (Proposition E.3), that any
element of bPn+1 can be embedded in Sn+2. Conversely an n-dimensional homotopy
sphere embedded in Sn+1 is an element of bPn+1 because it is always the boundary
of a Seifert hypersurface that is parallelizable. These results lead us to define
higher-dimensional knots as embeddings of n-dimensional homotopy spheres in Sn+1.
Kervaire had another reason to define higher-dimensional knots as embeddings of
homotopy spheres. It is easier to construct higher-dimensional knots without having
to specify their differentiable structure. When n is even, an n-dimensional knot is
always a standard knot because bPn+1 is trivial. If n = 4k − 1, the signature of the
intersection form of a Seifert hypersurface determines the differentiable structure of
its boundary. The case n = 4k + 1 is treated in Appendix E.

1.6 Links and singularities

The paper [97] by David Mumford marks the beginning of a new era since it puts a
light on the role of the topology in studying complex singularities. In Section 9.5 we
explain some consequences of the following Mumford result:

Theorem 1.2. Let Σ be a normal complex surface. If the boundary L of point P ∈ Σ
is simply connected, then P is a regular point of Σ.

Mumford also introduces the concept of “plumbing” to describe the topology of a
good resolution of a normal singular point of a complex surface. The reader has to be
cautious and should not confuse the plumbings obtained as good resolutions of normal
germs of complex hypersurfaces and what we call 2-handlebodies. As explained in
Appendix D, following William Browder, there is a way to define 2q-plumbings as
equivalent to q-handlebodies if q ≥ 4.

The connection between higher-dimensional homotopy spheres and isolated sin-
gularities of complex hypersurfaces was established in spring 1966. The story is
beautifully (and movingly) told by Egbert Brieskorn in [16, pp. 30–52]. Several
mathematicians took part in the events: Egbert Brieskorn, Klaus Jänich, Friedrich
Hirzebruch, JohnMilnor, and John Nash. In June 1966 [15], Egbert Brieskorn proved
the following theorem, which is a corollary of his thorough study of the now-named
Pham–Brieskorn singularities. The proof rests on the work of Frédéric Pham.

Theorem 1.3. Let Σ2q−1 be a (2q− 1)-homotopy sphere that bounds a parallelizable
manifold. Then there exist (q + 1) integers ai ≥ 2, 0 ≤ i ≤ q, such that the link
L f ⊂ S2q+1 associated to f (z0, . . . , zq) = Σ

i=q
i=0 zai

i is a knot diffeomorphic to Σ2q−1.

With his book Singular Points of ComplexHypersurfaces [93], Milnor definitively
relates the theory of odd-dimensional links to the study of the embedded topology
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of a germ f : (Cq+1, 0) → (C, 0) with an isolated critical point at the origin in Cq+1.
In Chapter 9, we recall many important results contained in [93]. In particular we
explain how Milnor associates a simple fibered link L2q−1

f
∈ S2q+1

ε to f . Such a link
is called an algebraic link.

In [81], Levine gives, when q ≥ 2, a classification theorem for simple (2q − 1)-
dimensional knots via the Seifert forms. The knot theory of Kervaire–Levine will
directly meet the Milnor theory of algebraic links in a paper by Durfee [29]. Indeed,
when q ≥ 3, Durfee shows that the classification theorem of Levine also gives a clas-
sification theorem for algebraic links (always in terms of Seifert forms). Such results
are based on the classification of q-handlebodies, which are defined in Appendix D.
The classification of algebraic links associated to germs of surfaces inC3 is still open.

In Section 9.6, we present the notion of joins, followingMilnor’s paper [88]. Joins
appeared to describe the topology of a germ f = g ⊕ h : (Cn+m, 0) → (C, 0) where
g : (Cn, 0) → (C, 0) and h : (Cm, 0) → (C, 0) are germs of holomorphic functions
with an isolated critical point at the origin and

f (x1, . . . , xn, y1, . . . , ym) = g(x1, . . . , xn) + h(y1, . . . , ym).

It gives an inductivemethod to describe the topology of the Pham–Brieskorn singular-
ities. Kauffman, [56], and Kauffman and Neumann, [57], inspired by the topological
behavior of links associated to germs of the type f = g⊕ h, constructed topologically
big families of higher-dimensional links by induction on the dimension. They have
constructions where they control the Seifert form, and others with fibered links where
they control the open book decompositions.

1.7 Final remarks

The aim of this book is to pay tribute to Kervaire and to make his work on knots
of higher dimensions easier to read for younger generations of mathematicians.
Basically it is a mathematical exposition text. Our purpose is not to write a history
of knots in higher dimensions. We apologize for not making a list of all papers in
the subject. When we present Kervaire’s work we try to follow him closely, in order
to retain some of the flavor of the original texts. When necessary, we add further
contributions often due to Levine. We also propose developments that occurred later.
With the passing of time, we find it important to present in detail results on the
fundamental group of the knot complement and on simple odd-dimensional knots
(and links). Indeed,

(1) the determination of the fundamental group of the knot complement played a key
role at the beginning of higher-dimensional knot theory;
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(2) higher odd-dimensional simple knots can be classified via their relations with
handlebodies; on the one hand this classification induces a classification up to
cobordism, and on the other hand, it can be easily generalized to links associated
to isolated singular points of complex hypersurfaces.

We have wondered whether to include Levine’s name in the title of this text. We
have decided not to, although he certainly is the cofounder of higher-dimensional knot
theory. But Levine pursued his work much beyond these first years, while Kervaire
stopped publishing in the subject (too) early. Hence it would have been difficult to
find an equilibrium between them. In fact a study of Levine’s work in knot theory
should be much longer than this text.

1.8 Conventions and notation

Manifolds and embeddings are C∞. Usually, manifolds are compact and oriented. A
manifold is closed if compact without boundary. The boundary of M is written bM ,
its interior is M̊ , and its closure is M̄ . Let L be a closed oriented submanifold of a
closed oriented manifold M . We denote by N(L) a closed tubular neighborhood of
L in M and by E(L) the closure of M \ N(L), i.e., E(L) = M \ N̊(L). By definition
E(L) is the exterior of L in M .

Fibers of vector bundles are vector spaces over the field of real numbers R. The
rank of a vector bundle over a connected base is the dimension of its fibers.


