
Preface

0. The book in brief. Sir Michael Atiyah said in his Fields Lecture [13]: “What
about 21st century? . . . the 21st century might be the era of quantum mathematics or,
if you like of infinite-dimensional mathematics.”

The aim of this book is to start a systematic development of the non-commutative
harmonic analysis on infinite-dimensional .non-locally compact/ groups. To do this
we generalize the notion of regular, quasi-regular and induced representations for
infinite-dimensional groups and study when they are irreducible. We also start to
develop the orbit method in the case of infinite-dimensional “nilpotent” groups.

Since almost all constructions in the harmonic analysis on a locally compact group
G are based on existence (and uniqueness) of the G-invariant measure (Haar mea-
sure) on the group G, it is rather natural to try to construct something similar for
non-locally compact groups. Since the initial group G is not locally compact, there
exists neither a Haar (G-invariant) measure (Weil, [188]), nor a G-quasi-invariant
measure (Xia Dao-Xing, [191]) on it. The most direct approach to construct an ana-
log of the Haar measure is as follows. Try to construct some larger topological groupeG containing the initial group G as a dense subgroup (i.e., eG is a completion of G)
and a G-right-quasi-invariant measure � on eG.

Problem 0.0.1. Thus, the starting point is to construct, for an infinite-dimensional
group G, a triple .eG;G;�/ with the aforementioned properties:

G 7�! .eG;G;�/: (1)

Having such a measure we can try to construct regular, quasi-regular and, with
some additional efforts, induced representations for the infinite-dimensional groupG
and study their irreducibility. The main problem we study in the book is as follows:

Problem 0.0.2. Find irreducibility criteria for the regular, quasi-regular, and induced
representations of infinite-dimensional groups.

In particular, Ismagilov’s conjecture 0.0.7 explains, in terms of the corresponding
measures, when regular representations are irreducible. All these representations
(except for the induced ones) are Koopman representations (see (4)), so we try to
find criteria of irreducibility of Koopman representations (Conjecture 0.0.8).

We generalize the Mackey construction of induced representations for the infinite-
dimensional groups and start the development of the orbit method for the infinite-di-
mensional “nilpotent” group BZ

0 .
We study the von Neumann algebra AR;�.G/ D �

T
R;�
t j t 2 G�00 generated by

the right T R;� (or left T L;�, see (6)) regular representations of the infinite-dimension-
al nilpotent groups BN

0 and BZ

0 (see Definition 0.0.3 below). Here M 0 is the commu-
tant of the von Neumann algebra M (see (2)). First, we give a condition on the
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measure � for the right von Neumann algebra AR;�.G/ to be the commutant of the
left algebra AL;�.G/ D �

T
L;�
s j t 2 G�00. This is an analogue of the well-known

Dixmier commutation theorem for locally compact groups. Second, we determine
when the von Neumann algebra M generated by the right (or left) regular repre-
sentations is a factor, i.e., when M

T
M 0 is trivial, that is, consists of only scalar

operators. Finally, we show that under some natural conditions on the measure � the
corresponding factors are of type III1. In the case when the ground field is a finite
field Fp , we find new irreducibility conditions of the Koopman representation.

We show how the von Neumann infinite tensor product of Hilbert spaces is in-
volved in unitary representations of infinite-dimensional groups. More precisely we
define a Hilbert space Hi as an inductive limit Hi D lim�!n;i

Hn of Hilbert spaces

Hn when the sequence of embedding i is fixed, see Section 2.4. We try to define a
C �-group algebra for an infinite-dimensional group G.

Definition 0.0.3. We call an infinite-dimensional group G “nilpotent” .resp. “solv-
able”/ or residually nilpotent .resp. residually solvable/ if

T
n2NGn D feg .resp.T

nG
.n/ D feg/, where Gn D fGn�1; Gg, G.n/ D fG.n�1/; G.n�1/g; G1 D G.1/ D

G and fa; bg D aba�1b�1.

1. Representation theory of finite-dimensional (locally compact) groups. The
main problem in the representation theory for a locally compact group G is to find
the set of all unitary irreducible representations of G up to unitary equivalence and
decompose reducible representations into a direct sum or direct integral of irreducible
representations. This set is called the unitary dual ofG and is denoted bybG. For many
locally compact groups this problem has been solved, but in general it remains open,
for example, for the group SO.p; q/. For compact groups this problem is simpler.
It is sufficient to consider the right or the left regular representation of the initial
group. These representations are reducible since they commute with each other and
are equivalent. The decomposition of, e.g., the right regular representation contains
all the irreducible representations for any compact group.

For non-compact, locally compact groups, the regular representation is no longer
sufficient to describe bG. One must go further and consider, for example, the simplest
generalization of the regular representation, the so-called quasi-regular representa-
tion. The decomposition of these representations may give new irreducible represen-
tations.

The next step is to introduce induced representations. For connected and simply
connected nilpotent Lie group, the induced representations are sufficient for obtaining
all irreducible representations. Moreover, A. Kirillov ([72], 1962) using his orbit
method showed that there exists a one-to-one correspondence between the set bG, the
unitary dual of the group G, and the set of all orbits of the co-adjoint action of the
group G on the dual space g� to its Lie algebra g.

The book [75] is a short review of the classical part of representation theory.
The main chapters of representation theory are discussed: representations of finite
and compact groups, finite- and infinite-dimensional representations of Lie groups.
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The structure of the theory is carefully exposed, so that the reader can easily see the
essence of the theory without being overwhelmed by details. The final chapter is
devoted to the method of orbits for different types of groups.

The survey [126] introduces the readers to the subjects of harmonic analysis on
homogenuous spaces and group theoretical methods, and prepares them for the study
of more specialised literature.

All the representations considered in the book, except the induced ones, are Koop-
man representations, i.e., are associated with some G-spaces and quasi-invariant
measures (see (4)). To study the properties of these representations, in particular,
their irreducibility, we need some conjectures to describe the commutant of the von
Neumann algebras generated by these representations. The Schur–Weyl duality and
the Dixmier commutation theorem below give us a very good hint for such a conjec-
ture (see Conjecture 0.0.5) in a general context.

2. Schur–Weyl duality. The Schur–Weyl duality [155, 156, 187] is a typical situ-
ation in representation theory involving two kinds of symmetry that determine each
other.

Quoting from [193]: “If V is a finite-dimensional complex vector space, then
the symmetric group Sn naturally acts on the tensor power V ˝n by permuting the
factors. This action of Sn commutes with the action of GL.V /, so all permutations
� W V ˝n ! V ˝n are morphisms of GL.V /-representations. This defines a mor-
phism CŒSn�! EndGL.V /.V

˝n/, and a natural question to ask is whether this map is
surjective.

Part of Schur–Weyl duality asserts that the answer is yes. The double commu-
tant theorem plays an important role in the proof and also highlights an important
corollary, namely that V ˝n admits a canonical decomposition

V ˝n D
M
�

V� ˝ S�;

where � runs over partitions, V� are some irreducible representations of GL.V /, and
S� are the Specht modules, which describe all irreducible representations of Sn. This
gives a fundamental relationship between the representation theories of the general
linear and symmetric groups; in particular, the assignment V 7! V� can be upgraded
to a functor called a Schur functor, generalizing the construction of the exterior and
symmetric products.”

Let dimV D m; then GL.V / D GL.m;C/. The abstract form of the Schur–
Weyl duality asserts that two algebras of operators on the tensor space generated by
the actions of GL.m;C/ and Sn are the full mutual centralizers in the algebra of
endomorphisms EndC.C

m ˝ Cm ˝ � � � ˝ Cm/.
Denote by ˛ and ˇ the corresponding homomorphisms of Sn and GL.m;C/ into

the group of all automorphisms Aut.X/ where X D Cm ˝ Cm ˝ � � � ˝ Cm:

˛ W Sn ! Aut.X/; ˇ W GL.m;C/! Aut.X/:
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Let M 0 be the commutant of the subset M in the von Neumann algebra B.H/ of all
bounded operators in a Hilbert space H :

M 0 D fB 2 B.H/ j ŒB; a� D 0 8a 2 M g; where ŒB; a� D Ba � aB: (2)

SetM1 D .˛.Sn//00 andM2 D .ˇ.GL.m;C///00. Then the Schur–Weyl duality states
that M 0

1 D M2, hence M 0
2 DM1.

In [143] the infinite-dimensional versions of Schur–Weyl duality for representa-
tion of S.1/ D lim�!n

Sn is established. Sometime this group is denoted by S1. In
[133] the analogue of Schur-Weyl duality for the unitary group of an arbitrary II1-
factor is obtained.

In [179] the authors extend the classical Schur–Weyl duality between representa-
tions of the groups SL.m;C/ and Sn to the case of SL.m;C/ and the infinite sym-
metric group S1. In [148] the authors extend Weyl’s results to the classical infinite-
dimensional locally finite algebras gl1; sl1; sp1; so1.

3. The Dixmier commutation theorem, locally compact groups. Let G be a
locally compact group and let h be the right invariant Haar measure onG, i.e., hRt D
h for all t 2 G. Consider the left L and the right R action of the group G on itself
defined as follows:

Rt .x/ D xt�1; Ls.x/ D sx; x; t; s 2 G:
The right and the left regular representations of the groupG are defined in the Hilbert
space L2.G; h/ by

.�tf /.x/ D f .xt/; .�sf /.x/ D
�
dh.s�1x/=dh.x/

�1=2
f .s�1x/; f 2 L2.G; h/;

where dh.s�1x/=dh.x/ is the Radon–Nikodým derivative.

Theorem 0.0.4 (Dixmier’s commutation theorem [35]). The commutant of the von
Neumann algebra generated by the right regular representation is generated by the
left regular representation. More precisely, let �; � W G ! U.L2.G; h// be the right
and the left regular representations of the group G, and let A� D .�t j t 2 G/00 and
A� D .�s j s 2 G/00 be the corresponding von Neumann algebras. Then

.A�/0 D A� and .A�/0 D A�: (3)

4. G -action and irreducibility of the Koopman representation. In the two previ-
ous examples we have two commuting actions of the groups G1 and G2 on the same
space X . Let ZG.H/ be the centralizer of the subgroupH in the group G:

ZG.H/ D fg 2 G j fg; ag D e 8a 2 H g;
where fg; ag D gag�1a�1. In the first example, we have two commuting actions
˛ and ˇ of the groups G1 D Sn and G2 D GL.m;C/ on the space X such that
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ZAut.X/.˛.G1// � ˇ.G2/. In the second example, we have two commuting ac-
tions R and L of the same group G in the space X D G. In this case we have
fR.G/;L.G/g D e or ZAut.G/.R.G// � L.G/. In the general case, if we have
only one group G acting via ˛ on the space X , the second group should be the
centralizer of the group ˛.G/ in the group Aut.X/, i.e., it is natural to consider
G2 D ZAut.X/.˛.G//.

In a general case, let us fix a Borelian action ˛ W G ! Aut.X/ of a group G (not
necessarily locally compact) on a Borelian spaceX with aG-quasi-invariant measure
� on X , where Aut.X/ is the group of all measurable bijections of the space X . In
this case one can naturally define the unitary representation � WD �˛;�;X of the group
G on the space L2.X; �/ by the formula:

.�
˛;�;X
t f /.x/ D .d�.˛�1

t .x//=d�.x//1=2f .˛�1
t .x//; f 2 L2.X; �/; t 2 G:

(4)
In the case of invariant measure � this representations is called the Koopman repre-
sentation, see [78]. Consider the centralizer ZAut.X/.˛.G// of the subgroup ˛.G/ D
f˛t j t 2 Gg in the group Aut.X/ and its subgroupG2 defined as follows:

G2 WD Z�Aut.X/.˛.G// WD
˚
g 2 ZAut.X/.˛.G// j �g � �

�
:

Define the representation T of the group G2 by:

.Tgf /.x/ D .d�.g�1x/=d�.x//1=2f .g�1x/: (5)

Consider the two von Neumann algebras

A�.G/ D .�t j t 2 G/00; AT .G2/ D .Tg j g 2 G2/00:
It would be interesting to find conditions under which the following conjecture is true.

Conjecture 0.0.5. The commutant of the von Neumann algebra generated by the
representation � of the group G coincides with the von Neumann algebra generated
by the representation T of the subgroupG2 in the centralizer ZAut.X/.˛.G//:

.A�.G//0 D AT .G2/:

The book [57] by Helgason is devoted to harmonic analysis on homogeneous
spaces. In particular, it gives description of the commutant of the right quasi-regular
representations associated with the homogeneous spaces X D HnG, where G is
locally compact group and H its closed subgroup.

For regular and quasi-regular representations of the groups BN

0 and BZ

0 the Con-
jecture 0.0.5 holds, but in general it fails. In Chapter 1, Subsection 1.3.9 we give the
example of the groupO.3/ acting on the homegeneous space O.2/ nO.3/ ' S2 for
which Conjecture 0.0.5 fails, Example 1.3.18. Nevertheless, almost all results of the
book concerning properties of different types of representations are particular cases
of Conjecture 0.0.5. Let us consider three particular cases of Conjecture 0.0.5.
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5. The Dixmier commutation theorem, infinite-dimensional groups. To define
a regular representation for an infinite-dimensional group G, we find some larger
topological group eG and a measure � on eG such that G is a dense subgroup in eG,
and �Rt � � for all t 2 G, (or �Lt � � for all t 2 G). The right and left
representations T R;�; T L;� W G ! U.L2.eG;�// are naturally defined on the Hilbert
space L2.eG;�/:

�
T
R;�
t f

�
.x/ D

�
d�.xt/

d�.x/

�1=2
f .xt/;

�
T L;�s f

�
.x/ D

�
d�.s�1x/
d�.x/

�1=2
f
�
s�1x

�
:

(6)

Consider the two von Neumann algebras AT
R;�

and AT
L;�

generated respectively by
the right T R;� and left T L;� regular representations:

AT
R;� D

�
T
R;�
t j t 2 G

�00
; AT

L;� D �T L;�s j s 2 G�00 :
Conjecture 0.0.6. The von Neuman algebras AT

R;�
and AT

L;�
are the commutants

of each other or, in other words, they are the mutual centralizers:
�
AT

R;��0 D AT
L;�

.

We prove Conjecture 0.0.6 only in two particular cases of the groups BN

0 and BZ

0 ,
see Section 1.1.2 formulas (1.4) and (1.8) for notations.

6. The Ismagilov conjecture. The right regular representation of an infinite-di-
mensional group can be irreducible if no left actions are admissible for the measure
�, i.e., if the von Neumann algebra AT

L;�
generated by the left regular representation

T L;� is trivial. More precisely:

Conjecture 0.0.7 (Ismagilov, 1985). The right regular representation

T R;� W G �! U.L2.eG;�//
is irreducible if and only if

1) �Lt ? � for all t 2 Gnfeg; where? stands for singular,
2) the measure � is G-ergodic.

It is clear that these two conditions are necessary conditions for irreducibility.
We recall that two probability measures � and � on X are said to be orthogonal or
singular if for some subspace X0 � X the relation �.X0/ D �.XnX0/ D 1 holds.

Conjecture 0.0.7 was verified by the author for some particular cases of the group
BN

0 .R/ over the real numbers R and Gaussian product measures on its completion
(see Chapter 2, [82, 84]). In the general case, the problem remains open.
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In the case of the group BN

0 .Fp/ over a finite field Fp we need some additional
conditions to ensure irreducibility (see Chapter 7, or [106])

The following conjecture can be considered as a natural generalization of the Is-
magilov conjecture. It is a particular case of Conjecture 0.0.5 and was first discussed
for infinite-dimensional groups by the author in [6, 8, 97, 98, 100, 102].

Conjecture 0.0.8 (Kosyak, [98, 100]). The Koopman representation �˛;�;X W G !
U.L2.X; �// defined by (4) is irreducible if and only if

1) �g ? �, for all g 2 ZAut.X/.˛.G//nfeg,
2) the measure � is G-ergodic.

In Subsection 1.3.9 we show that Conjectures 0.0.5 and 0.0.8 in general fail, Ex-
amples 1.3.18 and 1.3.19. It would be interesting to find the conditions when they are
true. We recall the following definition

Definition 0.0.9. A measure � is G-ergodic if f .˛t.x// D f .x/ �-a.e. for all t 2 G
implies f .x/ D const�-a.e. for all functions f 2 L1.X; �/, where a.e. means
almost everywhere.

7. From dynamical systems to representation theory, a single step.

Representation theory (H Dynamical systems

a group G
+ .G; ˛; �;X/bG D IrrUniRep.G/= �

˛ W G �! Aut.X/ measurable action;

.X; �/ W �˛t � � 8t 2 G;
�˛;�;X W G �! U.L2.X; �//:

8. Quasi-regular representations for infinite-dimensional groups. Let us con-
sider the special case of a G-space (a space on which a group G acts), namely, the
homogeneous space eX D eH n eG, where H is a subgroup of G and � is a quasi-
invariant measure on eX (if it exists) with respect to the right action of the groupG oneH n eG. In this case we call the corresponding representation �˛;�;eHneG an analogue
of the quasi-regular or geometric representation of the group G (Kosyak [98, 100],
2002). We note that in this case we should also take some completion of the initial
homogeneous spaceH nG.

9. Induced representations for infinite-dimensional groups. Induced represen-
tations IndGHS were introduced and studied by F.G. Frobenius [40] for finite groups
and developed by G.W. Mackey [112, 113] for locally compact groups. In [160] the
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Mackey irreducibility criterion for induced representations for finite groups is ex-
plained.

We generalize the Mackey construction for infinite-dimensional groups. To do
this, we construct some G-quasi-invariant measures on an appropriate completioneX D eHneG of the initial space X D HnG (since there is no Haar measure on
G) and extend the representation S of the subgroup H to the representation eS of
the corresponding completion eH . The induced representation defined in such a way
allows us to develop an analogue of the orbit method for the infinite-dimensional
“nilpotent” group BZ

0 D lim�!n
G2n�1 of doubly infinite matrices. In particular, we

find irreducibility criteria for induced representations corresponding to the so-called
generic orbits.

10. Von Neumann algebras. A powerful tool in the theory of von Neumann alge-
bras is the Tomita–Takesaki modular theory. In particular, this theory is used for the
description of the commutant of a von Neumann algebra in terms of the canonical
conjugation operator J and the modular operator 	 (see Subsection 1.5.2). Note
that the Dixmier commutation theorem is a particular case of this theory, see Ex-
ample 1.5.13. We prove the analogue of the Dixmier commutation theorem for the
infinite-dimensional groups BZ

0 in Chapter 5 by constructing the corresponding mod-
ular conjugation operator and the modular operator. These tools allow us to prove
that the corresponding von Neumann algebra is a type III1 factor.

Factors. We study the von Neumann algebras AR;�.G/ D .T
R;�
t jt 2 G/00 and

AL;�.G/ D .T
L;�
s js 2 G/00, generated by the right and the left regular representa-

tions of the infinite-dimensional “nilpotent” groups G D BN

0 and G D BZ

0 . First,
we give a condition on the measure � for the right von Neumann algebra AR;�.G/
to be the commutant of the left one AL;�.G/. This is an analogue of the Dixmier
commutation theorem 0.0.4 for locally compact groups. Second, we determine when
the von Neumann algebraM generated by the right (or left) regular representation is
a factor, i.e., whenM

T
M 0 is trivial.

Type III factors. In both cases (for the groups BN

0 and BZ

0 ) we prove that the von
Neumann algebra AR;�.G/ is the type III1 hyperfinite factor provided some natural
conditions on the measure � hold. We would like to stress that the first non-type
I factor (namely, type II1 factor) was obtained by von Neumann [135] as the von
Neumann algebra generated by the regular representation of a discrete ICC group
(i.e., a group for which all conjugacy classes are infinite, except the trivial one).

11. What can you find only in this book? Why it can be useful?
1) We generalize systematically the notions of the regular, quasi-regular, and in-

duced representations for infinite-dimensional groups.
2) The essential part of this program is to deal with the lack of a Haar measure on

the initial group by introducing a suitable G-quasi-invariant measure on an ap-
propriate completion of the infinite-dimensional groups G or on the completions
of the homogeneous spaces HnG. This measure is not unique, there are a lot of
non-equivalent measures.
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3) The central idea for verifying the irreducibility is the Ismagilov conjecture. To-
gether with the Dixmier commutation theorem and the Schur–Weyl duality, this
conjecture allows us to formulate and verify a reasonable irreducibility hypothesis
for all the considered cases, i.e, for the regular, quasi-regular, induced and more
general, the Koopman representations.

4) We show that the set of all quasi-invariant measures are very important for de-
veloping the harmonic analysis on infinite-dimensional groups. They are use-
ful not only to construct the representations themselves, but serve as an essential
ingredient in the description of the dual of the group G. For example, two ir-
reducible regular representations corresponding to non-equivalent measures are
non-equivalent. For induced representations of the infinite-dimensional “nilpo-
tent” group BZ

0 corresponding to a point on a generic orbit and a measure on the
completion of a homogeneous space, it is reasonable to expect that two such rep-
resentations are equivalent if and only if the mentioned points are on the same
G-orbit in g� of the coadjoint action and the measures are equivalent. Thus, the
measures become parameters of the description of the dualbG. This is a completely
infinite-dimensional phenomenon.

5) We have discovered a family of Hilbert–Lie group GL2.a/; a 2 AGL, having
the property that every unitary continuous representation of GL0.21;R/ can be
extended by continuity to some Hilbert–Lie group GL2.a/ depending on the rep-
resentation. This family play en important role in the definition of the induced rep-
resentation for infinite-dimensional groupsG and in the description of the dual bG.

12. A brief history of the representation theory of infinite-dimensional groups.
The representation theory of infinite-dimensional groups is a very broad area. We
mention here only the work of some authors connected with our approach. The
representation theory of infinite-dimensional unitary groups began with I.E. Segal’s
1957 paper [157] in which he studies unitary representations of the full group U.H/,
called physical representations. In order to study the current commutation relations
of quantum field theory, H. Araki and E. Woods [11] and H. Araki [10] introduced
the notion of current groups and factorisable representations of such groups. In the
work of I.M. Gel’fand, A.M. Vershik and M.I. Graev, [44], 1973, the representations
of current groups, i.e., groups C.X;U / of continuous mappings X ! U , where
X is a finite-dimensional Riemannian manifold and U is a finite-dimensional Lie
group, were studied (see also [146]). The first examples of regular representations for
infinite-dimensional groups (in the case of current groups) were given by S. Albeve-
rio, R. Høegh-Krohn and D. Testard, [3], 1981, and R.S. Ismagilov [62], 1981. The
work of I.M. Gel’fand played a decisive role in the representation theory of groups in
general, and that of infinite-dimensional groups, in particular, see [46, 47, 48].

Regular representations of infinite-dimensional groups, in the case of current
groups, were studied in [2, 3, 4, 62] (see also [5]). An analogue of the regular rep-
resentation for an arbitrary infinite-dimensional group G, using a G-quasi-invariant
measure on some completion eG of such a group, is defined in [82, 85] in 1990. For
S.1/ and inductive limits of classical compact groups there are analogs of regular
representations of another type (with a well-developed harmonic analysis), [21, 70].
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For X D S1 and U a compact or non-compact connected Lie group, a Wiener
measure on the loop group eG D C.X;U / was constructed and its quasi-invariance
was proved in [2, 3, 4, 5, 120, 121, 122].

Using his orbit method developed in [72], A.A. Kirillov described in [73] all uni-
tary irreducible representations of the group U1.H/ (see (7)), the completion in the
strong operator topology of the group U.1/ D lim�!n

U.n/. The group U1.H/ con-
sists of all unitary operators of the form 1C a, where a is compact. If L is a finite-
dimensional complex Hilbert space and U is the unitary group of L, a classical the-
orem of Hermann Weyl asserts that the irreducible unitary representations of U are
realized in subspaces of the tensor algebra over L that are defined by suitable sym-
metry conditions. Kirillov announces here a series of results extending this theorem
to the case in which L is infinite-dimensional.

This approach was generalized by G.I. Olshanskii for the inductive limits of other
classical groups K.1/ D lim�!n

K.n/, where K is U; O or Sp. In [142] the com-
plete classification of the so-called “tame” representations of the group K.1/ was
obtained.

The aim of the book [167] by S. Stratila and D. Voiculescu is the in-depth study
of the factor representations of the group U.1/, see more details in the review by
Ola Bratteli MR0458188.

Quoting from another review by Ola Bratteli MR0442153: “If � is a continuous
unitary finite factor representation of U.1/ (shortened c.u.f.f.r.) and Tr is the unique
normalized trace on the corresponding factor, define the character 
� of � as 
�.g/ D
Tr.�.g// for g 2 U.1/. Let B be the collection of bilateral sequences .cn/n2Z
such that (1) det..cmi Cj�i /1�i;j�N/ � 0 for all m1; : : : ; m2 2 Z and N � N,
and (2)

P
n2Z cn D 1. In [186] D, Voiculescu proves that there is a one-to-one

correspondence between the characters 
� of c.u.f.f.r. of U.1/ and the elements in
B given by 
�.g/ D QN

jD1 p.zj / if g 2 U.N/ � U.1/, where z1; : : : ; zn are the
eigenvalues of g and p.z/ DPn2Z cnzn. The explicit characterization of characters
allows him to deduce that any c.u.f.f.r. of U.1/ has a unique extension by continuity
to a c.u.f.f.r. of the group U1.1/.”

Freely quoting K.H. Neeb [127, 128]: “One of the most drastic differences be-
tween the representation theory of finite-dimensional Lie groups and infinite-dimen-
sional ones is that an infinite-dimensional Lie group G may carry many different
group topologies and any such topology leads to a different class of continuous uni-
tary representations. . . For an infinite-dimensional Hilbert space H , there is a large
variety of unitary groups. First of all, there is the full unitary group U.H/, endowed
with the norm topology . . . However, the much coarser (or weaker) strong operator
topology also turns it into another topological group U.H/s . The third variant of
a unitary group is the subgroup U1.H/ of all unitary operators g for which g � 1
is compact. This is a Banach–Lie group. If H is separable . . . and .en/n2N is an
orthonormal basis, then we obtain natural embeddings U.n/ 7! U.n C 1/ and the
group U.1;C/D lim�!n

U.n;C/ . . . Introducing also the Banach–Lie groups Up.H/,
consisting of unitary operators g, for which g � 1 is of Schatten class p 2 Œ1; 1�,
i.e., Tr.jU � 1jp/ < 1, we thus obtain an infinite family of groups with continuous
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inclusions:

U.1;C/ ,! U1.H/ ,! � � � ,! Up.H/ ,! � � � ,! U1.H/ ,! U.H/! U.H/s:”
(7)

Quoting G. Segal [159]: “We construct projective unitary representations of (a)
Map.S1IG/, the group of smooth maps from the circle into a compact Lie group G,
and (b) the group of diffeomorphisms of the circle. We show that a class of rep-
resentations of Map.S1IT /, where T is a maximal torus of G, can be extended to
representations of Map.S1IG/.”

In [149] D. Pickrell considered the infinite-dimensional group G D U1.H/. He
showed that there are analogues of the Peter–Weyl theorem and Frobenius reciprocity
forU1.H/. N.I. Nessonov [131, 132] gave the complete classification of all admissi-
ble representations of the group GL.1/ and the infinite-dimensional orthogonal and
symplectic group. The book [141] by G.I. Olshanskii deals with the representation
theory of the automorphism groups of infinite-dimensional Riemannian symmetric
spaces. The book [64] by R.S. Ismagilov is devoted to the representations of two
classes of infinite-dimensional Lie groups: groups of currents, groups of diffeomor-
phisms and some of their semidirect products.

The book [129] by Yu.A. Neretin is devoted to the representation theory of the fol-
lowing infinite-dimensional groups: groups of diffeomorphisms of manifolds, groups
associated to Virasoro or Kac–Moody algebras, infinite groups of permutations S1,
groups of operators in Hilbert spaces, groups of currents, and finally, groups of auto-
morphisms of measure spaces.

The book of L. Guieu and C. Roger [53] studies the Virasoro group (the central
extension of the group of diffeomorphisms of the circle) and the Virasoro algebra.
These objects play an important role in various branches of mathematics and in theo-
retical physics, for example, in the study of integrable systems, characteristic classes,
quantization, dynamical systems, string theory, and conformal field theory. The book
of S. Albeverio and coauthors [5] is devoted to representation theory of gauge groups
and related topics. Let S1 D Sn�1 Sn be the group of finite permutations of the nat-
ural numbers. All indecomposable central positive definite functions on S1, which
are related to factor representations of type II1 were given by E. Thoma [175].

Later A.M. Vershik and S.V. Kerov obtained the same result by a different method
in [183] and gave a realization of the representations of type II1 in [184].

In [136, 137] N. Obata constructed and classified an uncountable family U �;� of
irreducible representations of the group S1. This family consists of induced rep-
resentations. In [69] the generalized regular representations fTz W z 2 Cg of the
group S1 � S1 were studied. These representations are deformations of the bireg-
ular representation of S1 in l2.S1/. A two-parameter family of generalized regular
representations Tz;z0 of the group S1 was also mentioned in [69]. In [20] the corre-
sponding spectral measure Pz;z0 was investigated. The correlation functions are of a
determinantal form similar to those studied in random matrix theory.

In [19] the asymptotics of the Plancherel measuresMn for the symmetric groups
Sn is studied. It is shown that Mn converge to the delta measure supported on a cer-
tain subset � of R2 closely connected to Wigner’s semicircle law for the distribution
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of eigenvalues of random matrices. In particular, this gives a positive answer to a
conjecture of J. Baik, P.A. Deift, and K. Johansson [14].

Conjecture 0.0.7 was formulated by R.S. Ismagilov in his referee report on the
author’s PhD thesis [81] for the group G D BN

0 and any Gaussian product measure
on the group eG D BN, and was proved for this case by the author in [82, 84].

The first result in this direction was proved by N. Nessonov in [130]. For the com-
plex infinite-dimensional Borel group Borc;N0 and the tensor product of the standard
Gaussian measure on its completion Borc;N the irreducibility of the corresponding
regular representation was proved there. Here Borc;N0 (respectively Borc;N) is the
group of matrices of the form x D exp t C s, where t is a diagonal matrix with a
finite number of non-zero real elements (resp. arbitrary real elements) and s is a finite
(resp. arbitrary) complex strictly upper-triangular matrix.

In the case when the measure on the group BN is a product of arbitrary one-
dimensional measures, Conjecture 0.0.7 was proved in [92] under some technical
assumptions on the measures. In [85] Conjecture 0.0.7 was studied for the groups
of the diffeomorphisms of the interval and of the circle. For the group of the dif-
feomorphisms of the interval the Shavgulidze measure [163] i.e., the image of the
classical Wiener measure with respect to a suitable bijection, was used. For the group
of diffeomorphisms of the circle the Malliavin measure [121] was used.

In [37] the Koopman and quasi-regular representations corresponding to the ac-
tion of an arbitrary weakly branch group G on the boundary of a rooted tree T is
studied. One of the main results is that in the case of a quasi-invariant Bernoulli
measure on the boundary of T , the corresponding Koopman representation of G is
irreducible (under some general conditions). It is shown also that quasi-regular rep-
resentations ofG corresponding to different orbits on the boundary of T are pairwise
distinct.

13. Segal–Shale–Weil representation. Because of its importance, we want to men-
tion this representation separately, see details in Subsection 1.3.7. The considera-
tion of the symplectic group Sp.n;R/ as a group of automorphisms of the commu-
tation relations (i.e., Heisenberg group) leads to the definition of the Segal–Shale–
Weil representation of the metaplectic group Mp.n/ in L2.Rn/. Infinite-dimensional
versions of the corresponding groups and representations were considered e.g., in
[157, 158, 161, 67, 22, 17]. Weil representations were introduced in a context of a
study [161] dealing with bosons (particles obeying the Bose–Einstein statistics) and
electron spin, authored by David Shale and building on work by I.E. Segal [158].

From MR575900 by Pierre de la Harpe: “The group U.H/2 of those unitary op-
erators on a complex Hilbert space which are Hilbert–Schmidt perturbations of the
identity. The author (R.P. Boyer, [22]) shows that Kirillovs method of orbits works for
the group U.H/2–though not trivially, for example, because of the lack of any Haar
measure. Norm-continuous representations of U.H/2 are thus well understood: they
are shown to be of type I, and to split into irreducible components characterized by
discrete data and isomorphic to standard models. They coincide with those given by
Kirillov [73]. The last section contains also results about strongly continuous repre-
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sentations. The author explains how his work relates to and extends results due to
Segal, Kirillov, Stratila and Voiculescu.”

In [25] A.L. Carey, showed that “the group U2.H/may be imbedded in the group
of Bogoliubov automorphisms of the CAR algebra over H in such a way as to be
weakly inner in any gauge-invariant quasifree representation. Consequently each such
quasifree representation determines a projective representation of U2.H/.” From
MR0463359 by A.U. Klimyk: “Let G be a semi-simple Lie group and bG its uni-
tary dual. Apart from special cases bG is not known. There exist isolated points in bG
which are not members of discrete or “mockdiscrete” series. The authors (M. Kashi-
wara and M. Vergne, [67]) construct series of such representations for the two-sheeted
covering group Mp.n/ of the symplectic group and for U.p; q/. In order to do this
they study the decomposition of the tensor products of the harmonic representations
into irreducible components. In this way new unitary irreducible representations of
Mp.n/ and U.p; q/ with highest weight vectors are obtained. To construct the in-
tertwining operator from the tensor product of the harmonic representations into a
space of vectorvalued holomorphic functions on the associated Hermitian symmetric
spaceG=K, the authors describe the representations of the group GL.n;C/�O.k;C/
(resp. GL.p;C/ � GL.q;C/ � GL.k;C// in the space of pluriharmonic polynomials
on the space M.n; k;C/ of n�k complex matrices (resp. M.p; k;C/�M.q; k;C//.”
From the abstract to [17]: “We produce a connection between the Weil 2-cocycles
defining the local and adèlic metaplectic groups defined over a global field, i.e., the
double covers of the attendant local and adèlic symplectic groups, and local and adèlic
Maslov indices of the type considered by Souriau and Leray.”

14. Irreducibility. We study the irreducibility of the Koopman representations (4)
when the group G and space X are infinite-dimensional and the measure � is G-
quasi-invariant. The proof of the irreducibility is based on the following facts:

(i) the ergodicity of the measure � with respect to the right action of the group G
on eG or X ,

(ii) the operators of multiplication by the independent variables can be approximated
by the generators of one-parameter subgroups of the group G,

(iii) the von Neumann algebra L1.X; �/ is maximal abelian.

Ismagilov’s conjecture was proved by the author for certain infinite-dimensional groups
and certain quasi-invariant measures. Whether the Ismagilov conjecture and other con-
jectures mentioned in the book are true in the general case is an open question.

The main conclusion is the following: for an infinite-dimensional group even
regular representations may be irreducible (in contrast to a locally compact group).
Regular representations may be non-equivalent, if the corresponding measures are
non-equivalent! We also obtain irreducibility criteria of the induced representations
of the group BZ

0 corresponding to generic orbits. Some cases are similar to the lo-
cally compact case, others are completely different (Theorem 7.4.3) and use the same
irreducibility conditions as in the Ismagilov Conjecture 0.0.7.
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15. Examples. We call an infinite matrix finite if only a finite number of its non-
diagonal elements are non-zero. The examples we are going to study in this book
are as follows (see Subsection 1.1.2): the group of finite upper triangular real ma-
trices of infinite order with units on the diagonal BN

0 D lim�!n
B.n;R/ (infinite in

one direction), group of finite upper triangular real matrices of infinite order with
units on the diagonal BZ

0 D lim�!n
B.2n � 1;R/ (infinite in both directions), both are

“nilpotent” groups; the group of infinite upper triangular matrices with non-zero el-
ements on the diagonal BorN0 (a “solvable” group) (see Definition 0.0.3), the group
BN

0 .Fp/ D lim�!n
B.n;Fp/ over the finite field Fp, the inductive limit of the general

linear groups (reductive groups) GL0.21;R/ D lim�!n
GL.2n� 1;R/. Almost every-

where we use Gaussian product measures on the corresponding spaces. Only in the
Section 3.5 we study arbitrary product measures.

16. Open problems. To develop the harmonic analysis for infinite-dimensional
groups it would be useful to solve the following problems:

(I) For an arbitrary infinite-dimensional group G, find a triple .eG;G;�/, see (1).
(II) To verify the Ismagilov conjecture and its generalization for infinite-dimen-

sional groups over different fields k, Conjecture 0.0.7 and Conjecture 0.0.8.
(III) To verify the Dixmier commutation theorem for infinite-dimensional groups,

Conjecture 0.0.6.
(IV) To describe the commutant of the von Neumann algebra A�.G/ generated by

a representation � of the group G, when the representation is reducible, Con-
jecture 0.0.5.

(V) Find the unitary dual bG for infinite-dimensional nilpotent groups BN

0 and BZ

0 .
(VI) Find the Plancherel measure on the dual bG to the groups BN

0 and BZ

0 .
(VII) Construct explicitly the “induced representations” for arbitrary infinite-dimen-

sional groups and establish corresponding irreducibility criteria.

17. The contents of the book. In Chapter 1, we fix the notation and introduce some
notions used in the book to make it self-contained. In Chapter 2, we prove the Is-
magilov conjecture for the regular representations T R;�b of the infinite-dimensional
“nilpotent” group BN

0 . The corresponding measures are infinite tensor products of
one-dimensional arbitrary Gaussian centered measures. We prove also that two irre-
ducible regular representations corresponding to different measures are equivalent if
and only if the corresponding measures are equivalent.

In fact, we construct the representation T R;�b on the space L2.BN; �b/ of the
inductive limit G D lim�!n

Gn as the inductive limit lim�!n
T R;�b;n of the representa-

tions T R;�b;n in Hn D L2.Gn; �b;n/ equivalent with the regular representations �n
of Gn D B.n;R/ in Hn D L2.Gn; hn/, where hn is the Haar measure on Gn. Since
HnC1 D H.nC1/˝Hn for some Hilbert spaceH.nC1/, the lim�!n

Hn can be treated as

He D N
n;eH.n/, the von Neumann infinite tensor product of Hilbert spaces H.n/,

corresponding to a stabilizing sequence e D .e.n//n depending on the inclusions i ,
see details in Section 2.4. This means that we define the object lim�!n;i

Hn in the
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category of Hilbert spaces, but this object depends on the embedding i . The space
Hl D

N
n;l H.n/ is unitarily equivalent with the space L2.BN; �b/. Equivalence of

two spaces He and He0 is the same as the equivalence of two measures �b and �b0 .
We establish the connection between inclusion i , the stabilizing sequence e, and the
measure �b .

In Chapter 3, we prove Conjecture 0.0.8 for the quasi-regular representations of
the infinite-dimensional “nilpotent” group G D BN

0 and for the “solvable” group
G D BorN0 (Section 3.6). The corresponding measures are infinite tensor products of
one-dimensional arbitrary non-centered Gaussian measures on some G-spaces of the
form eHneG, where eH is a subgroup in eG. We also prove that two irreducible quasi-
regular representations corresponding to different measures and different G-spaces
are equivalent if and only if the corresponding spaces coincide and the corresponding
measures are equivalent.

In Chapter 4, we prove the generalized Ismagilov conjecture (Conjecture 0.0.8)
for the quasi-regular representations of the infinite-dimensional “nilpotent” group
G D BN

0 . The corresponding measures are defined on some G-spaces eHneG, whereeH is a subgroup of eG. They are infinite tensor products of m-dimensional arbitrary
centered Gaussian measures on Rm. Since the initial measure �B D N1

nDmC1 �Bn

depends on the infinite set of arbitrary positive operatorsBn on the spaceRm, the level
of the technical problems give rise to more elaborated technique, e.g., the Sylvester
identity, the Hadamard–Fischer inequality etc. We have even introduced and studied
the generalized characteristic polynomial for n � n matrices to settle the problem.

In Chapter 5 we prove the Dixmier commutation theorem for the regular repre-
sentation of the infinite-dimensional “nilpotent” group G D BN

0 . Namely, we prove
that the commutant of the von Neumann algebra generated by the right regular rep-
resentation of the group G coincides with the von Neumann algebra generated by
the left regular representation of G. The corresponding measure is an infinite tensor
product of one-dimensional centered Gaussian measures on the completion eG D BN

of the group G. The most important observation here is that there are measures
�b D

N
k<n �bkn

on eG such that �b.x�1/ � �b.x/. We give sufficient condi-
tions (close to necessary ones) for the eigenvalues of the covariance operatorB of the
measure �b to have this property. This property allows us to construct the operator
of modular conjugation and the modular operator used in Tomita–Takesaki theory,
which are essential for the future study of the properties of the von Neumann algebras
generated by regular representations (see Chapter 6).

In Chapter 6, we determine when the von Neumann algebra AR;�.G/ generated
by the right (and left) regular representations of the infinite-dimensional “nilpotent”
group G is a factor. In Section 6.1, we investigate the case of the group G D BN

0 , in
Section 6.2 the case of the group G D BZ

0 . Moreover, we determine the type of the
corresponding factors. We show that the von Neumann algebra AR;�.G/ is the type
III1 hyperfinite factor. The case of the group G D BN

0 is considered in Section 6.3,
the case of the group G D BZ

0 in Section 6.4.
The induced representations IndGHS were introduced and studied by F.G. Frobe-

nius [40] for finite groups and developed by G.W. Mackey [112, 113] for locally
compact groups. In Chapter 7, we generalize the Mackey construction to infinite-
dimensional groups. To do this, we construct some G-quasi-invariant measures on
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an appropriate completion eX D eHneG of the initial space X D HnG (since there
is no Haar measure on G) and extend the representation S of the subgroup H to the
representation eS of the corresponding completion eH . Kirillov’s orbit method [72]
describes all irreducible unitary representations of the finite-dimensional nilpotent
group Gn in terms of induced representations associated with orbits of the coadjoint
action of the group Gn on the dual space g�

n of the Lie algebra gn. The induced rep-
resentations defined in this way allow us to start developing the orbit method for the
infinite-dimensional “nilpotent” groupBZ

0 D lim�!n
G2n�1 of doubly infinite matrices.

To find an appropriate completion eX of the spaceX and extend the representation
S of the subgroup H to its completion eH it is necessary to use a family of Hilbert–
Lie groups B2.a/; a 2 A, introduced by the author in [80]. These groups B2.a/ are
completions of the group BZ

0 in an appropriate Hilbert topology. This family has the
property that any continuous representation U of the group BZ

0 can be extended by
continuity to some representation U2.a/ of an appropriate Hilbert–Lie group B2.a/.
See Subsection 7.3.3 for detail.

In Chapter 8 we summarize what we know about bG for the three groups BN

0 ; B
Z

0 ,
and GL0.21;R/. For the group G D lim�!n

Gn, where Gn D B.n;R/, we havebG 	Sn
cGn since there are natural projections GnC1 ! Gn. The sets cGn are known

due to the Kirillov’s orbit method. We show that bGnSn
cGn ¤ ;. Namely, bGnSn

cGn
contains irreducible “elementary”, “regular”, “quasi-regular”, and “non-local” in-
duced representations of the group G. A precise description of bG n Sn

cGn is not
known. On the other hand, for all inductive limits G D lim�!n

Gn of matrix groups Gn
we have bG DSa2AG

1G2.a/, where G2.a/ is a Hilbert–Lie group corresponding to
the initial group G and some weight a 2 AG (see the details below). So it remains to
find 1G2.a/; a 2 AG; this problem is still open.

In Chapter 9, we study the quasi-regular representations of the infinite-dimension-
al “nilpotent” group BN

0 .Fp/ over the finite field Fp . The corresponding G-space X
is similar to the space used in Chapter 2. The corresponding measures on X are infi-
nite tensor products of arbitrary measures on Fp D Z=pZ. We obtain irreducibility
criteria for quasi-regular representations, but some new additional conditions on the
corresponding measure (if we compare them with the Ismagilov conjecture) must be
imposed to have irreducibility in this case. The reason is that in the case of a compact
field some additional operators appear in the commutant.

In Chapter 10, we find irreducibility criteria for Koopman representations of the
group G D GL0.21;R/ D lim�!n

GL.2n � 1;R/, the inductive limit of the general
linear groups (see [105]). Thus, we prove Conjecture 0.0.8 in this case. The corre-
sponding measures are infinite tensor products of arbitrary one-dimensional Gaussian
non-centered measures. The corresponding G-space Xm is a subspace of the space
Mat.21;R/ of doubly infinite real matrices. The spaceXm is a collection ofm rows.

In Chapter 11, we give examples of regular representations for non-matrix groups.
Namely, we consider the group of the diffeomorphisms of the interval, of the circle,
the group of local diffeomorhisms of the real line, and the group GX of smooth
mappings of a Riemannian manifold into a compact Lie group G, for the simplest
example X D Œ0; 1�.
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In Chapter 12, we show how to solve the problem of finding a triple .eG;G;�/,
Problem 0.0.1, for an arbitrary infinite-dimensional group G. For this we consider a
Gaussian measure �B in a Hilbert spaceH and its subspace of admissible shifts H0.
The properties of the triple .H;H0; �B/ make it a good model for a general triple
.eG;G;�/. In addition we discuss the analogue of the C �-group algebra for infinite-
dimensional groups.

18. Which readership we have in mind? The book is addressed to graduate stu-
dents with a good background in measure theory and representation theory of locally
compact groups. More precisely, a familiarity with the following material is required
if one wishes to understand the book:

1) measure theory (Gaussian measures in Hilbert spaces, measures on infinite prod-
ucts of spaces, equivalence, singularity, and ergodicity of measures, Hellinger
integral), see [32, 108, 166];

2) representation theory of locally compact groups (Haar measure, regular, quasi-
regular, induced representation, irreducibility, equivalence of unitary representa-
tions) see [35, 74, 188],

3) the orbit method developed by A. Kirillov [75] for finite-dimensional nilpotent
groups, but we explain everything necessary here. In Chapter 7 we generalize the
orbit method for infinite-dimensional “nilpotent” groups,

4) the finite field Fp D Z=pZ, where p is a prime, is used only in Chapter 9.
5) Chapter 6, dealing with the von Neumann algebras, requires more: algebras of

operators on a Hilbert space, factors, type of factors, especially A. Connes’ clas-
sification of type III1 factors, see [29, 172, 173, 174].

All the notions used in the book are defined in Introduction and preliminaries, Chap-
ter 1. But to understand the sections dealing with the von Neumann algebras and
with other subjects, some experience and patience are required. This is a rather new
field, there are no general theorems, so the proofs are usually complicated. But if the
reader makes some additional efforts, he will be richly rewarded! There are plenty of
new phenomena that do not arise for locally compact groups. One example: the reg-
ular representation of an infinite-dimensional group can be irreducible, which never
happens for a locally compact group, except for the trivial one! Another example:
the regular representation can be irreducible, being the inductive limit of the regu-
lar (hence reducible) representations of locally compact groups. The non-equivalent
measures parametrize the description of the dual bG.

19. The contents of the book in one table. The main conjecture:
Ismagilov’s conjecture. The right regular representation of the infinite-dimensional
group G is irreducible if and only if

(i) �Ls ? �, for all s 2 Gne,
(ii) � is G-right ergodic.

We can present almost all objects and problems we treat in the book in the following
table:
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G loc.comp. dimG D1 non loc.comp.

1 Haar measure 9Š measure h on group G:
hRt D h8t 2 G

.eG;G;�/ W�Rt ��Lt ��8t 2G
G is dense subgroup ineG
Problem 0.0.1

2 regular representa-
tion

�; � WG ! U.L2.G; dh//,
.�tf /.x/D f .xt/; .�sf /.x/
D
�
dh.s�1x
dh.x/

�1=2
f
�
s�1x

�
TR;�; TL;� WG ! U.L2.eG;�//�
T
R;�
t f

�
.x/D

�
d�.xt/
d�.x/

�1=2
f .xt/

3 reducibility Œ�t ; �s �D 0 8t; s 2 G
h
T
R;�
t ; T

L;�
s

i
D 0 8t; s 2 G

4 Ismagilov’s
conjecture (1985)

Conjecture 0.0.7

5 quasi-regular rep. T WG ! U.L2.X; �//,
X DHnG

T WG ! U.L2.eX;�//,eX DeHneG
6 Hilbert–Lie groups

GL2.a/, a 2 AGL,

T
a2AGL

GL2.a/D
GL0.21;R/

8U WGL0.21;R/!U.H/ 9 a2
AGL WU2.a/ WGL2.a/!U.H/

7 induced
representation

H � G, S WH!U.V /;

IndGHS WG!U.L2.X; V; �//

H � G, S WH!U.V /;

IndGHS WG!U.L2.eX;V; �//;eS WeH ! U.V /

8 Koopman’s
representation

˛ WG! Aut.X; �/; �˛t ��,
� WG ! U.L2.X; �//

Conjecture 0.0.8

9 von Neumann
algebras, factors

A�.G/D .�t j t 2 G/00,
A�.G/D .�s j s 2 G/00,
A�.G/ is type II1 factor iffG
is discret ICC group

AR;�.G/D
�
T
R;�
t j t 2 G

�00
,

AL;�.G/D
�
T
L;�
t j t 2 G

�00
.

When AR;�.G/ is factor?

10 commutation
theorem

A�.G/0DA�.G/,
M DA�.G/

When AR;�.G/0DAL;�.G/?
M DAR;�.G/

11 Tomita–Takesaki
theory

h.x�1/ � h.x/;
	.x/Ddh.x�1/=dh.x/

When �.x�1/ � �.x/?
	�.x/D d�.x�1/=d�.x/

12 canonical conjuga-
tion operator

.Jf /.x/D	1=2.x/f .x�1/
J�tJ D�t 8t 2 G,
JMJ DM 0,

.J�f /.x/D	1=2� .x/f .x�1/,
J�T

R;�
t J�DTL;�t 8t 2 G,

when J�MJ�DM 0?
13 dual for

GD lim�!n
Gn?

GDBN

0 , BZ

0 ,
GL0.21;R/

bGD S
a2AG

1G2.a/ where G2.a/

is a corr. Hilbert–Lie group,
1G2.a/?

14 C�.G/-group
algebra

C�
red

.G/D .�t j t 2 G/00 C�
red;�

.G/D
�
T
R;�
t j t 2 G

�00

15 inductive limit
representation

GD lim�!n
Gn, Tn WGn!U.Hn/

innC1 WHn!HnC1 define repres.?
T D lim�!n

Tn; Hilb. space?
lim�!n;i

Hn



Preface xxv

22. Acknowledgements. The author would like to thank the Max Planck Institute
for Mathematics (MPIM) in Bonn for kind invitations and hospitality in 2009, 2010,
2013, 2014 and 2016–2017. In 2009 the book was started and the main part of the
work was carried out. In February 2017, during the author’s visit at MPIM, the book
was finished.

I am very grateful to R. Grigorchuk, M. Karbe and P. More for facilitating the
publication.

Grigori Olshanskii and Rais Ismagilov were my PhD thesis opponents (external
examiners) in 1985. Grigori Olshanskii supported me when I was ready to change
the subject and persuaded me to continue. His advice helped me a lot. For example,
he suggested to develop the orbit method for infinite-dimensional nilpotent groups in
1985. The current situation is that not only a substantial part of the orbit method has
been constructed, but that also a methodology has been developed explaining how to
define induced representations for an arbitrary infinite-dimensional group.

In his report on my PhD thesis Rais Ismagilov conjectured that the right regular
representation of an infinite-dimensional nilpotent group constructed in the thesis can
be irreducible if no left actions are admissible for the measure in question. This
remark helped me find my way in mathematics. Despite the fact that this remark has
never been published by him, I called it the Ismagilov conjecture, in order to honor
his deep observation and his contribution to the subject. I am extremely grateful to
Rais Ismagilov.

My interest in infinite-dimensional analysis was sparred by my teacher Yuri M.
Berezansky. Thanks to him I started to work in his department at the Institute of
Mathematics in Kiev. Almost all my results were reported in his seminar on Func-
tional Analysis. I also had the very nice opportunity to attend Anatoly Skorokhod’s
seminar on Probability Theory in Kiev. It was a good chance to study the measures
on infinite-dimensional spaces and to communicate with experts.

Finally, I would like to express my deep gratitude to the copyeditor for his excel-
lent work and to the editor of EMS Thomas Hintermann for his patience.

Bonn–Kiev, Alexander Kosyak
February 2009–April 2018


