
Introduction

In the early stage of its history, rigid geometry has been first envisaged in an at-

tempt to construct a non-Archimedean analytic geometry, an analogue over non-

Archimedean valued fields, such as p-adic fields, of complex analytic geometry.

Later, in the course of its development, rigid geometry has acquired several rich

structures, considerably richer than being merely ‘copies’ of complex analytic

geometry, which endowed the theory with a great potential of applications.

This theory is nowadays recognized by many mathematicians in various research

fields to be an important and independent discipline in arithmetic and algebraic ge-

ometry. This book is the first volume of our prospective book project, which aims to

discuss the rich overall structures of rigid geometry, and to explore its applications.

Before explaining our general perspective on this book project, we first provide

an overview of the past developments of the theory.

0. Background. After K. Hensel introduced p-adic numbers by the end of the

19th century, the idea arose of constructing p-adic analogues of already existing

mathematical theories that were formerly considered only over the field of real or

complex numbers. One such analogue was the theory of complex analytic func-

tions, which had by then already matured into one of the most successful and rich

branches of mathematics. Complex analysis saw further developments and innova-

tions later on. Most importantly, from extensive works on complex analytic spaces

and analytic sheaves by H. Cartan and J. P. Serre in the mid-20th century, after the

pioneering work by K. Oka, arose the new idea that the theory of complex analytic

functions should be regarded as part of complex analytic geometry. According to

this view, it was only natural to expect the emergence of p-adic analytic geometry,

or more generally, non-Archimedean analytic geometry.

However, all first attempts encountered essential difficulties, especially in estab-

lishing a reasonable link between the local and global notions of analytic functions.

Such a naive approach is, generally speaking, characterized by its inclination to

produce a faithful imitation of complex analytic geometry, which can be already

seen at the level of point sets and topology of the putative analytic spaces. For ex-

ample, for the ‘complex plane’ over Cp (D the completion of the algebraic closure
xQp of Qp), one takes the naive point set, that is, Cp itself, and the topology simply

induced by the p-adic metric. Starting from a situation like the one described, one
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goes on to construct a locally ringed space X D .X;OX/ by introducing the sheaf

OX of ‘holomorphic functions,’ a conventional definition of which is something

like this: OX.U / for any open subset U is the set of all functions on U that admit

a convergent power series expansion at every point. But this leads to an extremely

cumbersome situation. Indeed, since the topology of X is totally disconnected,

there are too many open subsets, and this causes the patching of functions to be

extremely ‘wobbly,’ so much so that one fails to have good control of the global

behavior of analytic functions. For example, if X is the ‘p-adic Riemann sphere’

Cp[f1g, one would expect that OX.X/ consists only of constant functions, which,

however, is far from being true in this situation.

Let us call the problem described above the Globalization Problem.1 Although

in its essence it may be seen, inasmuch as being concerned with patching of analytic

functions, as a topological problem, as it will turn out, it deeply links with the

issue of how to define the notion of points. In the prehistory of rigid geometry,

this Globalization Problem has been one, and perhaps the most crucial one, of the

obstacles in the quest for a good non-Archimedean analytic geometry.2

1. Tate’s rigid analytic geometry. The Globalization Problem found its funda-

mental solution when J. Tate introduced his rigid analytic geometry [94] in a semi-

nar at Harvard University in 1961. Tate’s motivation was to justify his construction

of the so-called Tate curves, a non-Archimedean analogue of 1-dimensional com-

plex tori, build by means of an infinite quotient [95].3 Tate’s solution to the problem

consists of the following items:

� a ‘reasonable’ and ‘sufficiently large’ class of analytic functions and

� a ‘correct’ notion of analytic coverings.

Here, one can find behind this idea the influence of A. Grothendieck in at least two

ways: first, Tate introduced spaces by means of local characterization in terms of

their function rings, as typified by scheme theory; second, he used the machinery

of Grothendieck topology to define analytic coverings.

Let us briefly review Tate’s theory. First of all, Tate introduced the category

AffK of so-called affinoid algebras over a complete non-Archimedean valuation

field K. Each affinoid algebra A, which is aK-Banach algebra, is considered to be

the ring of ‘reasonable’ analytic functions over the ‘space’ Sp A, called the affinoid,

which is the corresponding object in the dual category Aff
opp

K of AffK . Moreover,

based on the notion of admissible coverings, he introduced a new ‘topology,’ in

fact, a Grothendieck topology, on Sp A, which we call the admissible topology.

1This problem is, in classical literature, usually referred to as the problem in analytic continuation.
2In his pioneering works [73] and [74], M. Krasner studied in deep the problem and gave a first general

recipe for a meaningful analytic continuation of non-Archimedean analytic functions.
3Elliptic curves and elliptic functions over p-adic fields have already been studied by É. Lutz at the

suggestion of A. Weil, who was inspired by classical works of Eisenstein (cf. [103], p. 538).
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The admissibility imposes, most importantly, a strong finiteness condition on ana-

lytic coverings, which establishes close ties between the local and global behaviors

of analytic functions, as is well described by the famous Tate’s acyclicity theo-

rem (II.B.2.3). An important consequence of this nice local-to-global connection

is the good notion of ‘patching’ of affinoids, by means of which Tate was able to

solve the Globalization Problem, and thus to construct global analytic spaces.

In summary, Tate overcame the difficulty by ‘rigidifying’ the topology itself by

imposing the admissibility condition, a strong restriction on the patching of local

analytic functions. It is for this reason that this theory is nowadays called rigid

analytic geometry.

Aside from the fact that it gave a beautiful solution to the Globalization Prob-

lem, it is remarkable that Tate’s rigid analytic geometry proved that it is possible

to apply Grothendieck’s way of constructing geometric objects in the setting of

non-Archimedean analytic geometry. Thus, rather than complex analytic geometry,

Tate’s rigid analytic geometry resembles scheme theory. There seemed to be, how-

ever, one technical difference between scheme theory and rigid analytic geometry,

which was considered to be quite essential at the time when rigid analytic geometry

appeared: rigid analytic geometry had to use Grothendieck topology, not classical

point set topology.

There is yet another aspect of rigid analytic geometry reminiscent of algebraic

geometry. In order to have a better grasp of the abstractly defined analytic spaces,

Tate introduced a notion of points. He defined points of an affinoid Sp A to be

maximal ideals of the affinoid algebra A; viz., his affinoids are visualized by the

maximal spectra, that is, the set of all maximal ideals of affinoid algebras, just like

affine varieties in the classical algebraic geometry are visualized by the maximal

spectra of finite type algebras over a field. Note that this choice of points is es-

sentially the same as the naive one that we have mentioned before. This notion of

points was, despite its naivety, considered to be natural, especially in view of his

construction of Tate curves, and practically good enough as far as being concerned

with rigid analytic geometry over a fixed non-Archimedean valued field.4

2. Functoriality and topological visualization. Tate’s rigid analytic geometry

has, since its first appearance, proven itself to be useful for many purposes, and

been further developed by several authors. For example, H. Grauert and R. Rem-

mert [49] laid the foundations of topological and ring theoretic aspects of affinoid

algebras, and R. Kiehl [69] and [70] promoted the theory of coherent sheaves and

their cohomologies on rigid analytic spaces.

However, it was widely perceived that rigid analytic geometry still has some

essential difficulties, some of which are listed below.

4One might be apt to think that Tate’s choice of points is an ‘easygoing’ analogue of the spectra of

complex commutative Banach algebras, for which the justification, Gelfand–Mazur theorem, is, however,

only valid in complex analytic situation, and actually fails in p-adic situation (see below).
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� Functoriality of points does not hold. If K 0=K is an extension of complete

non-Archimedean valuation fields, then one expects to have, for any rigid analytic

space X over K, a mapping from the points of the base change XK0 to the points

of X , which, however, does not exist in general in Tate’s framework.

Let us call this problem the Functoriality Problem. The problem is linked with

the following more fundamental one.

� The analogue of the Gelfand–Mazur theorem does not hold. The Gelfand–

Mazur theorem states that there exist no Banach field extension of C other than C

itself. In the non-Archimedean case, in contrast, there exist many Banach K-fields

other than finite extensions of K. This would imply that there should be plenty of

‘valued points’ of an affinoid algebra not factoring through the residue field of a

maximal ideal; in other words, there should be much more points than those that

Tate has introduced.

It is clear that in order to overcome the difficulties of this kind one has to change

the notion of points. More precisely, the problem lies in what to choose as the

spectrum of an affinoid algebra. To this, there are at least two solutions:

(I) Gromov–Berkovich style spectrum;

(II) Stone–Zariski style spectrum.

The spectrum of the first style, which turns out to be the ‘smallest’ spectrum

allowing to solve the Functoriality Problem in the category of Banach algebras,

consists of height-one valuations, that is, seminorms (of a certain type) on affinoid

algebras. The resulting point sets carry a natural topology, the so-called Gelfand

topology. This kind of spectra was adopted by V. G. Berkovich in his approach to

non-Archimedean analytic geometry, so-called Berkovich analytic geometry [11].

A nice feature of this approach is that, in principle, it can deal with a wide class

of Banach K-algebras, including affinoid algebras, and thus solve the Functoriality

Problem (in the category of Banach algebras). Moreover, the spectra of affinoid al-

gebras in this approach are Hausdorff, thereby providing intuitively familiar spaces

as the underlying topological spaces of the analytic spaces.

However, the Gelfand topology differs from the admissible topology; it is even

weaker, in the sense that, as we will see later, the former topology is a quotient

of the latter. Therefore, this topology does not solve the Globalization Problem

for affinoid algebras compatibly with Tate’s solution, and, in order to do analytic

geometry, one still has to use the Grothendieck topology just imported from Tate’s

theory.

It is thus necessary, in order to simultaneously solve the Globalization Problem

(for affinoids) and the Functoriality Problem, to further improve the notion of points

and the topology. In the second style, the Stone–Zariski style, which we will take up

in this book, each spectrum has more points by valuations, not only of height one,
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but of higher height.5 It turns out that the topology on the point set thus obtained

coincides with the admissible topology on the corresponding affinoid, thus solving

the Globalization Problem without using the Grothendieck topology. Moreover, the

spectra have plenty of points to solve the Functoriality Problem as well.

As we have seen, to sum up, both the Globalization Problem and the Functorial-

ity Problem are closely linked with the more fundamental issue concerned with the

notions of points and topology, that is, the problem of the choice of spectra. What

lies behind all this is the philosophical tenet that every notion of space in commuta-

tive geometry should be accompanied with ‘visualization’ by means of topological

spaces, which we call the topological visualization (Figure 1). It can be stated,

therefore, that the original difficulties in the early non-Archimedean analytic geom-

etry in general, Globalization and Functoriality, are rooted in the lack of adequate

topological visualizations. We will dwell on more on this topic later.

Commutative

geometry
+3 Topological

spaces

Figure 1. Topological visualization.

3. Raynaud’s approach to rigid analytic geometry. To adopt the spectra as in

the Stone–Zariski style, in which points are described in terms of valuation rings

of arbitrary height, one more or less inevitably has to deal with finer structures,

somewhat related to integral structures, of affinoid algebras.6 The approach is, then,

further divided into the following two branches:

(II-a) R. Huber’s adic spaces7 [59], [60], and [61];

(II-b) M. Raynaud’s viewpoint via formal geometry8 as a model geometry [88].

The last approach, which we will adopt in this book, fits in the general frame-

work in which a geometry as a whole is a package derived from a so-called model

geometry. Here is a toy model that exemplifies the framework. Consider, for ex-

ample, the category of finite-dimensional Qp-vector spaces. We observe that this

5Note that this height tolerance is necessary even for rigid spaces defined over complete valuation

fields of height one.
6Such a structure, which we call a rigidification, will be discussed in detail in II, ÷A.2. (c). In the

original Tate rigid analytic geometry, the rigidifications are canonically determined by classical affinoid

algebras themselves, and this fact explains why Tate’s rigid analytic geometry, unlike the more general

Huber’s adic geometry, could work without reference to integral models of affinoid algebras.
7Note that Huber’s theory is based on the choice of integral structures of topological rings. We will

give, mainly in II, ÷A, a reasonably detailed account of Huber’s theory.
8By formal geometry, we mean in this book the geometry of formal schemes, developed by

A. Grothendieck.
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category is equivalent to the quotient category of the category of finitely generated

Zp-modules modulo the Serre subcategory consisting of p-torsion Zp-modules,

since any finite-dimensional Qp-vector space has a Zp-lattice, that is, a ‘model’

over Zp. This suggests that the overall theory of finite-dimensional Qp-vector

spaces is derived from the theory of models, in this case, the theory of finitely

generated Zp-modules.

In our context, what Raynaud discovered on rigid analytic geometry consists of

the following statements.

� Formal geometry, which has already been established by Grothendieck prior

to Tate’s work, can be adopted as a model geometry for Tate’s rigid analytic

geometry.

� The overall theory of rigid analytic geometry arises from Grothendieck’s

formal geometry (Figure 2), which leads to the extremely useful idea that,

between formal geometry and Tate’s rigid analytic geometry, one can use

theorems in one setting to prove theorems in the other.

Formal

geometry
+3 Rigid analytic

geometry

Figure 2. Raynaud’s approach to rigid geometry.

To make more precise the assertion that formal geometry can be a model ge-

ometry for rigid analytic geometry, consider, just as in the toy model as above, the

category of rigid analytic spaces over K. Raynaud showed that the category of

Tate’s rigid analytic spaces (with some finiteness conditions) is equivalent to the

quotient category of the category of finite type formal schemes over the valuation

ring V of K. Here the ‘quotient’ means inverting all ‘modifications’ (especially,

blow-ups) that are ‘isomorphisms over K,’ the so-called admissible modifications

.blow-ups/.

There are several important consequences of Raynaud’s discovery; let us men-

tion a few of them. First, guided by the principle that rigid analytic geometry is

derived by formal geometry, one can build the theory afresh, starting from defining

the category of rigid analytic spaces as the quotient category of the category of for-

mal schemes modulo all admissible modifications.9 Second, Raynaud’s theorem

says that rigid analytic geometry can be seen as the birational geometry of formal

schemes, a novel viewpoint, which motivates one to explore the link with traditional

birational geometry. Third, as already mentioned above, the bridge between formal

9The rigid spaces obtained in this way are, more precisely, what we call coherent (D quasi-compact

and quasi-separated) rigid spaces, from which general rigid spaces are constructed by patching.



Introduction XXI

schemes and rigid analytic spaces, established by Raynaud’s viewpoint, gives rise

to fruitful interactions between these theories. Especially useful is the fact that

theorems in the rigid analytic side can be deduced, at least when one works over

complete discrete valuation rings, from theorems in the formal geometry side, avail-

able in EGA and SGA works by Grothendieck et al., at least in the Noetherian case.

4. Rigid geometry of formal schemes. We can now describe, along the line of

Raynaud’s discovery, the basic framework of our rigid geometry that we promote

in this book project. For us rigid geometry is a geometry obtained from a birational

geometry of model geometries. This being so, the main purpose of this book project

is to develop such a theory for formal geometry, thus generalizing Tate’s rigid ana-

lytic geometry and building a more general analytic geometry. Thus to each formal

scheme X we associate an object of a resulting category, denoted by X rig, which

itself should already be regarded as a rigid space. Then we define general rigid

spaces by patching these objects. Note that, here, the rigid spaces are introduced as

an ‘absolute’ object, without reference to a base space.

Among several classes of formal schemes we start with, one of the most im-

portant is the class of what we call locally universally rigid-Noetherian formal

schemes; see I.2.1.7. The rigid spaces obtained from this class of formal schemes

are called locally universally Noetherian rigid spaces, see II.2.2.23, which cover

most of the analytic spaces that appear in contemporary arithmetic geometry. Note

that the formal schemes of the above kind are not themselves locally Noetherian.

A technical point resulting from the demand of removing Noetherian hypothesis is

that one has to treat non-Noetherian adic rings of fairly general kind, for which

classical theories, including EGA, do not give us enough tools; for example, val-

uation rings of arbitrary height are necessary in order to describe points on rigid

spaces, and we accordingly need to treat fairly wide class of adic rings over them

for describing fibers of finite type morphisms.

Besides, we would like to propose another viewpoint, which classical theory

does not offer. Among what Raynaud’s theory suggests, the most inspiring is,

we think, the idea that rigid geometry should be a birational geometry of formal

schemes. We would like to adopt this perspective as one of the core ideas of our

theory. In fact, as we will see soon below, it tells us what should be the most nat-

ural notion of point of a rigid space, and thus leads to an extremely rich structure

concerned with visualizations (that is, spectra), whereby to obtain a satisfactory

solution to the above-mentioned Globalization and Functoriality problems. We ex-

plain this in the sequel.

5. Revival of Zariski’s approach. The birational geometric aspect of our rigid ge-

ometry is best explained by means of O. Zariski’s classical approach to birational

geometry as a model example. Around 1940’s, in his attempt to attack the desin-



XXII Introduction

gularization problem for algebraic varieties, Zariski introduced abstract Riemann

spaces for function fields, which we call Zariski–Riemann spaces, generalizing the

classical valuation-theoretic construction of Riemann surfaces by Dedekind and

Weber. This idea has been applied to several other problems in algebraic geometry,

including, for example, Nagata’s compactification theorem for algebraic varieties.

Let us briefly overview Zariski’s idea. Let Y ,! X be a closed immersion

of schemes (with some finiteness conditions), and set U D X n Y . We consider

U -admissible modifications of X , which are by definition proper birational maps

X 0 ! X that are isomorphisms over U . This class of morphisms contains the

subclass consisting of U -admissible blow-ups, that is, blow-ups along closed sub-

schemes contained in Y . In fact, U -admissible blow-ups are cofinal in the set of all

U -admissible modifications (due to the flattening theorem; cf. II, ÷E.1. (b)). The

Zariski–Riemann space, denoted by hXiU , is the topological space defined as the

projective limit taken along the ordered set of all U -admissible modifications, or

equivalently, U -admissible blow-ups, ofX . Especially important is the fact that the

Zariski–Riemann space hXiU is quasi-compact (essentially due to Zariski [107];

cf. II.E.2.5), a fact that is crucial in proving many theorems, for example, the above-

mentioned Nagata’s theorem.10

As is classically known, points of the Zariski–Riemann space hXiU are de-

scribed in terms of valuation rings. More precisely, these points are in one-to-one

correspondence with the set of all morphisms, up to equivalence by ‘domination,’

of the form SpecV ! X , where V is a valuation ring (possibly of height 0), that

map the generic point to points in U (see II, ÷E.2. (e) for details). Since the spectra

of valuation rings are viewed as ‘long paths’ (cf. Figure 1 in 0, ÷6), one can say in-

tuitively that the space hXiU is like a ‘path space’ in algebraic geometry (Figure 3).

Now, what we have meant by adopting birational geometry as one of the core

ingredients in our theory is that we apply Zariski’s approach to birational geometry

to the main body of our rigid geometry. Our basic dictionary for doing this, e.g.,

for rigid geometry over the p-adic field, is as follows:

� X  ! formal scheme of finite type over Spf Zp;

� Y  ! the closed fiber, that is, the closed subscheme defined by ‘p D 0.’

In this dictionary, the notion of U -admissible blow-ups corresponds precisely to

the admissible blow-ups of formal schemes.

6. Birational approach to rigid geometry. As we have already mentioned above,

our approach to rigid geometry, called the birational approach to rigid geometry,

is, so to speak, the combination of Raynaud’s algebro-geometric interpretation of

10Zariski–Riemann spaces are also used in O. Gabber’s unpublished works in 1980’s on algebraic ge-

ometry problems. Their first appearance in literature in the context of rigid geometry seems to be in [38].
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X

Y

Figure 3. Set-theoretical description of hXiU .

rigid analytic geometry, which regards rigid geometry as a birational geometry of

formal schemes, and Zariski’s classical birational geometry (Figure 4). Most no-

tably, it will turn out that this approach naturally gives rise to the Stone–Zariski

style spectrum, which we have already mentioned before.

Raynaud’s viewpoint of

rigid geometry
C Zariski’s viewpoint of

birational geometry

Figure 4. Birational approach to rigid geometry.

A nice point in combining Raynaud’s viewpoint and Zariski’s viewpoint is that,

while the former gives the fundamental recipe for defining rigid spaces, the latter

endows them with a ‘visualization.’ Let us make this more precise, and alongside

explain what kind of visualization we attach here to rigid spaces.

As already described earlier, from an adic formal scheme X (of finite ideal

type; cf. I.1.1.16), we obtain the associated rigid space X D X rig. Then, suggested

by what we have seen in the previous section, we define the associated Zariski–

Riemann space hXi as the projective limit

hXi D lim �X
0;

taken in the category of topological spaces, of all admissible blow-ups X 0 ! X

(Definition II.3.2.11). We adopt this space hXi as the topological visualization

of the rigid space X. In fact, this space is exactly what we have expected as the

topological visualization in the case of Tate’s theory, since it can be shown that the

canonical topology (the projective limit topology) of hXi actually coincides with

the admissible topology.
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To explain more about the visualization of rigid spaces, we would like to in-

troduce three kinds of visualizations in a general context. One is the topological

visualization, which we have already discussed. The second one, which we name

standard visualization, is the one that appears in ordinary geometries, as typified by

scheme theory; that is, visualization by locally ringed spaces. Recall that an affine

scheme, first defined abstractly as an object of the dual category of the category

of all commutative rings, can be visualized by a locally ringed space supported on

the prime spectrum of the corresponding commutative ring. The third visualization,

which we call the enriched visualization, or just visualization in this book, is given

by what we call triples:11 these are objects of the form .X;OCX ;OX/ consisting of a

topological space X and two sheaves of topological rings together with an injective

ring homomorphism OCX ,! OX that identifies OCX with an open subsheaf of OX

such that the pairs X D .X;OX/ and XC D .X;OCX / are locally ringed spaces; in

this setting, OX is regarded as the structure sheaf of X , while OCX represents the

enriched structure, such as an integral structure (whenever it makes sense) of OX .

The enriched visualization is typified by rigid spaces. The Zariski–Riemann

space hXi has two natural structure sheaves, the integral structure sheaf Oint
X

, de-

fined as the inductive limit of the structure sheaves of all admissible blow-ups ofX ,

and the rigid structure sheaf OX , obtained from Oint
X

by ‘inverting the ideal of defi-

nition.’ What is intended here is that, while the rigid structure sheaf OX should, as

in Tate’s rigid analytic geometry, normally come as the ‘genuine’ structure sheaf of

the rigid space X, the integral structure sheaf Oint
X

represents its integral structure.

These data comprise the triple

ZR.X/ D .hXi;Oint
X ;OX/;

called the associated Zariski–Riemann triple, which gives the enriched visualiza-

tion of the rigid space X. That the rigid structure sheaf should be the structure sheaf

of X means that the locally ringed space .hXi;OX/ visualizes the rigid space in

an ordinary sense, that is, in the sense of standard visualization.

Note that the Zariski–Riemann triple ZR.X/ for a rigid space X coincides with

Huber’s adic space associated to X; in fact, the notion of Zariski–Riemann triple

gives not only an interpretation of adic spaces, but also a foundation for them via

formal geometry, which we establish in this book; see II, ÷A.5 for more details.

Figure 5 illustrates the basic design of our birational approach to rigid geometry,

summarizing all what we have discussed so far.

The figure shows a ‘commutative’ diagram, in which the arrow .�1/ is

Raynaud’s approach to rigid geometry (Figure 2), and the arrow .�2/ is the en-

riched visualization by Zariski–Riemann triples, coming from Zariski’s viewpoint.

The other visualizations are also indicated in the diagram, the standard visualization

11See II, ÷A.1 for the generalities of triples.
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by .�3/, and the topological visualization by .�4/; the right-hand vertical arrows

represent the respective forgetful functors.

Formal

geometry
Rigid geometry Triples

Locally ringed

spaces

Topological

spaces

>

>

.�1/ +3 .�2/ +3

��

��

.�3/

.�4/

Figure 5. Birational approach to rigid geometry.

All this is the outline of what we will discuss in this volume. Here, before

finishing this overview, let us add a few words on the outgrowth of our theory.

Our approach to rigid geometry, in fact, gives rise to a new perspective of rigid

geometry itself: rigid geometry in general is an analysis along a closed subspace

in a ringed topos. This idea, which tells us what the concept of rigid geometry in

mathematics should ultimately be, is linked with the idea of tubular neighborhoods

in algebraic geometry, already discussed in [38]. From this viewpoint, Raynaud’s

choice, for example, of formal schemes as models of rigid spaces can be interpreted

as capturing the ‘tubular neighborhoods’ along a closed subspace by means of the

formal completion. Now that there are several other ways to capture such structures,

e.g., Henselian schemes etc., there are several other choices for the model geometry

of rigid geometry.12 This yields several variants, e.g., rigid Henselian geometry,

rigid Zariskian geometry, etc., all of which are encompassed within our birational

approach.13

7. Relation with other theories. In the first three sections II, ÷A, II, ÷B, and II, ÷C

of the appendices to Chapter II, we compare our theory with other theories related

to rigid geometry. Here we give a digest of the contents of these sections for the

reader’s convenience.14

12There is, in addition to formal geometry and Henselian geometry, the third possibility for the model

geometry, by Zariskian schemes. We provide a general account of the theory of Zariskian schemes and

the associated rigid spaces, the so-called rigid Zariskian spaces, in the appendices I, ÷B and II, ÷D.
13The reader might note that this idea is also related to the cdh-topology in the theory of motivic

cohomology.
14A. Abbes has recently published another foundational book [1] on rigid geometry, in which, similarly

to ours, he developed and generalized Raynaud’s approach to rigid geometry.



XXVI Introduction

� Relation with Tate’s rigid analytic geometry. Let V be an a-adically com-

plete valuation ring of height one, and set K D Frac.V / (the fraction field), which

is a complete non-Archimedean valued field with a non-trivial valuation

k � kWK ! R�0. In II, ÷8.2. (c) we will define the notion of classical points

(in the sense of Tate) for rigid spaces of a certain kind, including locally of

finite type rigid spaces over � D .SpfV /rig. If X is a rigid space of the latter

kind, it will turn out that the classical points of X are reduced zero-dimensional

closed subvarieties in X (cf. II.8.2.6).

We define X0 to be the set of all classical points of X. The assignment X 7! X0

has several nice properties, some of which are incorporated into the notion of

.continuous/ spectral functor (cf. II, ÷8.1). Among them is the important prop-

erty that classical points detect quasi-compact open subspaces: for quasi-compact

open subspaces U;V � X, U0 D V0 implies U D V . In view of all this, one

can introduce on X0 a Grothendieck topology �0 and sheaf of rings OX0
, which

are naturally constructed from the topology and the structure sheaf of X; for exam-

ple, for a quasi-compact open subspace U � X, U0 is an admissible open subset

of X0, and we have OX0
.U0/ D OX.hUi/. It will turn out that the resulting triple

X0 D .X0; �0;OX0
/ is a Tate rigid analytic variety over K, and thus one has the

canonical functor

X 7�! X0

from the category of locally of finite type rigid spaces over � to the category of

rigid analytic varieties over K.

Theorem (Theorem II.B.2.5, Corollary II.B.2.6). The functor X 7! X0 is a cate-

gorical equivalence from the category of quasi-separated locally of finite type rigid

spaces over � D .SpfV /rig to the category of quasi-separated Tate analytic vari-

eties over K. Moreover, under this functor, affinoids .resp. coherent spaces/ corre-

spond to affinoid spaces .resp. coherent analytic spaces/.

Note that Raynaud’s theorem (the existence of formal models) gives the canon-

ical quasi-inverse functor to the above functor.15

� Relation with Huber’s adic geometry. As we have already remarked above,

the Zariski–Riemann triple ZR.X/, at least in the situation as before, is an adic

space. This is true in much more general situation, for example, in case X is

locally universally Noetherian (II.2.2.23). In fact, by the enriched visualization,

we have the functor

ZRWX 7�! ZR.X/

15To show the theorem, we need the Gerritzen–Grauert theorem [45], which we assume whenever

discussing Tate’s rigid analytic geometry. Note that, when it comes to the rigid geometry over valuation

rings, this volume is self-contained only with this exception. We will prove Gerritzen–Grauert theorem

without a circlular argument in the next volume.
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from the category of locally universally Noetherian rigid spaces to the category of

adic spaces (Theorem II.A.5.1), which gives rise to a categorical equivalence in the

most important cases. In particular, we have the following theorem.

Theorem (Theorem II.A.5.2). Let � be a locally universally Noetherian rigid

space. Then ZR establishes a categorical equivalence from the category of locally

of finite type rigid spaces over � to the category of adic spaces locally of finite type

over ZR.�/.

� Relation with Berkovich analytic geometry. Let V and K be as before. We

will construct a natural functor

X 7�! XB

from the category of locally quasi-compact16 (II.4.4.1) and locally of finite type

rigid spaces over � D .SpfV /rig to the category of strictly K-analytic spaces (in

the sense of Berkovich).

Theorem (Theorem II.C.6.12). The functor X 7! XB establishes a categorical

equivalence from the category of all locally quasi-compact locally of finite type

rigid spaces over .SpfV /rig to the category of all strictly K-analytic spaces. More-

over, XB is Hausdorff .resp. paracompact Hausdorff, resp. compact Hausdorff/ if

and only if X is quasi-separated .resp. paracompact and quasi-separated, resp.

coherent/.

The underlying topological space of XB is what we call the separated quo-

tient (II, ÷4.3. (a)) of hXi, denoted by ŒX�, which comes with the quotient map

sepX W hXi �! ŒX�

(separation map). In particular, the topology of XB is the quotient topology of the

topology of hXi.

Figure 6 illustrates the interrelations among the theories we have discussed so

far. In the diagram,

� the functors .�1/ and .�2/ are fully faithful; the functor .�3/, defined on

locally quasi-compact rigid analytic spaces, is fully faithful to the category

of strictly K-analytic spaces;

� the functor .�4/WX ! X0, defined on locally of finite type rigid spaces

over .SpfV /rig, is quasi-inverse to (�1) restricted on quasi-separated spaces;

16Note that, if X is quasi-separated, then X is locally quasi-compact if and only if hXi is taut in the

sense of Huber, 5.1.2 in [61] (cf. 0.2.5.6).
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� the functor .�5/ is given by the enriched visualization, defined on locally

universally Noetherian rigid spaces; it is fully faithful in practical situations,

including those of locally of finite type rigid spaces over a fixed locally uni-

versally Noetherian rigid space, and of rigid spaces of type (N) (II.A.5.3);

� the functor .�6/WX 7! XB, defined on locally quasi-compact locally of

finite type rigid spaces over .SpfV /rig, establishes a categorical equivalence

with the category of strictly K-analytic spaces.

Tate’s rigid analytic

varieties

Rigid spaces

(in our sense)

Adic spaces

Berkovich

spaces

.�1/
33

.�4/
||

.�2/
//

.�3/ ++

.�5/
��

.�6/

��

Figure 6. Relation with other theories.

Finally, we would like to mention that it has recently become known to experts

in the field that it is possible that some of the non-Archimedean spaces that arise

naturally in contemporary arithmetic geometry cannot be handled in Berkovich’s

analytic geometry (see e.g. [57], 4.4). This state of affair makes it important to

investigate in detail the relationship between Berkovich’s analytic geometry and

rigid geometry (or adic geometry). In II, ÷C.5, we will study a spectral theory

of filtered rings and introduce a new category of spaces, the so-called metrized

analytic spaces. This new notion of spaces generalizes Berkovich’s K-analytic

spaces, and gives a clear picture of the comparison; see II, ÷C.6. (d). Also, the

newly introduced spaces turn out to be equivalent to Kedlaya’s reified adic spaces

[67], to which our filtered ring approach in this book offers a new perspective.

8. Applications. We expect that our rigid geometry will have rich applications, not

only in arithmetic geometry, but also in various other fields. A few of them have

already been sketched in [42], which include

� arithmetic moduli spaces (e.g. Shimura varieties) and their compactifica-

tions;

� trace formula in characteristic p > 0 (Deligne’s conjecture).
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In addition to these, since our theory has set out from Zariski’s birational ge-

ometry, applications to problems in birational geometry, modern or classical, are

also expected. For example, this volume already contains Nagata’s compactifica-

tion theorem for schemes and a proof of it (II, ÷F), as an application of the general

idea of our rigid geometry to algebraic geometry.

Some other prospective applications may be to p-adic Hodge theory (cf. [91]

and [92]) and to rigid cohomology theory for algebraic varieties in positive char-

acteristic. Here the visualization in our sense of rigid spaces will give concrete

pictures for tubes and the dagger construction. As one application in this direction

one can mention

� p-adic Hodge theory vs. rigid cohomology.

Finally, let us mention that the applications to

� moduli of Galois representations,

� mirror symmetry,

the second of which has been first envisaged by M. Kontsevich, should be among

the future challenges.

9. Contents of this book. We followed two basic rules in designing the contents

of this book, both of which may justify its length. First, in addition to being a

front-line exposition presenting new theories and results, we hope that this book

will serve as an encyclopedic source. It contains, consequently, as many notions

and concepts, hopefully with only few omission, that should come about as basic

and important ones for present and future use, as possible.

Second, we have aimed at making this book as self-contained as possible. All

results that sit properly inside the main body of our arguments are always followed

by proofs, except for some minor or not-too-difficult lemmas, some of which are

placed at the end of each section as exercises; even in this case, if the result is

used in the main text, we give a detailed hint in the end of the book, which, in

many cases, almost proves the assertion. Note that, because of several laborious

requirements on the groundwork, such as removing the Noetherian hypothesis, are

also self-contained many of the preliminary parts.

This volume consists of the following three chapters:

� Chapter 0. Preliminaries

� Chapter I. Formal geometry

� Chapter II. Rigid spaces

Let us briefly sketch the contents of each chapter. More detailed summaries will be

given at the beginning of each chapter.
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Chapter 0 collects preliminaries, which, however, contain also new results. Sec-

tions 0, ÷1 to 0, ÷7 give necessary preliminaries on set theory, category theory,

general topology, homological algebra, etc. In the general topology section, we put

emphasis on Stone duality between topological spaces and lattices. In 0, ÷8 and 0,

÷9, we will conduct thorough study of topological and algebraic aspects of topolog-

ical rings and modules. This part of the preliminaries will be the bases of the next

chapter, the general theory of formal geometry.

Chapter I is devoted to formal geometry. The essential task here is to treat non-

Noetherian formal schemes of a certain kind, e.g., finite type formal schemes over

an a-adically complete valuation ring of arbitrary height, for reasons of functoriality

(as stated in 4. above). Since this kind of generalities seem to be missing in the past

literature, we provide a self-contained and systematic theory of formal geometry,

generalizing many of the theorems in [54], III. To this end, we introduce several

new notions of finiteness condition outside the ideal of definition and show that they

allow one to build a versatile theory of formal schemes.

Chapter II is the main part of this volume, in which we develop rigid geometry,

based on the foundational work done in the previous chapter. The geometrical

theory of rigid spaces that we treat in this chapter includes

� cohomology theory of coherent sheaves (II, ÷5, ÷6); finiteness (II.7.5.19);

� local and global study of morphisms (II, ÷7);

� classification of points (II, ÷8, ÷11.1);

� GAGA (II, ÷9);

� relations with other theories (II, ÷A, ÷B, ÷C).

There are of course many other important topics that are not dealt with in this

volume. Some of them, including several important applications, will be contained

in the future volumes.

10. Use of algebraic spaces. In I, ÷6 we develop a full-fledged theory of formal

algebraic spaces. It is, in fact, one of the characteristic features of our approach to

rigid geometry that we allow formal algebraic spaces, not only formal schemes, to

be formal models of rigid spaces. The motivation mainly comes from the applica-

tions to algebraic geometry.

In algebraic geometry, while it is often difficult to show that spaces, such as

moduli spaces, are represented by schemes, the representability by algebraic spaces

is relatively easy to establish, thanks to M. Artin’s formal algebraization theo-

rem [6]. Therefore, taking algebraic spaces into the scope increases the flexibility

of the theory. In order to incorporate algebraic spaces into our rigid geometry, one

first needs to discuss formal algebraic spaces, some of which appear as the formal
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completion of algebraic spaces, and then proceed to the rigid spaces associated

to them. Now the important fact is that, although formal algebraic spaces seem

to constitute, via Raynaud’s recipe, a new category of rigid spaces that enlarges

the already existing category of rigid spaces derived from formal schemes, they

actually do not; viz., we do not have to enlarge the category of rigid spaces by this

generalization. This is explained by the following theorem, which we shall prove

in the future volume.

Theorem (equivalence theorem). LetX be a coherent adic formal algebraic space

of finite ideal type. Then there exists an admissible blow-up X 0 ! X from a formal

scheme X 0. Therefore, the canonical functor

8
<
:

coherent adic

formal schemes of

finite ideal type

9
=
;�8

<
:

admissible

blow-ups

9
=
;

�!

8
ˆ̂<
ˆ̂:

coherent adic

formal algebraic

spaces of

finite ideal type

9
>>=
>>;�8

<
:

admissible

blow-ups

9
=
;

is a categorical equivalence.

The theorem shows that, up to admissible blow-ups, formal algebraic spaces

simply fall into the class of formal schemes, and thus define the associated rigid

space X rig just ‘as usual.’ As for GAGA, we can generalize the definition of GAGA

functor for algebraic spaces (using a compactification theorem of Nagata type for

algebraic spaces).17

11. Properness in rigid geometry. In rigid geometry, we have the following three

natural definitions of properness. A morphism 'WX ! Y of coherent rigid spaces

is proper if either one of the following conditions is satisfied.

(1) ' is universally closed (II.7.5.4), separated, and of finite type.

(2) Raynaud properness. There exists a proper formal model f WX ! Y of '.

(3) Kiehl properness. ' is separated of finite type, and there exist an affinoid

covering fUigi2I and, for each i 2 I , a pair of finite affinoid coverings

fVij gj2Ji
and fV 0ij gj2Ji

of '�1.Ui / indexed by a common set Ji such that,

for any j 2 Ji , Vij � V 0ij and Vij is relatively compact in V 0ij over Ui

(in the sense of Kiehl).

17This ‘analytification of algebraic spaces’ was already considered in depth and developed by B. Conrad

and M. Temkin [31] over complete non-Archimedean valued fields.
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Historically, properness in Tate’s rigid geometry has been first defined by

R. Kiehl by condition (3) in his work [69] on finiteness theorem. This condi-

tion, existence of affinoid enlargements, stems from the general idea by Cartan

and Serre and by H. Grauert for proving finiteness of cohomologies of coherent

sheaves. While the equivalence of (1) and (2) is an easy exercise, the equiva-

lence of (2) and (3), especially the implication (2) H) (3), is a very deep theo-

rem. Lütkebohmert’s 1990 paper [78] proves this for rigid spaces of finite type

over .SpfV /rig, where V is a complete discrete valuation ring. In this book, we

temporarily define properness by condition (1) (and hence equivalently by (2)), and

postpone the proof of the equivalence of these three conditions, especially the im-

plication (2) H) (3), in the so-called adhesive case (II.2.2.23), to the next volume,

in which we will show the Enlargement Theorem by expanding Lütkebohmert’s

technique.

12. Contents of the future volumes. Our project will continue in future volumes.

The next volume will contain the following chapters.

� Chapter III. Formal flattening theorem

This chapter will also contain several applications of the formal flattening

theorem, such as Gerritzen–Grauert theorem.

� Chapter IV. Enlargement theorem

This chapter will contain the proof of the equivalence of the three ‘defini-

tions’ of properness.

� Chapter V. Equivalence theorem and analytification

of algebraic spaces

This chapter will give the proof of the equivalence theorem stated above and

the definition of the GAGA functor for algebraic spaces.

13. General conventions. Chapter numbers are bold-face Roman, while for sec-

tions and subsections we use Arabic numbers; subsubsections are numbered by

letters in parentheses; for example, ‘I, ÷3.2. (b)’ refers to the second subsubsection

of the second subsection in ÷3 of Chapter I. Cross-references will be given by se-

quences of numerals, like I.3.2.1, which specify the places of the statements in the

text. The chapter numbers are omitted when referring to places in the same chapter.

Almost all sections are equipped with some exercises at the end, which are

selected in order to help the reader understand the content. We insert hints for

some of the exercises at the end of this volume.
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Let us list some mathematical conventions.

� We fix once for all a Grothendieck universe U ([8], Exposé I, 0); cf. 0,

÷1.1. (a).

� By a Grothendieck topology (or simply by a topology) on a category C we

always mean a functor J W x 7! J.x/, assigning to each x 2 obj.C/ a col-

lection of sieves, as in [80], III, ÷2, Definition 1. In many places, however,

Grothendieck topologies are introduced by means of a base (covering fami-

lies) as in [80], III, ÷2, Definition 2, (prétopologie in the terminology in [8],

Exposé II, (1.3)); in this situation, we consider, without explicit mentioning,

the Grothendieck topology generated by the base.

� A site will always mean a U-site (cf. [8], Exposé II, (3.0.2)), that is, a pair

.C ; J / consisting of a U-category C ([8], Exposé I, Definition 1.1) and a

Grothendieck topology on C .

� All compact topological spaces are assumed to be Hausdorff; that is, we

adopt the Bourbaki convention

quasi-compact C Hausdorff D compact:

However, we sometimes use the term ‘compact Hausdorff’ just for empha-

sis. Other conventions, in which we do not follow Bourbaki, are the follow-

ing ones.

� Locally compact spaces are only assumed to be locally Hausdorff;18

A topological space X is said to be locally compact if every point of

X has a compact neighborhood contained in a Hausdorff neighbor-

hood.

� Paracompact spaces are not assumed to be Hausdorff; see 0, ÷2.5. (c).

� Whenever we say A is a ring, we always mean, unless otherwise stipulated

that A is a commutative ring having the multiplicative unit 1 D 1A. We also

assume that any ring homomorphism f WA! B is unital, that is, maps 1A
to 1B . Moreover,

� for a ring A we denote by Frac.A/ the total ring of fractions of A;

� for a ring A the Krull dimension of A is denoted by dim.A/;

� when A is a local ring, its unique maximal ideal is denoted by mA.

� Let A be a ring and I � A an ideal. When we say A is I -adically complete

or complete with respect to the I -adic topology, we always mean, unless

otherwise stipulated that A is Hausdorff complete with respect to the I -adic

topology.

18Note that, in [24], Chapter I, ÷9.7, Definition 4, locally compact spaces are assumed to be Hausdorff.



XXXIV Introduction

� By an exact functor between derived categories (of any sort) we always

mean an exact functor of triangulated categories that preserves the canoni-

cal t -structures (hence also the canonical cohomology functors), which are

clearly specified by the context.

� We will often use, by abuse of notation, the equality symbol ‘D’ for ‘iso-

morphic by a canonical morphism.’
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