Preface

Hay que saber buscar aunque uno no sepa qué es lo que busca.

RoBERTO BoLARO

— Les maths, m’sieur, ¢a fonctionne toujours a c6té de ses grolles.

JEAN AMILA

In 1748 Leonhard Euler published Introductio in analysin infinitorum where, among
several fundamental results, he established the relationship e = —1 and gave explicitly
the continued fraction expansions of e and e?>. He also made a conjecture concerning the
nature of quotients of logarithms of rational numbers, which can be formulated as follows:

For any two positive rational numbers r, s with r different from 1, the number 19¢5/10g r
is either rational (in which case there are non-zero integers a, b such that r® = s?)
or transcendental.

Recall that a complex number is called algebraic if it is a root of a non-zero polynomial
with integer coefficients and a complex number which is not algebraic is called transcen-
dental. Euler’s conjecture implies, for example, that 2V2 is irrational (if it were rational,
then log 2V2 divided by log 2, which is equal to /2, would be rational or transcendental).
It can be reformulated as follows:

If a is a positive rational number different from 1 and B an irrational real algebraic
number, then aP is irrational.

In 1900, David Hilbert proposed a list of twenty-three open problems and presented
ten of them in Paris at the second International Congress of Mathematicians. His seventh
problem expands the arithmetical nature of the numbers under consideration in Euler’s
conjecture and asks whether (observe that e® = (—1)77)

the expression o for an algebraic base o different from 0 and 1 and an irrational algebraic

exponent B, e.g. the number V2 orem , always represents a transcendental or at least an
irrational number.

Here and below, unless otherwise specified, by algebraic number we mean complex
algebraic number. Hilbert believed that the Riemann Hypothesis would be settled long
before his seventh problem. This was not the case: the seventh problem was eventually
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solved in 1934, independently and simultaneously, by Aleksandr Gelfond and Theodor
Schneider, by different methods. They established that, for any non-zero algebraic numbers
o1,d2, B1, B2 with loga; and log oy linearly independent over the rationals (here and
below, log denotes the principal determination of the logarithm function), we have

Az := Brloga; + Balogas # 0.

Since the formulation is different, let us add some explanation. Under the hypotheses of
Hilbert's seventh problem, the complex numbers log & and log o are linearly independent
over the rationals and, assuming furthermore that ab is algebraic, we derive from the
Gelfond—Schneider theorem that B, equal to the quotient of the logarithm of ? by the
logarithm of o, cannot be algebraic, a contradiction.

Subsequently, Gelfond derived a lower bound for | A, | and, a few years later, he realized
that an extension of his result to linear forms in an arbitrarily large number of logarithms of
algebraic numbers would enable one to solve many challenging problems in Diophantine
approximation and in the theory of Diophantine equations.

This program was realized by Alan Baker in a series of four papers published between
1966 and 1968 in the journal Mathematika. He made the long awaited breakthrough, by

showing that, if ay, . . ., &, are non-zero algebraic numbers such thatlog ¢y, . . . , log o, are
linearly independent over the rationals, and if 1, ..., B, are non-zero algebraic numbers,
then

Ap = Bilogay + -+ + Buloga, # 0.

In addition, he derived a lower bound for | A, |, thereby giving the expected extension of the
Gelfond—Schneider theorem. In his work, Baker generated a large class of transcendental
numbers not previously identified and showed how the underlying theory can be used
to answer a wide range of Diophantine problems, including the effective resolution of
many classical Diophantine equations. He was awarded a Fields Medal in 1970 at the
International Congress of Mathematicians in Nice.

It then became clear that further progress, refinements, and extensions of the theory
would have important consequences. This area was at that time flourishing and developing
very rapidly, both from a theoretical point of view (with improvements obtained by Baker
and Feldman, among others, on the lower bounds for |A,|) and regarding its applications.
A spectacular achievement was the proof by Robert Tijdeman in 1976 that the Catalan
equation x™ — y" = 1, in the integer unknowns x, y,m,n all greater than 1, has only
finitely many solutions (Preda Mihiilescu established in 2002 that 32 — 23 = 1 is the only
solution to this equation).

The aim of the present monograph is to serve as an introductory text to Baker’s theory
of linear forms in the logarithms of algebraic numbers, with a special emphasis on a large
variety of its applications, mainly to Diophantine questions. We wish to help students and
researchers to learn what is hidden inside the blackbox “Baker’s theory of linear forms
in logarithms” (in complex or in p-adic logarithms) and how this theory applies to many
Diophantine problems.

Chapter 1 gives the reader a concise historical introduction to the theory. In Chapter 2,
we gather several explicit lower bounds for |A,| and its p-adic analogue, which were es-
tablished by Waldschmidt, Matveev, Laurent, Mignotte and Nesterenko, Yu, and Bugeaud
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and Laurent, and which will be used in the subsequent chapters. In all but one of these
estimates, f1,..., B, are integers, a special case sufficient for most of the applications.
The lower bounds are then expressed in terms of the maximum B of their absolute values
and take the form

log|A,| > —c(n, D) (log2A41)...(log2A4,) (log2B),

where c(n, D) is an explicit real number depending only on n and the degree D of the
algebraic number field generated by oy, ..., o, and A; is the maximum of the absolute
values of the coefficients of the minimal defining polynomial of «; over the rational
integers, for j = 1,...,n. The crucial achievements of Baker are the logarithmic
dependence on B and the fact that an admissible value for c¢(n, D) can be explicitly
computed.

We consider in Chapter 3 Diophantine problems for which the reduction to linear
forms in complex logarithms is almost straightforward. These problems include explicit
lower bounds for the distance between powers of 2 and powers of 3, effective irrationality
measures for n-th roots of rational numbers, lower bounds for the greatest prime factor
of n(n + 1), where n is a positive integer, perfect powers in linear recurrence sequences
of integers, etc.

Chapter 4 is devoted to applications to classical families of Diophantine equations. In
the works of Thue and Siegel, it was established that unit equations, Thue equations, and
super- and hyperelliptic equations have only finitely many integer solutions, but the proofs
were ineffective, in the sense that they did not yield upper bounds for the absolute values
of the solutions and, consequently, were of very little help for the complete resolution
of the equations. The theory of linear forms in logarithms induced dramatic changes in
the field of Diophantine equations and we explain how it can be applied to establish, in
an effective way, that unit equations, Thue equations, super- and hyperelliptic equations,
the Catalan equation, etc., have only finitely many integer solutions. This chapter also
contains a complete proof, following Bilu and Bugeaud [72], of an effective improvement
of Liouville’s inequality (which states that an algebraic number of degree d cannot be
approximated by rational numbers at an order greater than d) derived ultimately from an
estimate for linear forms in two complex logarithms proved in Chapter 11.

When the algebraic numbers oy, . . . , &, occurring in the linear form A, are all rational
numbers very close to 1, the lower bounds for | A, | can be considerably improved. Several
applications of this refinement are listed in Chapter 5. They include effective irrationality
measures for n-th roots of rational numbers close to 1 and striking results on the Thue
equation ax™ — by" = c.

Chapter 6 presents various applications of the theory of linear forms in p-adic log-
arithms, in particular towards Waring’s problem and, again, to perfect powers in linear
recurrence sequences of integers. It also includes extensions of results established in
Chapter 4: unit equations, Thue equations, super- and hyperelliptic equations have only
finitely many solutions in the rational numbers, whose denominators are divisible by
prime numbers from a given, finite set, and, moreover, the size of these solutions can be
effectively bounded.

Primitive divisors of terms of binary recurrence sequences are discussed in Chapter 7.
We partially prove a deep result of Bilu, Hanrot, and Voutier [77] on the primitive
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divisors of Lucas and Lehmer numbers and discuss some of its applications to Diophantine
equations. Then, following Stewart [400], we confirm a conjecture of ErdSs and show
that, for every integer n > 3, the greatest prime factor of 2” — 1 exceeds some positive
real number times n /logn/loglogn.

In Chapter 8, we follow Stewart and Yu [405] to establish partial results towards the
abc-conjecture, which claims that, for every positive real number &, there exists a positive
real number « (¢g), depending only on &, such that, for all coprime, positive integers a, b,
and ¢ with a + b = ¢, we have

c < K(8)< 1_[ p)H_E,

plabc

the product being taken over the distinct prime factors of abc. Specifically, we show
how to combine complex and p-adic estimates to prove the existence of an effectively
computable positive real number « such that, for all positive coprime integers @, b, and ¢
with a + b = ¢, we have

3

log <;<( Hp)l/3 (1og( Hp)) .

plabc plabc

There are only a few known applications of the theory of simultaneous linear forms in
logarithms, developed by Loxton in 1986. Two of them are presented in Chapter 9. A first
gives us an upper bound for the number of perfect powers in the interval [N, N + +/N],
for every sufficiently large integer N. A second shows that, under a suitable assumption,
a system of two Pellian equations has at most one solution.

Given a finite set of multiplicatively dependent algebraic numbers, we establish in
Chapter 10 that these numbers satisfy a multiplicative dependence relation with small
exponents. A key ingredient for the proof is a lower bound for the Weil height of a
non-zero algebraic number which is not a root of unity.

Full proofs of estimates for linear forms in two complex logarithms, which, in partic-
ular, imply lower estimates for the difference between integral powers of real algebraic
numbers, are given in Chapter 11. Analogous estimates for linear forms in two p-adic
logarithms, that is, upper estimates for the p-adic valuation of the difference between in-
tegral powers of algebraic numbers are given in Chapter 12. An estimate for linear forms
in an arbitrary number of complex logarithms is derived in Chapter 4 from the estimate
for linear forms in two complex logarithms established in Chapter 11. While the former
estimate is not as strong and general as the estimates stated in Chapter 2, it is sufficiently
precise for many applications.

We collect open problems in Chapter 13. The thirteen chapters are complemented by
six appendices, which, mostly without proofs, gather classical results on approximation
by rational numbers, the theory of heights, algebraic number theory, and p-adic analysis.

We have tried, admittedly without too much success, to curb our taste for extensive
bibliographies. No effort has been made towards exhaustivity, including in the list of
bibliographic references, and the topics covered in this textbook reflect somehow the
personal taste of the author.



Preface ix

Inevitably, there is some overlap between this monograph and the monograph [376]
of Shorey and Tijdeman, which, although over thirty years old, remains an invaluable
reference for anyone interested in Diophantine equations. In particular, the content of
Chapter 4 (except Section 4.1) is treated in [376] in much greater generality. There is also
some overlap with Sprindzuk’s book [386] and the monograph of Evertse and Gyéry [182].
Regarding the theory of linear forms in logarithms, Chapters 2 and 11 can be seen as an
introduction to the book of Waldschmidt [432]. As far as we are aware, the content of
Chapters 35, 7, 8, 9, and 12 and several other parts of the present monograph have never
appeared in books.

To keep this book reasonably short and accessible to graduate and post-graduate
students, the results are not proved in their greatest generality and proofs of the best
known lower bounds for linear forms in an arbitrary number of complex (resp., p-adic)
logarithms are not given.

Many colleagues sent me comments, remarks, and suggestions. I am grateful to all of
them. Special thanks are due to Samuel Le Fourn, who very carefully read the manuscript
and sent me many insightful suggestions.

This book was written while I was director of the ‘Institut de Recherche Mathématique
Avancée’.



