
Introduction

The story begins with fundamental works of S. Lie, W. Killing, and E. Cartan back
at the end of the 19th century, which led to the creation of Lie theory. Lie’s orig-
inal motivation was to develop a Galois theory for differential equations; by now,
Lie theory has gone far beyond this objective, and has become a central chapter of
contemporary mathematics. At its heart lies the study of certain groups of symme-
try of algebraic or geometric objects (the Lie groups), of their corresponding sets
of infinitesimal transformations (their Lie algebras), and of the fruitful interplay
between Lie groups and Lie algebras (the Lie correspondence).

To any Lie groupG, one can namely associate the vector space g of its tangent
vectors at the identity, and equip g with a Lie bracket g�g! g W .x; y/ 7! Œx; y�,
turning g into a Lie algebra. For our purposes, it will be sufficient to think of
G D SLn.C/, in which case g D sln.C/ is the Lie algebra of traceless complex
n�nmatrices, with the Lie bracket given by ŒA; B� WD AB�BA for all A;B 2 g.

Conversely, the Lie group G can be reconstructed from its Lie algebra g by
exponentiation: the exponential map

expW sln.C/! SLn.C/ W A 7! eA WD
X
n�0

1

nŠ
An

yields an identification of the underlying sets, and the group multiplication on
G can be expressed in terms of the Lie bracket. The significance of this Lie
correspondence is that one can basically understand the group G by studying the
linear (hence simpler) object g.

Many interesting examples of “transformation groups” yield finite-dimensional
Lie groups, that is, Lie groups whose Lie algebra has finite dimension as a vector
space. The class of finite-dimensional complex Lie algebras has been extensively
studied since the creation of Lie theory, and the classification by Killing and Car-
tan of its simple pieces (the simple Lie algebras) is arguably one of the greatest
mathematical achievements from around the turn of the twentieth century. This
classification yields a small list of simple Lie algebras (of which sln.C/ is an
example), indexed by some matrices of integers A (the Cartan matrices).

The path to infinite-dimensional Lie algebras and associated groups, on the
other hand, is far less unique, and there is at present no general theory for these
objects. Their study also began much later, around the late 1960’s, and one can
distinguish two general directions: one more analytic, investigating Lie groups
modelled on infinite-dimensional spaces such as Banach or Fréchet spaces, as
in [Nee06], and the other more algebraic, leading to Kac–Moody theory.

By a theorem of J.-P. Serre ([Ser66]), any finite-dimensional (semi-)simple
Lie algebra admits a presentation (i.e. a definition by generators and relations)
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whose parameters are the entries of the corresponding Cartan matrix A. Now,
this presentation still makes sense if one allows more general integral matrices A,
called generalised Cartan matrices. The corresponding Lie algebras (the Kac–
Moody algebras) were introduced independently in 1967 by V. Kac (whose orig-
inal motivation was to classify certain symmetric spaces, see [Kac67], [Kac68])
and R. Moody ([Moo67], [Moo68]). They share many properties with their (finite-
dimensional) older sisters, but also show some striking differences. These differ-
ences account for a very rich theory of Kac–Moody groups (i.e. of groups asso-
ciated to a Kac–Moody algebra), with the apparition of new phenomena that are
absent from the classical theory.

We give below a brief outline of the story that this book is trying to tell, starting
from finite-dimensional simple Lie algebras, and moving towards the construction
of objects deserving the name of “Kac–Moody groups”.

1 Finite-dimensional simple Lie algebras

Let g be a finite-dimensional simple Lie algebra, such as g D sln.C/ (precise
definitions for the terminology used in this section will be given in Chapter 2).
Thus g is a complex vector space with a Lie bracket Œ�; ��, which is encoded in the
adjoint representation

adW g! End.g/; ad.x/y WD Œx; y� for all x; y 2 g

of g on itself.
The first step in trying to understand the structure of g is to prove the existence

of a Cartan subalgebra h of g, namely, of a nontrivial subalgebra h all whose el-
ements h are ad-diagonalisable (i.e. ad.h/ 2 End.g/ is diagonal in some suitable
basis of g) and that is maximal for this property. Then the elements of h are simul-
taneously ad-diagonalisable: in other words, g admits a root space decomposition

g D
M
˛2h�

g˛; (1)

where
g˛ WD fx 2 g j Œh; x� D ˛.h/x 8h 2 hg

is the ˛-eigenspace of ad.h/. The nonzero elements ˛ 2 h� such that g˛ ¤ f0g
are called roots, and their set is denoted �. One shows that g0 D h, so that (1)
may be rewritten as

g D h˚
M
˛2�

g˛: (2)
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Example 1. Let g D sln.C/, and write Eij for the n� n matrix with an entry “1”
in position .i; j / and “0” elsewhere. The subalgebra

h WD spanCh˛_
i WD Ei i � EiC1;iC1 j 1 � i � n � 1i

of all diagonal matrices in sln.C/ is a Cartan subalgebra: the ad-diagonalisability
of h follows from the computation

Œ˛_
i ; Ejk� D .ıij�ıik�ıiC1;jCıiC1;k/Ejk D ."j�"k/.˛

_
i /Ejk for all i; j; k;

where "j .Ei i/ WD ıij . The corresponding set of roots and root spaces are then
given by

� D f˛jk WD "j � "k j 1 � j ¤ k � ng and g˛jk
D CEjk;

yielding the root space decomposition sln.C/ D h˚Lj ¤k CEjk . �

The second step is to establish some properties of the g˛’s. Here are some
important ones:
(1) dim g˛ D 1 for all ˛ 2 �.

(2) For any nonzero x˛ 2 g˛ (˛ 2 �), there is some x�˛ 2 g�˛ such that the
assignment

x˛ 7!
�
0 1
0 0

�
; x�˛ 7!

�
0 0
�1 0

�
; ˛_ WD Œx�˛; x˛� 2 h 7!

�
1 0
0 �1

�
defines an isomorphism g.˛/ WD Cx�˛ ˚ C˛_ ˚ Cx˛ ! sl2.C/ of Lie
algebras.

(3) ˛.ˇ_/ 2 Z for all ˛; ˇ 2 �.
The third step is to study the root system � and to show that, together with

the integers ˛.ˇ_/ (˛; ˇ 2 �), it completely determines g. Actually, � admits
a root basis … D f˛1; : : : ; ˛`g (i.e. every ˛ 2 � can be uniquely expressed as a
linear combination ˛ D ˙P`

iD1 ni˛i for some ni 2 N), and g is already uniquely
determined by the Cartan matrix

A D .aij /1�i;j �` WD .˛j .˛
_
i //1�i;j �`:

More precisely, choosing elements ei D x˛i
2 g˛i

and fi D x�˛i
2 g�˛i

as
above, g is generated by the ` copies g.˛i / WD Cfi ˚ C˛_

i ˚ Cei of sl2.C/
(1 � i � `), and can even be reconstructed as the complex Lie algebra gA on the
3` generators ei ; fi ; ˛

_
i and with the following defining relations (1 � i; j � `):

Œ˛_
i ; ˛

_
j � D 0; Œ˛_

i ; ej � D aij ej ; Œ˛
_
i ; fj � D �aijfj ; Œfi ; ej � D ıij˛

_
i ; (3)

.ad ei /
1�aij ej D 0; .adfi /

1�aijfj D 0 for i ¤ j : (4)

Note that the relations (4), called the Serre relations, make sense, as the aij 2 Z

in fact satisfy aij � 0 whenever i ¤ j .
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Example 2. We keep the notations of Example 1. For each j; k 2 f1; : : : ; ng with
j ¤ k, we get an embedded copy of sl2.C/ in sln.C/ by considering submatrices
indexed by fj; kg. One can then take

x˛jk
WD Ejk 2 g˛jk

; x�˛jk
WD �Ekj 2 g�˛jk

and ˛_
jk WD Ejj � Ekk:

We set ˛i WD ˛i;iC1 for each i 2 f1; : : : ; n� 1g, so that ˛_
i D Ei i �EiC1;iC1

is consistent with our previous notations. Then … D f˛i j 1 � i � n � 1g
is indeed a root basis of �, and sln.C/ is generated, as a Lie algebra, by the
elements ei WD Ei;iC1 and fi WD �EiC1;i (1 � i � n � 1). The Cartan matrix
A D .˛j .˛

_
i //1�i;j �n�1 has 2’s on the main diagonal, �1’s on the diagonals

.i; i C 1/ and .i C 1; i/, and 0’s elsewhere. �

2 Kac–Moody algebras

To define infinite-dimensional generalisations of the simple Lie algebras (and,
later on, of the simple Lie groups), we follow the opposite path to the one leading
to the classification of simple Lie algebras (and groups): we start from “gener-
alised” Cartan matrices A, then define a Lie algebra associated to A, and then,
eventually, a group associated to this Lie algebra.

More precisely, the presentation of the Lie algebra gA introduced in the previ-
ous section still makes sense if A D .aij /1�i;j �` is a generalised Cartan matrix
(GCM), in the sense that, for each i; j 2 f1; : : : ; `g,
(C1) ai i D 2 (to ensure that ei ; fi ; ˛

_
i span a copy of sl2.C/),

(C2) aij is a nonpositive integer if i ¤ j (to ensure that the Serre relations (4)
make sense),

(C3) aij D 0 implies aj i D 0 (because of the Serre relations .ad ei /
1�aij ej D 0

and .ad ej /
1�aji ei D 0).

The resulting Lie algebra gA is the Kac–Moody algebra associated to A (or rather,
its derived Lie algebra, see Chapter 3 for more details).

Another, maybe more illuminating, way to introduce Kac–Moody algebras, is
to ask the following question: which Lie algebras g can one obtain by keeping the
following fundamental properties of finite-dimensional simple Lie algebras:

(KM1) Generation by ` linearly independent copies g.i/ � g of sl2.C/ (i 2 I WD
f1; : : : ; `g). Let us write g.i/ D Cfi ˚ C˛_

i ˚ Cei , where ei ; fi and
˛_

i WD Œfi ; ei � are respectively identified with the matrices
�

0 1
0 0

�
,
�

0 0�1 0

�
and

�
1 0
0 �1

�
of sl2.C/. In other words, we have the relations

Œ˛_
i ; ei � D 2ei ; Œ˛_

i ; fi � D �2fi and Œfi ; ei � D ˛_
i for all i 2 I :

(5)
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(KM2) ad-diagonalisability of the “Cartan subalgebra” h WD P
i2I C˛_

i , with
the generatorsei ; fi as eigenvectors. Thus Œ˛_

i ; ej � D aij ej and Œ˛_
i ; fj � D

bijfj for some aij ; bij 2 C. Note that, since the elements of h are simulta-
neously diagonalisable, they commute:

Œ˛_
i ; ˛

_
j � D 0 for all i; j 2 I : (6)

In particular, 0 D Œ˛_
i ; Œfj ; ej �� D .bij C aij /˛

_
j , that is, bij D �aij for

all i; j 2 I . Together with (5), this implies that for all i; j 2 I ,

Œ˛_
i ; ej � D aij ej and Œ˛_

i ; fj � D �aijfj (7)

for some aij 2 C with aij D 2 if i D j . Write g D L
˛2h� g˛ for the

ad.h/-eigenspace decomposition of g, and let

� WD f˛ 2 h� n f0g j g˛ ¤ 0g
be the corresponding setof roots. Thus, if˛j 2 h� is defined by h˛j ; ˛

_
i i WD

aij for all i 2 I , we have ej 2 g˛j
and fj 2 g�˛j

. In particular,
˙˛j 2 �. Moreover, since g is generated by the ej ; fj (j 2 I ), every
other root ˛ 2 � belongs to Q WD P

i2I Z˛i (this follows by induction
using the fact that if x 2 g˛, then Œei ; x� 2 g˛C˛i

and Œfi ; x� 2 g˛�˛i
).

(KM3) The set … WD f˛i j i 2 I g is a root basis2 of �. This means that … is a
linearly independent subset of h� and that every root ˛ 2 � is of the form
˛ D �Pi2I ni˛i for some � 2 f˙1g and some ni 2 N.

In particular, ˛i � ˛j … � [ f0g for i ¤ j , so that Œei ; fj � D 0 if i ¤ j .
Together with (5), this implies that

Œfi ; ej � D ıij˛
_
i for all i; j 2 I : (8)

(KM4) Integrability of g. This means that for each i 2 I , the operators ad ei ; adfi

of End.g/ are locally nilpotent: for each x 2 g, there is someN 2 N such
that .ad ei /

Nx D 0 (resp. .adfi /
Nx D 0). In other words, the exponen-

tial exp ad ei WDPs�0
.ad ei /s

sŠ
yields a finite sum in g whenever it is eval-

uated on some x 2 g, and hence defines an automorphism of g (and simi-
larly for exp adfi ). As a consequence, the adjoint action of each copy g.i/

of sl2.C/ on g can be “integrated” to a group action SL2.C/ ! Aut.g/
(whence the terminology): this condition thus ensures that one can (at
least locally) “integrate” the Lie algebra g to a group G (see the next sec-
tion).

2When the matrix A WD .aij /i;j2I is singular, this condition is actually too restrictive with the defi-
nition of roots we gave; this situation is discussed in detail at the beginning of Chapter 3.
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Let i; j 2 I with i ¤ j , and letN � 1 be minimal such that .ad ei /
N ej D

0. An easy induction on m � 1 using (7) and (8) yields that

.adfi /.ad ei /
mej D m.m� 1C aij / � .ad ei /

m�1ej :

Hence 0 D N.N �1Caij / � .ad ei /
N �1ej , so that aij D 1�N 2 �N. In

particular, A WD .aij /i;j 2I is a GCM. Moreover, the same argument with
fi yields

.ad ei /
1�aij ej D 0 and .adfi /

1�aijfj D 0 (9)

for all i; j 2 I with i ¤ j .

Note that the relations (6), (7) and (8) sum up to the relations (3), while (9) coin-
cides with the Serre relations (4). Hence if g is a Lie algebra satisfying (KM1)–
(KM4), then its associated matrix A is a GCM and g is a quotient of gA. In other
words, the Kac–Moody algebras gA are the “most general” Lie algebras satis-
fying (KM1)–(KM4). In fact, by an important theorem of Gabber and Kac, gA

is simple (modulo center contained in h) in many cases (and conjecturally in all
cases); in particular, in such cases, g Š gA, and hence gA is characterised by
(KM1)–(KM4).

The Kac–Moody algebra gA associated to a GCM A is infinite-dimensional as
soon as A is not a Cartan matrix. The root spaces g˛ (˛ 2 �) remain, however, of
finite dimension. Certain roots ˛ 2 �, such as the simple roots ˛i (i 2 I ), behave
exactly as the roots of a simple finite-dimensional Lie algebra. In particular, their
associated root space g˛ has the following properties:

(RR1) dim g˛ D 1.

(RR2) ad x 2 End.gA/ is locally nilpotent for each x 2 g˛.

These roots are called real, and their set is denoted �re. The key novelty of
infinite-dimensional Kac–Moody algebras is the apparition of roots with a totally
different behaviour, which one calls imaginary roots (their set is�im WD �n�re).
This new behaviour is illustrated by the following properties of the root space gˇ

of an imaginary root ˇ 2 �im:

(IR1) dim gˇ is, in general, bigger than 1.

(IR2) adx 2 End.gA/ is not locally nilpotent for any nonzero x 2 gˇ .

Example 3. Cartan matrices are of course particular cases of GCM (specifically,
they are the GCM of the form A D DB for some diagonal matrix D and some
symmetric positive definite matrix B), and hence the simple finite-dimensional
Lie algebras, such as sln.C/, are Kac–Moody algebras, of so-called finite type.

The next type of GCM, by increasing order of complexity, are the GCM A
of affine type (specifically, they are the GCM of the form A D DB for some
diagonal matrixD and some symmetric positive semi-definite matrix B of corank
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1). In that case gA is infinite-dimensional, but its size remains “controlled”, in the
following sense. Associate to each root ˛ D �

P
i2I ni˛i (� 2 f˙1g, ni 2 N) its

height ht.˛/ WD �
P

i2I ni 2 Z. Since all g˛ are finite-dimensional, we obtain a
function

growthAW N! N; growthA.n/ WD dim
M

j ht.˛/j�n

g˛ D
X

j ht.˛/j�n

dim g˛:

IfA is of affine type, then gA is of polynomial growth, in the sense that growthA.n/
grows as a polynomial in n for n!1. As a result, Kac–Moody algebras of affine
type are still well understood; in particular, they possess explicit realisations as
matrix algebras over the ring CŒt; t�1� of Laurent polynomials. For instance, if
A D �

2 �2�2 2

�
, then gA is isomorphic to (a one-dimensional central extension of)

sl2.CŒt; t
�1�/.

In all other cases (hence in the vast majority of cases), A is said to be of
indefinite type. The Kac–Moody algebra gA is then of exponential growth, in
the sense that growthA.n/ grows as an exponential in n for n ! 1. Such Kac–
Moody algebras remain mysterious to a large extent; in particular, unlike the affine
case, one does not currently know of any “concrete realisation” of any such gA.

�

3 Kac–Moody groups

Let gA D h˚L˛2� g˛ be a Kac–Moody algebra (the notations being as in the
previous section). In trying to reproduce the classical (i.e. finite-dimensional) Lie
theory in our infinite-dimensional setting, the next step is to ask whether one can
construct a group “attached” (in any reasonable sense) to gA. In other words:

How can one construct a group GA deserving the name of “Kac–
Moody group of type A”?

The answer to this question very much depends on the category of groups one
wants to consider: for instance, to the finite-dimensional simple Lie algebra sln.C/,
one can attach the group SLn.C/, which is not just an abstract group, but also a
topological group, and even a Lie group. With a more algebraic perspective, one
can also attach to sln.C/ the group functor SLn associating to each (commutative,
unital) ring k the group

SLn.k/ WD fB 2 Mat.n � n; k/ j detB D 1gI
this group functor even has the structure of an affine group scheme (see Ap-
pendix A for a short introduction to these notions).

As we will see in the third part of this book, analogues for each of the above
mentioned group structures associated to sln.C/ can be obtained in the setting of
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general Kac–Moody algebras, with the exception of a smooth Lie group structure,
which remains at present elusive. On the other hand, new structures that are spe-
cific to the infinite-dimensional setting also arise (for instance, topological group
structures that are only non-discrete when the group is infinite-dimensional).

Depending on the targeted category of groups, the required amount of effort
to construct a “Kac–Moody group” may greatly vary. For instance, an analogue
of SLn.C/ (or rather, PSLn.C/) as an abstract group for an arbitrary Kac–Moody
algebra gA can be defined straightaway. Indeed, keeping the notations of Exam-
ples 1 and 2, we recall that SLn.C/ is generated by its root groups

U˛ij
WD exp.g˛ij

/ D fIdCrEij j r 2 Cg for i ¤ j
exponentiating the root spaces of sln.C/. To give a sense to exponentiation and
generation by subgroups for a general Kac–Moody algebra gA, one naturally con-
siders the “ambient space” Aut.gA/. Since by (KM4) (and, more specifically,
(RR2)), the exponentials exp adx DPs�0

.ad x/s

sŠ
define elements of Aut.gA/ for

x 2 g˛ whenever ˛ 2 � is a real root, this suggests to define the group

GA WD hexp ad x j x 2 g˛; ˛ 2 �rei � Aut.gA/;

which one might call an “adjoint complex Kac–Moody group of type A”. For
instance, if gA D sln.C/, then �re D � and GA is the image of SLn.C/ in
Aut.gA/, that is, GA Š PSLn.C/. If A D �

2 �2�2 2

�
as in Example 3, one can

check that GA Š PSL2.CŒt; t
�1�/.

The groupGA is an example of a minimal Kac–Moody group, in the sense that
it is constructed by only exponentiating the real root spaces of gA. If one also takes
into account imaginary root spaces, one typically obtains a certain completion of
a minimal Kac–Moody group, called a maximal Kac–Moody group.

Example 4. Let A D � 2 �2�2 2

�
, so that gA D sl2.CŒt; t

�1�/ (up to a central exten-
sion by C). One shows that�im D Z¤0ı for some imaginary root ı. Moreover, the
imaginary root space gnı of gA is spanned by the diagonal matrix xn WD

�
tn 0
0 �tn

�
.

Note that ad xn is not locally nilpotent (for instance, .ad xn/
s
�

0 1
0 0

� D � 0 2stns

0 0

� ¤
0 for all s 2 N), as indicated by (IR2). In other words, if one wishes to exponen-
tiate xn, one has to allow formal power series in t : the exponential expxn makes
sense in the maximal Kac–Moody group bGA WD SL2.C..t/// for each n 2 N,
where C..t// denotes the field of complex formal Laurent series. �

While the minimal versions of Kac–Moody groups are easier to define, they
are also usually harder to study. On the other hand, the various Kac–Moody
groups one can construct come in very different flavours. For instance, the min-
imal Kac–Moody group GA defined above can be turned into a connected Haus-
dorff topological group; maximal Kac–Moody groups defined over finite fields,
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on the other hand, are naturally (non-discrete if A is not of finite type) totally dis-
connected locally compact groups (think of SLn.CŒt; t

�1�/ versus SLn.Fq..t///
for Fq a finite field of order q).

In the third part of this book, we explore in detail the following questions:
� What are the possible (currently known) constructions of Kac–Moody

groups, and how much additional structure can they be equipped with?

� How do these constructions relate to one another; is there a unique “good”
definition of Kac–Moody group?

Along the way, we will encounter one of the most powerful tools to study Kac–
Moody groups: buildings. These are certain simplicial complexes on which Kac–
Moody groups act nicely (an introduction to buildings and groups acting on them
is given in Appendix B). They yield a geometric interpretation of many important
properties of Kac–Moody groups, thereby adding to this algebraic subject a nice
geometric flavour.

4 Structure of the book and guide to the reader

The purpose of the first part of the book, on the classical Lie theory, is to set the
scene. It introduces many of the concepts that will appear in the more general
setting of Kac–Moody algebras, thus providing some motivation and basic exam-
ples for these concepts. We also included in Part I some proofs, whenever they
provided some intuition for the kind of arguments involved in the study of Kac–
Moody algebras. Part I is thus helpful in smoothening the path to Kac–Moody
algebras; however, logically speaking, it is independent of the rest of the book,
and the impatient reader may safely jump to the second and third parts of the
book.

The second part of this book serves as an introduction to Kac–Moody al-
gebras. There are several good references on the topic, including the standard
book [Kac90] by V. Kac, from which most of the material from Part II is taken.
Here, we chose a minimal, but nevertheless self-contained path to Kac–Moody
groups, trying to provide some extra intuition whenever we felt it necessary, and
to smoothen the occasional rough spots of [Kac90].

Section 3.7 in Chapter 3 and most of Chapter 5 could be omitted as far as
the general theory of Kac–Moody groups is concerned; however, they are neces-
sary to understand Kac–Moody algebras and groups of affine type in more details.
Since these are the only available source of “concrete” examples of Kac–Moody
algebras and groups (besides the finite-dimensional ones), it is nevertheless worth-
while to spend some time on exploring them further.

The heart of this book is of course its third part, on the construction and ba-
sic properties of Kac–Moody groups. We start Chapter 7 by following the most
obvious path to attaching a group to a given Kac–Moody algebra. The resulting
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group G, although certainly deserving the name of “Kac–Moody group”, does
not, however, give a totally satisfactory answer to the problem of attaching groups
to Kac–Moody algebras. We express four natural concerns about the construction
of G (namely, the problematics (P1)–(P4) in �7.1.2). The rest of Chapter 7 is then
devoted to answering these concerns.

The structure of Chapter 8 is similar: we start by expressing two additional
concerns (the problematics (P5)–(P6) in �8.1) about the objects introduced in
Chapter 7 (the minimal Kac–Moody groups), and devote the rest of Chapter 8 to
answering these concerns. This leads to the construction of maximal Kac–Moody
groups, obtained as some completions of the minimal ones.

The progression of Chapters 7 and 8 is essentially linear. These chapters
provide constructions of Kac–Moody groups at various levels of generality and
from various perspectives. The reader should feel free to evaluate for him-/herself
which of the concerns (P1)–(P6) are relevant to his/her needs or interests, and
decide accordingly how far to go in exploring the proposed answers to these con-
cerns (it should be clear from the beginning of each section which of the prob-
lematics (P1)–(P6) that section addresses). Some sections are also marked by an
asterisk, indicating that they are not logically required to study the subsequent
sections (without asterisk). Such sections essentially fall into two (related) cate-
gories: first, the explicit constructions of affine Kac–Moody algebras and groups,
and second, results related to Kac–Moody root data (see �7.3.1). The latter topic, a
useful (especially in the affine case) but more technical aspect in the construction
of Kac–Moody groups, could even be entirely avoided on a first reading with-
out hindering the comprehension of the subsequent sections. As the vocabulary of
Kac–Moody root data is nevertheless used throughout Chapters 7 and 8, the reader
is then refered to Remark 7.17 at the end of �7.3.1, which indicates the necessary
translations to be made.

Chapter 9 consists of a few short sections reviewing some selected important
questions or research directions pertaining to Kac–Moody groups. We could have
added many more sections reflecting other important aspects of Kac–Moody the-
ory: the proposed selection is thus very far from being an exhaustive overview of
the theory. These sections can be read independently of one another.

We conclude the book with two appendices, offering short introductions to
the topic of affine group schemes (Appendix A), and to the topic of buildings
and groups acting on them (Appendix B). Section A.1 recalls the basic vocabu-
lary of categories and functors, needed from the beginning of Part III. The rest of
Appendix A comes into play later on, around �8.5. The content of Appendix B
becomes important in �7.4.6 (as well as in Chapter 8), mainly to provide some ge-
ometric intuition. Suggestions of appropriate timings to go through each appendix
are also included within the text.
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5 Conventions

Throughout the book, we denote by N D f0; 1; : : : g the set of nonnegative integers
and by N� D f1; 2; : : : g the set of positive integers. As usual, Z, Q, R and
C respectively denote the sets of integers, rational numbers, real numbers and
complex numbers. We further set Z� WD Z n f0g.

By a ring we always mean a commutative, unital, associative Z-algebra. For a
ring k, we write k� for the set of its invertible elements.

Finally, if x 2 C and n 2 N, we let
�

x
n

�
denote the binomial coefficient 

x

n

!
WD x.x � 1/ � � � .x � nC 1/

nŠ
if n > 0 and

 
x

0

!
WD 1:


