
Prologue

The subject of this monograph is the shock development problem in fluid mechan-
ics. This problem is formulated in the framework of the Eulerian equations of a
compressible perfect fluid as completed by the laws of thermodynamics. These
equations express the differential conservation laws of mass, momentum, and energy
and constitute a quasilinear hyperbolic 1st-order system for the physical variables,
that is, the fluid velocity and the two positive quantities corresponding to a local
thermodynamic equilibrium state. Smooth initial data for this system of equations
lead to the formation of a surface in spacetime where the derivatives of the physical
quantities with respect to the standard rectangular coordinates blow up. Now, there is
a mathematical notion of maximal development of initial data. As was first shown in
the monograph [Ch-S], this maximal development ends at a future boundary which
consists of a regular part C and a singular part B with a common past boundary ∂−B,
the surface just mentioned. A solution of the Eulerian equations in a given spacetime
domain defines a cone field on this domain, that is, a cone in the tangent space at
each point in the domain, the field of sound cones. This defines a causal structure
on the spacetime domain, equivalent to a conformal class of Lorentzian metrics,
the acoustical causal structure. Relative to this structure ∂−B is a spacelike surface,
while C is a null hypersurface. Also B is in this sense a null hypersurface; however,
being singular, while its intrinsic geometry is that of a null hypersurface, its extrinsic
geometry is that of a spacelike hypersurface, because the past null geodesic cone in
the spacetime manifold of a point on B does not intersect B. The character of B and
the behavior of the solution at B were described in detail in [Ch-S] by means of the
introduction of a class of coordinates such that the rectangular coordinates as well
as the physical variables are smooth functions of the new coordinates up to B, but
the Jacobian of the transformation to the new coordinates, while strictly negative in
the past of B, vanishes at B itself, a fact which characterizes B. Now, the mathe-
matical notion of maximal development of initial data, while physically correct up to
C ⋃

∂−B, is not physically correct up to B. The problem of the physical continuation
of the solution is set up in the epilogue of [Ch-S] as the shock development problem.
In this problem, one is required to construct a hypersurface of discontinuity K, the
shock hypersurface, lying in the past of B but having the same past boundary as the
latter, namely ∂−B, and a solution of the Eulerian equations in the spacetime domain
bounded in the past by C ⋃K, agreeing on C with the data induced by the maximal
development, while having jumps across K relative to the data induced on K by
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the maximal development. These jumps satisfy the jump conditions which follow
from the integral form of the mass, momentum, and energy conservation laws, that
is, by requiring the corresponding differential laws to hold in the weak sense in a
full neighborhood of K. Moreover, K is required to be a spacelike hypersurface
relative to the acoustical structure corresponding to the prior solution and a timelike
hypersurface relative to the acoustical structure corresponding to the new solution
(see Sections 1.4, 1.5 and Figure 1.3). The 1st requirement implies that the prior
solution along K is given by the maximal development discussed above, while the
2nd requirement is what gives the problem the character of a free boundary problem,
the jump conditions at K being just right to determine both the location of the shock
hypersurface in the underlying background spacetime, as well as the new solution.
Thus, the singular surface ∂−B is the cause generating the shock hypersurface K.
In view of the acoustically spacelike nature of K relative to the prior solution, the
shock hypersurface penetrates the interior of the domain of the maximal development
rendering unphysical the part of the maximal development lying to the future of K.
We note that the results of the previous monograph [Ch-S] are to be used in order
to set up the initial data on C as well as for providing the data on the past side of
K. However, only the qualitative features of the prior maximal development will
be used and not any smallness conditions, as would follow from the assumption in
[Ch-S] that the initial data from which this maximal development arises correspond
to a small departure from those of a constant state.

Themonograph [Ch-S] actually considered the extension of theEulerian equations
to the framework of special relativity. In this framework the underlying geometric
structure of the spacetime manifold is that of the Minkowski spacetime of special
relativity. On the other hand, the underlying spacetime structure of the original
Eulerian equations, as of all of classical mechanics, is that of Galilei spacetime. The
monograph [Ch-Mi] treated the same topics as [Ch-S] reaching similar results in a
considerably simpler, self-contained manner. The relationship of the non-relativistic
to the relativistic theory, how results in the former are deduced as limits of results
in the latter, is discussed in detail in Sections 1.3–1.6. The Galilean structure has
a distinguished family of hyperplanes, those of absolute simultaneity, while the
Minkowski structure is that of a flat Lorentzian manifold; thus the latter, with its light
cone field, is in a sense more like that corresponding to the sound cone field defined
by a solution of the Eulerian equations. What we mean by rectangular coordinates in
the Minkowskian framework is the standard geometric notion and two such systems
of coordinates are related by a transformation belonging to the Poincaré group. On
the other hand, by rectangular coordinates in the Galilean framework we mean a
Galilei frame together with rectangular coordinates in Euclidean space and two such
systems of coordinates are related by the Galilei group, which extends the Euclidean
group. The simplest representative in the conformal class of Lorentzian metrics
corresponding to the sound cone field is the acoustical metric. This is given in the
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relativistic theory in terms of rectangular coordinates by

h = hµνdxµ ⊗ dxν, hµν = gµν + (1 − η2)uµuν, uµ = gµνuν, (P.1)

where gµν are the components of the Minkowski metric, uµ the components of the
spacetime fluid velocity u, a future-directed vectorfield which is timelike and of
unit magnitude with respect to the Minkowski metric, and η is the sound speed, a
thermodynamic function. In the non-relativistic theory the acoustical metric is given
in terms of rectangular coordinates by

h = −η2dt ⊗ dt + (dxi − vidt) ⊗ (dxi − vidt) = hµνdxµdxν, x0 = t . (P.2)

Here η is again the sound speed while vi are the components of the spatial fluid
velocity, the spacetime fluid velocity u being given in the non-relativistic theory by

u =
∂

∂t
+ vi

∂

∂xi
. (P.3)

In (P.1), (P.2), (P.3), as in the entire monograph, we follow the summation convention
according to which repeated indices are meant summed over their range.

From the mathematical point of view the shock development problem is a free
boundary problem, with nonlinear conditions at the free boundaryK, for a quasilinear
hyperbolic 1st-order system, with characteristic initial data on C which are singular,
in a prescribed manner, at ∂−B, the past boundary of C. It will be shown that the
singularity persists, not only as a discontinuity in the physical variables across K,
but also as a milder singularity propagating along C. While the physical variables
and their 1st derivatives extend continuously across C, the 1st derivatives are only
C0,1/2 at C from the point of view of the future solution. Majda’s pioneering works
[Ma1], [Ma2] solved the local shock continuation problem. This is the problem of
continuing locally in time a solution displaying a shock discontinuity initially. It is
a problem of the same kind, but without the singular initial conditions of the shock
development problem which signal that a shock is about to form. The spherically
symmetric barotropic case of the shock development problem was recently solved in
[Ch-Li].

What the present monograph solves is not the general shock development prob-
lem but what we call the restricted shock development problem. This problem is
formulated in Section 1.6 and results if we disregard the Hugoniot relation, one of
the jump conditions which constitutes a relation between thermodynamic quantities
on the two sides of K (see (1.255) for the relativistic relation, (1.310) for the non-
relativistic relation). This relation expresses 4s, the jump in entropy, in terms of
4p, the jump in pressure, giving 4s as proportional to (4p)3 to leading terms (see
(1.260) for the relativistic expression, (1.318) for the non-relativistic expression).
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Then disregarding the Hugoniot relation, we set 4s = 0 to obtain the restricted prob-
lem. Due to the fact that in terms of the coordinate τ on K, which is introduced in
Section 2.5 and which vanishes at ∂−B, 4p ∼ τ, reinstating the Hugoniot relation
would give 4s ∼ τ3; consequently the restricted problem retains the main difficulty
of the general problem, namely the singular behavior as τ → 0. The jump condi-
tions other than the Hugoniot relation are fully taken into account in the framework
of the restricted shock development problem. The corresponding restricted shock
continuation problem was solved by Majda and Thomann [Ma-Th]. As we shall see,
our solution of the restricted shock development problem relies on [Ma-Th], as we
obtain our solution via a regularization of the initial conditions and an application of
the method of continuity which naturally must rely on a local existence theorem for
regular initial conditions.

Our treatment is based on the 1-form β, a general concept, given in the relativistic
theory (see Section 1.1) in terms of rectangular coordinates by

β = βµdxµ, βµ = −huµ, (P.4)

where h is the relativistic enthalpy, a thermodynamic function. In the non-relativistic
theory (see Section 1.3), the 1-form β is given in terms of rectangular coordinates by

β =

(
h +

1
2
|v |2

)
dt − vidxi = βµdxµ, (P.5)

where h is the (non-relativistic) enthalpy. Associated to the 1-form β is the spacetime
vorticity 2-form ω = −dβ, which satisfies, in both the relativistic and the non-
relativistic theories, the equation

iuω = θ ds, (P.6)

where u is again the spacetime fluid velocity and θ is the temperature. This equation
is supplemented by the differential mass conservation law to obtain the full content of
the Eulerian equations. The differential mass conservation law takes, in rectangular
coordinates, the form

∂(nuµ)
∂xµ

= 0 (P.7)

in both the relativistic and the non-relativistic theories, n being the mass density, a
thermodynamic function. Note that the components βµ of β determine the compo-
nents uµ of u as well as the enthalpy h, and vice versa. Taking the enthalpy h and
the entropy s as the basic thermodynamic variables, any thermodynamic function,
in particular the sound speed η, is a known function of h and s (the equation of
state being given). Thus the βµ together with s determine the components hµν of the
acoustical metric in both the relativistic and the non-relativistic theories; in fact the
latter are known smooth functions of the former.
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The jump conditions other than the Hugoniot relation consist of what we call the
linear jump condition and what we call the nonlinear jump condition. The linear
jump condition states that

β‖+ = β‖−, (P.8)

where we denote by subscript − the side of K corresponding to the prior solution,
which holds in the past of K, and by a subscript + the side of K corresponding to
the new solution, which holds in the future of K. We then denote by β‖± the 1-form
β induced on K from the two sides. The nonlinear jump condition follows from the
integral mass conservation law, that is, by requiring equation (P.7) to hold in the weak
sense in a full neighborhood of K. Denoting by ω‖± the vorticity 2-form induced on
K from the two sides, (P.8) implies

ω‖+ = ω‖−. (P.9)

In the case that the prior solution is irrotational in a neighborhood ofK, as is the case
here, we have

ω‖+ = 0. (P.10)

Then ω+ reduces to its component ω⊥+ a 1-form intrinsic to K, given according to
(P.6) restricted to K by

ω⊥+ =
θ+

u⊥+
d‖s+, (P.11)

where we denote by d‖ the differential of a function onK. Also, u⊥+ is the component
of u+ along the interior unit normal to K with respect to the Minkowski metric in
the relativistic theory, the instantaneous interior unit normal with respect to the
Euclidean metric in the non-relativistic theory (see Section 1.4). Here the prior
solution is isentropic, being irrotational (note that by irrotational we mean that the
spacetime vorticity vanishes, which by (P.6) implies that the entropy is constant),
hence in (P.11) we can replace d‖s+ by d‖4s to obtain

ω⊥+ =
θ+

u⊥+
d‖4s. (P.12)

In the restricted problem the vanishing of 4s implies that also ω⊥+ vanishes, hence
ω+ = 0.

As a consequence of equation (P.6), ω satisfies the transport equation

Luω = dθ ∧ ds, (P.13)

where the right-hand side, likeω itself, is of differential order 1, the physical variables
themselves being of differential order 0. The vectorfield u then defines in the general
problem a characteristic field complementing the sound cone field. The hypersurface
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generated by the integral curves of u initiating at ∂−B divides the domain of the new
solution into two subdomains: one bounded by C and the hypersurface in question,
and one between the hypersurface andK. In the former domain the solution coincides
with that of the restricted problem, which is irrotational, while in the latter domain
the spacetime vorticity 2-formω does not vanish,ω+ being determined by 4s through
(P.12). There is then an additional higher-order discontinuity inω across the dividing
hypersurface.

We shall now describe in brief the mathematical methods introduced in this
monograph, noting the essential points and where the corresponding material is
found in the monograph. What follows will serve as a guide for the reader. A central
role is played by the reformulation in Chapter 2 of the Eulerian equations in the
domain N of the new solution. First a homeomorphism is defined of this domain
onto

Rδ,δ = Rδ,δ × Sn−1, (P.14)

n being the spatial dimension and

Rδ,δ =
{
(u, u) ∈ R2 : 0 ≤ u ≤ u ≤ δ

}
(P.15)

being a domain in R2, which represents the range inN of two functions u and u, the
level sets of which are transversal acoustically null hypersurfaces denoted by Cu and
Cu respectively, withC0 = C. In this representation the shock hypersurface boundary
ofN is

Kδ =
{
(τ, τ) : τ ∈ [0, δ]

}
× Sn−1 (P.16)

and ∂−B is
∂−B = (0, 0) × Sn−1 = S0,0. (P.17)

We denote by Su,u the surfaces

Su,u = Cu

⋂
Cu = (u, u) × Sn−1. (P.18)

In the reformulation of the Eulerian equations the unknowns constitute a triplet
((xµ : µ = 0, . . . , n), b, (βµ : µ = 0, . . . , n)), where the (xµ : µ = 0, . . . , n) are
functions on Rδ,δ × Sn−1 representing rectangular coordinates in the corresponding
domain in Galilean spacetime in the non-relativistic theory, in Minkowski spacetime
in the relativistic theory, with x0 = t, and the (βµ : µ = 0, . . . , n) are also functions
on Rδ,δ × Sn−1 and represent the rectangular components of the 1-form β. The
unknown b is a mapping of Rδ,δ into the space of vectorfields on Sn−1. The pair
((xµ : µ = 0, . . . , n), b) satisfies the characteristic system, a fully nonlinear 1st-
order system of partial differential equations. The (βµ : µ = 0, . . . , n) satisfy the
wave system, a quasilinear 1st-order system of partial differential equations. The
characteristic system is coupled to thewave system through the (hµν : µ, ν = 0, . . . , n),
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which represent the rectangular components of the acoustical metric, and depend
on the (βµ : µ = 0, . . . , n). More precisely, denoting by d/ f the differential of a
function f on the Su,u , the coupling is through the functions Nµ : µ = 0, . . . , n
and Nµ : µ = 0, . . . , n defined in terms of the d/xµ : µ = 0, . . . , n pointwise by the
conditions

hµνNµd/xν = 0, hµνNµNν = 0, N0 = 1 (P.19)
and similarly for the Nµ. By reason of the quadratic nature of the 2nd of these
conditions, a unique pair ((Nµ : µ = 0, . . . , n), (Nµ : µ = 0, . . . , n)) up to exchange is
pointwise defined by (hµν : µ, ν = 0, . . . , n) and (d/xµ : µ = 0, . . . , n). The vectorfields
N , N with rectangular components (Nµ : µ = 0, . . . , n), (Nµ : µ = 0, . . . , n) are then
null normal fields, relative to the acoustical metric h, to the surfaces Su,u . The
exchange ambiguity is removed by requiring N to be tangential to the Cu , N to be
tangential to the Cu . The function

c = − 1
2 hµνNµNν (P.20)

is then bounded from below by a positive constant. Defining

L =
∂

∂u
− b, L =

∂

∂u
+ b (P.21)

and
ρ = Lt, ρ = Lt, (P.22)

the characteristic system is

Lxµ = ρNµ, Lxµ = ρNµ : µ = 0, . . . , n. (P.23)

With the vectorfields N , N and L, L as defined above, the characteristic system
simply expresses the condition that on the one hand L and N and on the other hand
L and N , are collinear. In view of the above definitions of N , N and of L, L, the
characteristic system implies that the hypersurfaces Cu and Cu are null with respect
to the acoustical metric

h = hµνdxµ ⊗ dxν, (P.24)
their generators being the integral curves of L and L respectively.

What is achieved by the reformulation just described is a regularization of the
problem. That is, we are now seeking smooth functions on Rδ,δ × Sn−1 satisfying the
coupled system, the initial data themselves being represented by smooth functions
on C0. The Jacobian of the transformation representing the mapping ((u, u), ϑ) 7→
(xµ((u, u), ϑ) : µ = 0, . . . , n), ϑ ∈ Sn−1 is of the form

∂(x0, x1, . . . , xn)
∂(u, u, ϑ1, . . . , ϑn−1)

= ρρd, (P.25)



8 Prologue

(ϑA : A = 1, . . . , n − 1) being local coordinates on Sn−1. Here ρ, ρ are non-negative
functions, defined by (P.22), the inverse temporal density of the foliation of spacetime
by the Cu as measured along the generators of the Cu , the inverse temporal density
of the foliation of spacetime by the Cu as measured along the generators of the Cu ,
respectively, and d is a function bounded from above by a negative constant (see
Section 2.2). As a consequence, the Jacobian (P.25) vanishes where and only where
one of ρ, ρ vanishes. The function ρ is given on C0 by the initial data and while
positive on C0 \ S0,0, vanishes to 1st order at S0,0, the last being a manifestation of
the singular nature of the surface ∂−B. The function ρ on C0 represents 1st derived
data on C0 (see Chapter 5) and vanishes there to 0th order. It turns out that these are
the only places where ρ, ρ vanish in Rδ,δ × Sn−1.

A smooth solution of the coupled characteristic and wave systems once obtained
then represents a solution of the original Eulerian equations in standard rectangular
coordinates which is smooth inN \C but singular at C with the transversal derivatives
of the βµ being onlyHölder continuous of exponent 1/2 atC and, in addition, a stronger
singularity at ∂−B, namely the blow up of the derivatives of the βµ at ∂−B in the
direction tangential to C but transversal to ∂−B. In particular, the new solution is
smooth at the shock hypersurface K except at its past boundary ∂−B, as is the prior
solution which holds in the other side ofK, the past side,K\∂−B, lying in the interior
of the domain of the maximal development.

We remark that the roles which the two collinear pairs of null vectorfields (N, N)
and (L, L) play in the monograph is different. The vectorfields N and N , being
non-degenerate in terms of rectangular coordinates, are used to define a frame field,
and their rectangular components are smooth functions of the (u, u, ϑ) coordinates.
On the other hand, the vectorfields L and L, which are smooth when expressed in
terms of (u, u, ϑ) coordinates, are used in the role of differential operators.

The wave system consists of the equations

dxµ ∧ dβµ = 0, h−1(dxµ, dβµ) = 0 (P.26)

expressed in terms of the representation (P.14), that is,

(Lxµ)Lβµ − (Lxµ)Lβµ = 0,
(Lxµ)d/βµ − (d/xµ)Lβµ = 0,
(Lxµ)d/βµ − (d/xµ)Lβµ = 0,

d/xµ ∧ d/βµ = 0,
1
2
{
(Lxµ)Lβµ + (Lxµ)Lβµ

}
= a(d/xµ, d/βµ)h/, (P.27)

where
h/= hµνd/xµ ⊗ d/xν (P.28)
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is the induced acoustical metric on the surfaces Su,u , a positive-definite metric, and

a = − 1
2 h(L, L) = cρρ. (P.29)

Equations (P.26) are equations for the functions βµ : µ = 0, . . . , n to be satisfied by
these together with the functions xµ : µ = 0, . . . , n on the Lorentzian manifold (N , h)
independently of the choice of a local coordinate system. In N \ C the functions
xµ : µ = 0, . . . , n themselves can be chosen as coordinates, in which case these
equations reduce to

∂βµ

∂xν
−
∂βν
∂xµ

= 0, hµν
∂βµ

∂xν
= 0, (P.30)

which are the Eulerian equations in the irrotational case, the 2nd of these equations
representing the differential mass conservation law. Here, however, we are imposing
the form (P.27) of these equations, that is, using the representation (P.14) we are
considering the βµ : µ = 0, . . . , n and the xµ : µ = 0, . . . , n as functions of (u, u, ϑ).
In view of the fact that in equations (P.27) the 1st derivatives of the xµ : µ = 0, . . . , n
as well as the 1st derivatives of the βµ : µ = 0, . . . , n appear, the wave system couples
to the characteristic system to principal terms.

On C0, ϑ is defined by the condition that it is constant along the generators of C0,
together with the condition that the restriction of ϑ to S0,0 = ∂−B is a diffeomorphism
of ∂−B onto Sn−1. We then have

b|C0
= 0. (P.31)

The initial data for the coupled characteristic and wave systems on C0 = C for the
new solution then consist of the pair ((xµ : µ = 0, . . . , n), (βµ : µ = 0, . . . , n)) on C0
which is that induced by the prior solution.

The characteristic system for the pair ((xµ : µ = 0, . . . , n), b), together with the
(hµν : µ, ν = 0, . . . , n) which enter this system through the (Nµ : µ = 0, . . . , n)
and the (Nµ : µ = 0, . . . , n), manifest a new kind of differential geometric structure
which involves the interaction of two geometric structures on the same underlying
manifold, the 1st of these structures being the background Galilean structure in the
case of the non-relativistic theory, the background Minkowskian structure in the case
of the relativistic theory, and the other being the Lorentzian geometry deriving from
the acoustical metric. As for the (βµ : µ = 0, . . . , n) of the wave system, this is the
set of functions obtained by evaluating the 1-form β on the set of translation fields of
the background structure. Proposition 2.1 with a translation field substituted for X
plays a central role in our approach. The proposition asserts that if X is a vectorfield
generating isometries of the background structure then

�h̃β(X) = 0, (P.32)
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where h̃ is a metric in the conformal class of the acoustical metric h. This wave
equation, a differential consequence of the wave system, is the basis for the derivation
of the energy estimates on which our entire approach to control the solution is based.

The derivatives of ((xµ : µ = 0, . . . , n), b) are controlled through the acoustical
structure equations, the subject of Chapter 3. These are differential consequences of
the characteristic system, bringing out more fully the interaction of the two geometric
structures. We have the induced metric h/ on the surfaces Su,u and the functions

λ = cρ, λ = cρ (P.33)

(see (P.20)) introduced already in Chapter 2. While h/ refers only to the acoustical
structure, the functions λ, λ, involve the interaction of the two geometric structures.
These are acoustical quantities of 0th order. The first variation equations (Propo-
sition 3.1) express L/Lh/, L/Lh/ in terms of χ, χ, the two 2nd fundamental forms of
Su,u . The torsion forms η, η represent the connection in the normal bundle of Su,u
in terms of the vectorfields L, L which along Su,u constitute sections of this bundle.
The commutator

[L, L] = L/T b, T = L + L =
∂

∂u
+

∂

∂u
(P.34)

(see (P.21)) is expressed in terms of η, η. While the quantities χ, χ, η, η refer only
to the acoustical structure, the structure equations assume a non-singular form only
in terms of the quantities χ̃, χ̃, η̃, η̃ which involve both structures. The former are
related to the latter as follows: up to order 1, remainders depending only on the
dβµ : µ = 0, . . . , n, χ is equal to ρχ̃, χ is equal to ρχ̃, η is equal to ρη̃, η is equal to
ρη̃. In fact, the only order-1 quantities appearing in the 1st and 3rd remainders are
the Lβµ : µ = 0, . . . , n, and the only order-1 quantities appearing in the 2nd and 4th
remainders are the Lβµ : µ = 0, . . . , n. Moreover, η̃, η̃, are expressed in terms of d/λ,
d/λ (see Section 3.2). Thus λ, λ, χ̃, χ̃ are the primary acoustical quantities, the 1st
two being of 0th order, the 2nd two of 1st order.

Proposition 3.3, the propagation equations for λ and λ, plays a central role. This
proposition expresses Lλ and Lλ in terms of 1st-order quantities with vanishing
1st-order acoustical part. Proposition 3.4, the second variation equations, also plays
a central role. This proposition likewise expresses L/L χ̃ and L/L χ̃ in terms of 2nd-
order quantities with vanishing 2nd-order acoustical part. The acoustical structure
equations are completed by the Codazzi and Gauss equations of Propositions 3.6
and 3.7. Denoting by D/ the covariant derivative operator of (Su,u, h/), D/ χ̃, D/ χ̃ are 3-
covariant tensorfields on each Su,u and the Codazzi equations express the 3-covariant
tensorfields obtained from D/ χ̃, D/ χ̃ by antisymmetrizing with respect to the 1st two
entries in terms of 2nd-order quantities with vanishing 2nd-order acoustical part. The
Gauss equation likewise expresses the curvature of (Su,u, h/) in terms of a 2nd-order
quantity with vanishing 2nd-order acoustical part. The Codazzi and Gauss equations
trivialize in the case of n = 2 spatial dimensions.
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The boundary conditions on K are analyzed in Chapter 4. The jumps 4βµ : µ =
0, . . . , n in the rectangular components of the 1-form β across K are subject to two
conditions, one of which is linear and the other nonlinear. The linear jump condition
decomposes into the two conditions

d/xµ 4βµ = 0, Tµ4βµ = 0. (P.35)

As a consequence of the 1st of (P.35), 4βµ can be expressed as a linear combination
of the components

ε = Nµ4βµ, ε = Nµ4βµ . (P.36)

We denote by r the ratio
r = −

ε

ε
. (P.37)

In reference to the 2nd of (P.35), Tµ = T xµ are the rectangular components of the
vectorfield T and are given, in view of (P.23), (P.34), by

Tµ = ρNµ + ρNµ . (P.38)

Then in view of (P.33) the 2nd of (P.35) is equivalent to the following boundary
condition for λ:

rλ = λ : on K. (P.39)

We remark here that the propagation equations for λ and for χ̃ are supplemented
by initial conditions on C0, while the propagation equations for λ and for χ̃ are
supplemented by boundary conditions on K. The boundary condition for χ̃ is
first derived in Chapter 10 in the case of 2 spatial dimensions and afterwards, in
Chapter 11, in general. The derivation is by applying D/ to the 1st of (P.35). The
boundary condition for χ̃ takes the form of a relation between r χ̃ and χ̃ on K
analogous to (P.39) (see (11.34)). The nonlinear jump condition takes the form of a
relation between ε and ε which, in the setting of the shock development problem, is
shown to be equivalent to

ε = − j(ε)ε2, hence r = j(ε)ε, (P.40)

where j is a smooth function (see Proposition 4.2).
The jump 4βµ is a function on K, which at a given point on K represents the

difference of βµ, defined by the new solution which holds in the future of K, at the
point, from the corresponding quantity, which we denote by β′µ, for the prior solution
which holds in the past of K, at the same point in the background spacetime, namely
the same point in Galilei spacetime in the non-relativistic theory, the same point in
Minkowski spacetime in the relativistic theory. From [Ch-Mi], [Ch-S], the β′µ are
smooth functions of the coordinates (t, u′, ϑ′) where the level sets C ′u′ are outgoing
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acoustically null hypersurfaces, and ϑ′, the range of which is Sn−1, is constant along
each generator of eachC ′u′ , and the restriction of ϑ

′ to each surface S′t,u′ = Σt
⋂

C ′u′ is
a diffeomorphism onto Sn−1. Here we denote by Σt the level sets of t, the hyperplanes
of absolute simultaneity in the non-relativistic theory, parallel spacelike hyperplanes
inMinkowski spacetime in the relativistic theory. The spatial rectangular coordinates
are likewise smooth functions x ′i(t, u′, ϑ′) : i = 1, . . . , n on the domain of themaximal
development up to its boundary. Now according to our construction in Section 2.5,
for c > 0, Cc , the c-level set of u in N , is the extension across C = C0 of C ′c , the
c-level set of u′ in the domain of the prior maximal development. At ∂−B = S0,0, u′

vanishes and ϑ′ = ϑ. On the other hand, on K \ S0,0, u′ < 0. Therefore u′ and ϑ′
induced on K by the prior solution are of the form (see (P.16))

u′ = w(τ, ϑ), ϑ′ = ψ(τ, ϑ) (P.41)

and we have

w(0, ϑ) = 0, w(τ, ϑ) < 0 : for τ > 0, ψ(0, ϑ) = ϑ. (P.42)

We denote, in reference to the new solution,

f (τ, ϑ) = x0(τ, τ, ϑ), gi(τ, ϑ) = xi(τ, τ, ϑ) : i = 1, . . . , n. (P.43)

Then the point (τ, τ, ϑ) ∈ K in terms of the coordinates (u, u, ϑ) represents the same
point in the background spacetime as the point (t, u′, ϑ′) in terms of the coordinates
(t, u′, ϑ′), if with (P.41) and t = f (τ, ϑ), that is, the temporal rectangular coordinate
being the same, we have

x ′i( f (τ, ϑ), w(τ, ϑ), ψ(τ, ϑ)) = gi(τ, ϑ) : i = 1, . . . , n, (P.44)

that is, also the spatial rectangular coordinates of the two points are the same. We
call w and ψ transformation functions and equations (P.44) identification equations.
Since they do not involve derivatives of (w, ψ), they are to determine (w, ψ) pointwise.

Note that our treatment of the shock development problem uses three coordinates
systems: the double acoustical (u, u, ϑ) coordinates which cover the domain N
of the new solution, the single acoustical (t, u′, ϑ′) covering the domain of the prior
solution, and of course the rectangular coordinates which cover the entire background
spacetime although the physical quantities are not everywhere smooth functions of
them. The (t, u′, ϑ′) coordinates enter through the jump conditions, which refer to the
prior solution along K. The transformation functions allow us to express quantities
along K which refer to the prior solution in terms of the (τ, ϑ) coordinates on K
which correspond to the (u, u, ϑ) coordinates onN .

Thinking of Sn−1 as the unit sphere in Euclidean n-dimensional space, and de-
noting by expϑ the associated exponential map TϑSn−1 → Sn−1 we can express the
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2nd of (P.41) in the form
ϑ′ = expϑ(ϕ

′) (P.45)

for some ϕ′ ∈ TϑSn−1, which is unique provided that the distance on Sn−1 of ϑ′ from
ϑ is less than π, as will be the case in our problem. Then setting

Fi((τ, ϑ), (u′, ϕ′)) = x ′i( f (τ, ϑ), u′, expϑ(ϕ
′)) − gi(τ, ϑ) (P.46)

the identification equations read

Fi((τ, ϑ), (u′, ϕ′)) = 0 : i = 1, . . . , n. (P.47)

To arrive at a form of these equations to which the implicit function theorem can be
directly applied we set

u′ = τv, ϕ′ = τ3γ (P.48)

and define F̂i((τ, ϑ), (v, γ)) by

Fi((τ, ϑ), (τv, τ3γ)) = τ3F̂i((τ, ϑ), (v, γ)). (P.49)

The identification equations then take their regularized form

F̂i((τ, ϑ), (v, γ)) = 0 : i = 1, . . . , n, (P.50)

given explicitly by Proposition 4.5. The implicit function theorem then applies to
determine for each (τ, ϑ) ∈ Kδ the associated (v, γ), v < 0, γ ∈ TϑSn−1.

By virtue of the equations of the characteristic and wave systems the transversal
derivatives on C0 of 1st order of ((xµ : µ = 0, . . . , n), b, (βµ : µ = 0, . . . , n)), that
is, ((Lxµ : µ = 0, . . . , n),L/Lb, (Lβµ : µ = 0, . . . , n)), are directly expressed in terms
of the initial data, with the exception of the pair (λ, sNL), which we call 1st derived
data. Here,

sNL = NµLβµ . (P.51)

According to Proposition 5.1, along the generators of C0 this pair satisfies a linear
homogeneous system of ordinary differential equations. The initial data for this
system are at S0,0 and vanish as shown in Chapter 4 by appealing to the boundary
condition (P.39) for λ. It then follows that the pair (λ, sNL) vanishes everywhere
along C0. Proceeding to the transversal derivatives on C0 of 2nd order, these are all
directly expressed in terms of the preceding with the exception of the pair (Tλ,TsNL).
Along the generators of C0, this pair satisfies a linear system of ordinary differential
equations, in principle inhomogeneous but with the same homogeneous part as that
in the case of the 1st derived data. Due to the vanishing of the 1st derived data
the inhomogeneous terms actually vanish. However, the initial data at S0,0 for the
pair (Tλ,TsNL) do not vanish, Tλ

��
S0,0

being represented by a positive function on
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Sn−1. It then follows that Tλ has a positive minimum on Cδ
0 provided that δ is

suitably small depending on the initial data. Here we denote by Cδ
0 the part of C0

corresponding to u ≤ δ, that is, the part contained in Rδ,δ (see (P.14)). In general,
the transversal to C0 derivatives of order m+1 are all directly expressed in terms of
the preceding with the exception of the pair (Tmλ,TmsNL). Along the generators of
C0,this pair satisfies a linear inhomogeneous system of ordinary differential equations
with the same homogeneous part as that in the case of the 1st derived data and with
inhomogeneous part directly expressed in terms of the preceding. The initial data for
this system consist of the pair (Tmλ,TmsNL) at S0,0, determination of which requires
determining at the same time (Tm−1v,Tm−1γ) at S0,0, which brings in the regularized
identification equations as well as the boundary condition (P.39) for λ. The problem
is analyzed in Section 5.3. The determination of the derived data of arbitrarily high
order is required for the construction of a truncated power series approximation to
any desired order.

Chapter 6 introduces a new geometric concept, that of a variation field, which
plays a central role in the present work. Let X , Y be arbitrary vectorfields onN . We
define the bi-variational stress associated to the 1-form β and to the pair X , Y , to be
the T1

1 -type tensorfield
ÛT = h̃−1 · ÛT[, (P.52)

where ÛT[ is the symmetric 2-covariant tensorfield

ÛT[ = 1
2 (dβ(X) ⊗ dβ(Y ) + dβ(Y ) ⊗ dβ(X) − (dβ(X), dβ(Y ))hh) , (P.53)

which depends only on the conformal class of h. Here β(X), β(Y ) are the scalar
functions which result when we evaluate the 1-form β on the vectorfields X , Y , and
dβ(X), dβ(Y ) are the 1-forms which are the differentials of these functions. We
remark that ÛT depends (besides on β and (X,Y )) only on the Lorentzian manifold
(N , h̃), and not on any background structure. We have the identity

divh̃ ÛT =
1
2
(
�h̃β(X)

)
dβ(Y ) + 1

2
(
�h̃β(Y )

)
dβ(X). (P.54)

If, moreover, X , Y generate isometries of the background structure, then by (P.32),

divh̃ ÛT = 0. (P.55)

Setting X , Y to be the translation fields of the background structure, that is,of
Minkowski or Galilean spacetime according to whether we are in the relativistic
or the non-relativistic framework, namely the vectorfields

X =
∂

∂xµ
, Y =

∂

∂xν
,

we have
β(X) = βµ, β(Y ) = βν
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and we denote the corresponding bi-variational stress by ÛTµν . The identity (P.54)
takes in this case the form

divh̃ ÛTµν =
1
2 (�h̃βµ)dβν +

1
2 (�h̃βν)dβµ . (P.56)

The concept of bi-variational stress was introduced in [Ch-A] in the general context
of Lagrangian theories of mappings of a manifold M into another manifold N , as
discussed briefly in Section 6.1. This concept derives from a quadratic form associ-
ated to a variation of a solution of the corresponding Euler–Lagrange equations. This
quadratic form is the canonical stress associated to the Lagrangian of the correspond-
ing linearized theory. Polarization then gives a symmetric bilinear form associated to
a pair of variations: the bi-variational stress. Here, the isometries of the background
structure generate variations through solutions. The usefulness of the concept of
bi-variational stress in the context of a free boundary problem is in conjunction with
the concept of variation fields. A variation field is here simply a vectorfield V on
N which along K is tangential to K. Such a vectorfield defines on K a differential
operator interior to K. The reason why variation fields play an essential role in the
context of a free boundary problem is that only differential operators interior to the
free boundary can be applied to a jump condition. A variation field can be expanded
in terms of the translation fields ∂/∂xµ : µ = 0, . . . , n:

V = Vµ ∂

∂xµ
. (P.57)

The coefficients Vµ : µ = 0, . . . , n of the expansion are simply the rectangular
components of V . To the variation field V we associate the column of 1-forms

(V )θµ = dVµ : µ = 0, . . . , n. (P.58)

Note that this depends on the background structure. To a variation field V and to the
row of functions (βµ : µ = 0, . . . , n) we associate the 1-form

(V )ξ = Vµdβµ . (P.59)

To the variation field V is associated the T1
1 -type tensorfield

(V )S = VµVν ÛTµν . (P.60)

In view of (P.52), (P.53), (P.59), we have
(V )S = h̃−1 · (V )S[, (P.61)

where (V )S[ is the symmetric 2-covariant tensorfield
(V )S[ = (V )ξ ⊗ (V )ξ − 1

2 (
(V )ξ, (V )ξ)hh, (P.62)
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which depends only on the conformal class of h. The identity (P.56) together with
definition (P.58) implies the identity

divh̃
(V )S = ( (V )ξ, (V )θµ)h̃dβµ − ( (V )ξ, dβµ)h̃

(V )θµ

+ ( (V )θµ, dβµ)h̃
(V )ξ + Vµ(�h̃βµ)

(V )ξ. (P.63)

A basic requirement on the set of variation fields V is that they span the tangent
space to K at each point. The simplest way to achieve this is to choose one of the
variation fields, which we denote by Y , to be at each point ofN in the linear span of
N and N and along K collinear to T , and to choose the other variation fields so that
at each point ofN they span the tangent space to the surface Su,u through that point.
We thus set

Y = γN + γN . (P.64)

In view of (P.39), the requirement that Y is along K collinear to T reduces to

γ = rγ : along K. (P.65)

The optimal choice is to set
γ = 1 (P.66)

in which case (P.65) reduces to

γ = r : along K, (P.67)

and to extend γ toN by the requirement that it be constant along the integral curves
of L:

Lγ = 0. (P.68)

In 2 spatial dimensions there is an obvious choice of a variation field to complementY ,
namelyE , the unit tangent field of the curves Su,u (with counterclockwise orientation).
In higher dimensions, we complement Y with the (E(µ) : µ = 0, . . . , n) which are
h-orthogonal projections to the surfaces Su,u of the translation fields (∂/∂xµ : µ =
0, . . . , n) of the background structure. These are given by (see (8.59))

E(µ) = hµν(d/xν)], (P.69)

where, given ζ ∈ T∗qSu,u we denote ζ ] = h/−1
q ·ζ ∈ TqSu,u , considering h/q as an

isomorphism h/q: TqSu,u → T∗qSu,u . The later part of Section 6.2 contains the
analysis of the structure forms of the variation fields. The smoothness of these
when expressed in the (u, u, ϑ) coordinates is a consequence of the fact that the
rectangular components of N , N and of E or the E(µ) are smooth functions of the
(u, u, ϑ) coordinates. At the end of Section 6.2 it is shown that by virtue of the wave
system, control of the components of (V )ξ for all V in the chosen set of variation
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fields provides control of all the components of the dβµ : µ = 0, . . . , n, and this is so
pointwise, even though the variation fields only span a codimension-1 subspace of
the tangent space toN at each point.

The fundamental energy identities are discussed in Section 6.3. Given a vector-
field X , which we call a multiplier field, we consider the vectorfield (V )P associated
to X and to a given variation field V through (V )S, defined by

(V )P = − (V )S · X . (P.70)

We call (V )P the energy current associated to X and to V . Let us denote by (V )Q the
divergence of (V )P with respect to the conformal acoustical metric h̃ = Ωh:

divh̃
(V )P = (V )Q. (P.71)

We have
(V )Q = (V )Q1 +

(V )Q2 +
(V )Q3, (P.72)

where

(V )Q1 = −
1
2
(V )S] · (X)π̃, (P.73)

(V )Q2 = −(
(V )ξ, (V )θµ)h̃Xβµ + ( (V )ξ, dβµ)h̃

(V )θµ(X)

− ( (V )θµ, dβµ)h̃
(V )ξ(X), (P.74)

(V )Q3 = −
(V )ξ(X)Vµ�h̃βµ . (P.75)

In (P.73), (V )S] is the symmetric 2-contravariant tensorfield corresponding to (V )S,

(V )S] = (V )S · h̃−1, (P.76)

and
(X)π̃ = LX h̃ (P.77)

is the deformation tensor of X , the rate of change of the conformal acoustical metric
with respect to the flow generated by X . The concept of a multiplier field goes
back to the fundamental work of Noether [No] connecting symmetries to conserved
quantities.

Integrating (P.71) on a domain inRδ,δ of the form

Ru1,u1 = Ru1,u1 × Sn−1 =
⋃

(u,u)∈Ru1,u1

Su,u, (P.78)

where, with (u1, u1) ∈ Rδ,δ we denote

Ru1,u1 =
{
(u, u) : u ∈ [u, u1], u ∈ [0, u1]

}
, (P.79)
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we obtain the fundamental energy identity corresponding to the variation field V and
to the multiplier field X:

(V )Eu1(u1) +
(V )Eu1(u1) +

(V )Fu1 − (V )Eu1(0) = (V )Gu1,u1 . (P.80)

Here, (V )Eu1(u1) and (V )Eu1(u1) are the energies,

(V )Eu1(u1) =

∫
C

u1
u1

Ω
(n−1)/2 (V )S[(X, L),

(V )Eu1(u1) =

∫
C

u1
u1

Ω
(n−1)/2 (V )S[(X, L), (P.81)

and (V )Fu1 is the flux,

(V )Fu1 =

∫
Ku1
Ω
(n−1)/2 (V )S[(X, M), (P.82)

where
M = L − L (P.83)

is a normal to K pointing to the interior of K. In (P.81) we denote by Cu1
u1 the part

of Cu1 corresponding to u ≤ u1 and by Cu1
u1

the part of Cu1
corresponding to u ≤ u1.

The right-hand side of (P.80) is the error integral:

(V )Gu1,u1 =

∫
Ru1,u1

2aΩ(n+1)/2 (V )Q. (P.84)

The energies are positive semidefinite if the multiplier field X is acoustically timelike,
future directed. Because of the acoustically timelike nature of K (relative to N ),
without the restriction imposed by a boundary condition at K the flux integrand is
an indefinite (of index 1) quadratic form in (V )ξ. In Chapter 7 the conditions on X
are investigated which make the flux coercive when (V )ξ satisfies onK the boundary
condition to be discussed presently.

Recall that a variation fieldV is alongK tangential toK and therefore defines onK
a differential operator interior toK. Then applyingV to the nonlinear jump condition
yields the boundary condition on K for (V )ξ. This appears as Proposition 6.2 in the
form

(V )ξ+(A+) = (V )ξ−(A−), (P.85)

where the subscripts + and − denote the future and past sides of K respectively and
A± are the vectorfields

A± =
4I
δ
− K±. (P.86)
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Here I is the particle current
I = nu, (P.87)

where n is the rest mass density and u the spacetime fluid velocity (see (1.12) in
regard to the relativistic theory, (1.134) in regard to the non-relativistic theory). We
define ζ to be the covectorfield along K such that at each p ∈ K the null space of ζp
is TpK, ζp(U) > 0 if the vector U points to the interior of N , ζ being normalized in
the relativistic theory to be of unit magnitude with respect to the Minkowski metric
and in the non-relativistic theory by the condition that ζ , the restriction of ζ to the
Σt , is of unit magnitude with respect to the Euclidean metric. The nonlinear jump
condition can then be stated in the form

ζ · 4I = 0, (P.88)

that is, the vectorfield 4I alongK is tangential toK, while the linear jump conditions
(P.35) take the form

4β = δζ (P.89)

for some function δ on K. This clarifies the meaning of the 1st term on the right
in (P.86). As for the 2nd term, K± is a normal, relative to the acoustical metric,
vectorfield along the future and past sides of K respectively, given by

Kµ
± = G±(h−1

± )
µνζν, (P.90)

where G is in the relativistic theory the thermodynamic function

G =
n
h

(P.91)

and reduces to n in the non-relativistic theory. In Section 13.1 we revisit the proof
of Proposition 6.2, clarifying things further. Proposition 6.3 plays a central role in
the analysis of the coercivity of the flux integrand in Chapter 7. This proposition
states that the 1st term on the right in (P.86), a vectorfield along K tangential to
K, is timelike, future directed with respect to the acoustical metric defined by the
future solution. The vectorfields A± are singular at S0,0. In the following we drop the
subscript + in reference to quantities defined on K by the future solution. To express
the boundary condition (P.85) in a form which is regular at S0,0 we multiply A, A− by
κG−1, defining

B = κG−1 A, B− = κG−1 A−, (P.92)

where κ is the positive function defined by

κK = 1
2 GM, (P.93)
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noting that by (P.90), K is collinear and in the same sense as M (see (P.83)). The
boundary condition (P.85) is then equivalent to its regularized form:

(V )ξ(B) = (V )ξ−(B−) (P.94)

and we have
B = B‖ + B⊥, B− = B‖ + B−⊥, (P.95)

where B‖ is tangential to K,
B⊥ = − 1

2 M (P.96)
is an exterior normal to K relative to the acoustical metric defined by the future
solution, and B−⊥ is a normal toK in the same sense relative to the acoustical metric
defined by the past solution. The forms of the vectorfields B‖ , B−⊥ in a neighborhood
of S0,0 in K are analyzed in the last part of Section 6.4.

Section 7.1 determines the necessary and sufficient conditions on the multiplier
field X for the flux integrand (see (P.82)) to be coercive under the boundary condition
(P.90). This rests on the fundamental work of Gårding [Ga] who first showed in
connectionwith the initial–boundary value problem for thewave equation�gφ = 0 on
a Lorentzian manifold (M, g) with timelike boundaryK that the boundary condition
of prescribing Bφ on K, where B is a vectorfield along K, is well posed if B is of
the form (P.95) with B‖ tangential to K and timelike, future directed while B⊥ is
an exterior normal to K, for in this case an appropriate energy inequality can be
derived. Here, in Proposition 7.1 we give a simple geometric characterization of the
set of multiplier fields making the flux integrand coercive. This is briefly as follows.
In the tangent space to N at a point of K the acoustically timelike, future-directed
vectors constitute the interior of a positive cone (the future sound cone). The vectors
with a fixed positive B‖ component constitute an acoustically spacelike hyperplane
intersecting this interior in an open ball. Then the set of multiplier vectors making the
flux integrand at the point in question coercive intersects the spacelike hyperplane in
the interior of a certain spheroid. The last is contained in the half ball corresponding
to the half space of vectors with positive B⊥ component. (See Figures 7.1, 7.2, 7.3.)

We then show that a suitable choice for the multiplier field is

X = 3L + L : onN . (P.97)

This corresponds in the limit τ → 0 to the center of the spheroid. We confine
ourselves to this choice in the remainder of the monograph. Coercivity then means
that there is a constant C ′ such that

(V )F ′u1 = (V )Fu1 + 2C ′
∫
Ku1
Ω
(n−1)/2( (V )b)2 (P.98)

is positive definite (see (9.337)). Here,
(V )b = (V )ξ−(B−) = Bµ−V β−µ (P.99)
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(see (13.28)). Note that while this corresponds to the known prior solution, the
transformation functions, which are unknown, are also involved, a manifestation of
the free boundary nature of the problem. Adding the 2nd term on the right in (P.98)
to both sides of the energy identity (P.80), the last takes the form

(V )Eu1(u1) +
(V )Eu1(u1) +

(V )F ′u1

= (V )Eu1(0) + (V )Gu1,u1 + 2C ′
∫
Ku1
Ω
(n−1)/2( (V )b)2. (P.100)

The error integral (P.84) decomposes into

(V )Gu1,u1 = (V )Gu1,u1
1 + (V )Gu1,u1

2 + (V )Gu1,u1
3 (P.101)

according to the decomposition (P.71) of (V )Q.
The deformation tensor (X)π̃ of the multiplier field is analyzed in Section 7.2.

The error integral (V )Gu1,u1
1 is then estimated. In estimates (7.122), (7.124) singular

integrals first appear. But, as we shall see below, this is only the tip of the iceberg. In
Section 7.3 the error integral (V )Gu1,u1

2 is estimated using the results of Section 6.2
on the structure forms of the variation fields.

The commutation fields which are used to control the higher-order analogues of
the functions βµ : µ = 0, . . . , n are defined in Section 7.1. Commutation fields were
first introduced by Klainerman in his derivation in [Kl] of the decay properties of
the solutions of the wave equation in Minkowski spacetime using the fact that this
equation is invariant under the Poincaré group, the isometry group of Minkowski
spacetime, the commutation fields being the vectorfields generating the group action.
The scope of commutation fields was substantially extended in [Ch-Kl] where the
problem of the stability of theMinkowski metric in the context of the vacuumEinstein
equations of general relativity was solved. In that work, while the metric arising as
the development of general asymptotically flat initial data does not possess a non-
trivial isometry group, nevertheless a large enough subgroup of the scale extended
Poincaré group was found and an action of this subgroup which approximates that of
an isometry in the sense that the deformation tensors of the vectorfields generating
this action, the commutation fields, are appropriately bounded with decay. In the
present monograph, denoting (see (P.16)), for σ ∈ [0, δ],

Kδ
σ =

{
(τ, σ + τ) : τ ∈ [0, δ − σ]

}
× Sn−1 (P.102)

(note that Kδ
0 = Kδ), we require that at each point q ∈ N , q ∈ Kδ

σ , the set of
commutation fields C spans TqKδ

σ . As the 1st of the commutation fields we take
the vectorfield T . The remaining commutation fields are then required to span the
tangent space to the Su,u at each point. In n = 2 spatial dimensions we choose E to
complement T as a commutation field. For n > 2 we choose the E(µ) : µ = 0, . . . , n
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(see (P.68)) to complementT . Thus E for n = 2 and the E(µ) for n > 2 play a dual role,
being commutation fields as well as variation fields. However, what characterizes
the action of a variation field V is the corresponding structure form (V )θ, and what
characterizes the action of a commutation field C is the corresponding deformation
tensor (C)π̃ = LC h̃.

The commutation fields generate higher-order analogues of the functions βµ :
µ = 0, . . . , n. At order m+l we have, for n = 2,

(m,l)βµ = E lTmβµ, (P.103)

and for n > 2,
(m,ν1...νl )βµ = E(νl ) . . . E(ν1)T

mβµ . (P.104)
To these and to the variation field V there correspond higher-order analogues of the
1-form (V )ξ, namely, for n = 2,

(V ;m,l)ξ = Vµd (m,l)βµ, (P.105)

and for n > 2,
(V ;m,ν1...νl )ξ = Vµd (m,ν1...νl )βµ . (P.106)

The preceding identities (P.56), (P.63), (P.70)–(P.75), (P.80), (P.100)–(P.101) which
refer to βµ and to (V )ξ all hold with these higher-order analogues in the role of βµ
and (V )ξ respectively, the boundary condition for (V ;m,l)ξ (case n = 2) being of the
form

(V ;m,l)ξ(B) = (V ;m,l)b, (P.107)
where (V ;m,l)b is analyzed in Section 13.1. Similarly, for n > 2, (V ;m,ν1...νl )ξ is of
the form

(V ;m,ν1...νl )ξ(B) = (V ;m,ν1...νl )b. (P.108)
By virtue of the wave system and its differential consequences, control of the set of
(V ;m,l)ξ (n = 2), (V ;m,ν1...νl )ξ (n > 2) for m+l up to a given positive integer k gives
us control on all derivatives of the βµ of order up to k+1, and this is so pointwise,
despite the fact that the commutation fields only span a codimension-1 subspace of
the tangent space toN at each point.

While for the original βµ we have �h̃βµ = 0, hence the error term (V )Q3 (see
(P.75)) vanishes, this is no longer true for the higher-order analogues. Instead we
have

Ωa�h̃
(m,l)βµ =

(m,l) ρ̃µ : case n = 2, (P.109)

Ωa�h̃
(m,ν1...νl )βµ =

(m,ν1...νl ) ρ̃µ : for n > 2. (P.110)

The (m,l) ρ̃µ, (m,ν1...νl ) ρ̃µ, which we call (rescaled) source functions, obey certain
recursion formulas, deduced in Section 8.2, which determine them for all m and l.
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These depend on up to the (m + l)th derivatives with respect to the commutation
fields of the deformation tensors of the commutation fields.

To summarize, three kinds of vectorfields are used in our energy estimates: the
multiplier field X given by (P.97), the variation fields V , and the commutation fields
C. The multiplier field X enters the error integrals (V ;m,l)Gu1,u1

1 (case n = 2),
(V ;m,ν1...νl )Gu1,u1

1 (case n > 2) through its deformation tensor (X)π̃, no derivatives
of this being involved, the variation fields V enter the error integrals (V ;m,l)Gu1,u1

2
(case n = 2), (V ;m,ν1...νl )Gu1,u1

2 (case n > 2) through their structure forms (V )θµ,
no derivatives of these being involved, while the commutation fields enter the error
integrals (V ;m,l)Gu1,u1

3 (case n = 2), (V ;m,ν1...νl )Gu1,u1
3 (case n > 2) through their

deformation tensors (C)π̃ and their up to (m + l)th derivatives with respect to the
commutation fields themselves.

In the last section of Chapter 8, Section 8.4, the error terms at order m+l are
discerned which contain the acoustical quantities of highest order, m+l+1. These
are contained in the error integral (V ;m,l)Gu1,u1

3 (case n = 2), (V ;m,ν1...νl )Gu1,u1
3 (case

n > 2), which by (P.84) and (P.75) are given by

(V ;m,l)Gu1,u1
3 = −

∫
Ru1,u1

2Ω(n−1)/2 (V ;m,l)ξ(X)Vµ (m,l) ρ̃µ (P.111)

: case n = 2,

(V ;m,ν1...νl )Gu1,u1
3 = −

∫
Ru1,u1

2Ω(n−1)/2 (V ;m,ν1...νl )ξ(X)Vµ (m,ν1...νl ) ρ̃µ (P.112)

: for n > 2.

In the case n = 2 the leading terms in (m,l) ρ̃ involving the acoustical quantities of
highest order are (see (8.149), (8.150))

for m = 0: 1
2 ρ(Lβµ)E

l χ̃ + 1
2 ρ(Lβµ)E

l χ̃, (P.113)

for m ≥ 1: ρ(Lβµ)E lTm−1E2λ + ρ(Lβµ)E lTm−1E2λ. (P.114)

In the case n > 2 the leading terms in (m,ν1...νl ) ρ̃ involving the acoustical quantities
of highest order are (see (8.151), (8.152))

for m = 0: 1
2 ρ(Lβµ)E(νl ) . . . E(ν1) tr χ̃ +

1
2 ρ(Lβµ)E(νl ) . . . E(ν1) tr χ̃ (P.115)

+
ahν1,κ

2c
(d/βµ)] ·

(
Nκd/(E(νl ) . . . E(ν2) tr χ̃) + Nκd/(E(νl ) . . . E(ν2) tr χ̃)

)
,

for m ≥ 1: ρ(Lβµ)E(νl ) . . . E(ν1)T
m−14/ λ + ρ(Lβµ)E(νl ) . . . E(ν1)T

m−14/ λ. (P.116)

We now come to the main analytic method introduced in this monograph. To
motivate the introduction of this method, we need first to discuss the difficulties
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encountered. After this discussion it will become evident that the new analytic
method is a natural way to overcome these difficulties. In Chapters 1–8, which
we have just reviewed, we denote by n the spatial dimension, a notation which we
have followed in the above review. However, in the remainder of the monograph,
Chapters 9–14, which we shall review presently, we designate by n the top order of
the (m,l)βµ, that is, m + l = n, and we denote the spatial dimension by d. We shall
now follow the latter notation.

The difficulties arise in estimating the contribution of the terms involving the top-
order (order-(n+ 1)) acoustical quantities, (P.113), (P.114) in the case d = 2, (P.115),
(P.116) for d > 2, to the error integral (V ;m,l)Gu1,u1

3 , (V ;m,ν1...νl )Gu1,u1
3 . To understand

the origin of these difficulties it is advantageous to go directly to Chapter 11 where
the approach applicable to any d ≥ 2 is laid out, an approach which simplifies in
the case d = 2 where the detailed estimates are deduced in Chapter 10. In regard to
(P.115) we must derive appropriate estimates for

d/(E(νl−1) . . . E(ν1) tr χ̃), d/(E(νl−1) . . . E(ν1) tr χ̃) : ν1, . . . , νl−1 = 0, . . . , d. (P.117)

In regard to (P.116) we must derive appropriate estimates for

E(νl ) . . . E(ν1)T
m−14/ λ, E(νl ) . . . E(ν1)T

m−14/ λ : ν1, . . . , νl = 0, . . . , d. (P.118)

Now, asmentioned above, Proposition 3.4, the second variation equations, express
L/L χ̃ and L/L χ̃ in terms of 2nd-order quantities with vanishing 2nd-order acoustical
part. These imply expressions for L tr χ̃ and L tr χ̃ again in terms of 2nd-order
quantities with vanishing 2nd-order acoustical part. To be able then to estimate tr χ̃,
tr χ̃ in terms of 1st-order quantities, so that we can estimate (P.117) in terms of
quantities of the top order l + 1 = n + 1, we must express the principal (2nd-order)
part of the expressions for L tr χ̃ and L tr χ̃ in the forms −L f̂ and −L f̂ respectively,
up to lower-order terms, with f̂ and f̂ being quantities of 1st order. That this is
possible follows from the fact that the quantities (see (11.14))

M =
1
2
β2
N (a4/H − L(LH)), M =

1
2
β2
N (a4/H − L(LH)), (P.119)

with H a given smooth function of the βµ : µ = 0, . . . , d, are actually 1st-order
quantities. This fact is a direct consequence of the equation �h̃βµ = 0. The functions
f̂ , f̂ each contain a singular term with coefficients λ−1, λ−1 respectively. The
functions f = λ f̂ , f = λ f̂ are then regular, and transferring the corresponding terms
to the left-hand side, we obtain propagation equations for the quantities

θ = λ tr χ̃ + f , θ = λ tr χ̃ + f (P.120)

of the form
Lθ = R, Lθ = R, (P.121)
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where R, R are again quantities of order 1, their 1st-order acoustical parts being given
by Proposition 11.1. The leading terms in R, R from the point of view of behavior
as we approach the singularity at u = 0 (that is, C0) and the stronger singularity at
u = 0 (that is, S0,0) are the terms

2(Lλ) tr χ̃ = 2λ−1(Lλ)(θ − f ) : in R,

2(Lλ) tr χ̃ = 2λ−1(Lλ)(θ − f ) : in R.
(P.122)

To estimate (P.117) we introduce the quantities, of order l + 1 = n + 1,

(ν1...νl−1)θl = λd/
(
E(νl−1) . . . E(ν1) tr χ̃

)
+ d/

(
E(νl−1) . . . E(ν1) f

)
,

(ν1...νl−1)θl = λd/
(
E(νl−1) . . . E(ν1) tr χ̃

)
+ d/

(
E(νl−1) . . . E(ν1) f

)
.

(P.123)

These quantities then satisfy propagation equations of the form

L/L (ν1...νl−1)θl =
(ν1...νl−1)Rl,

L/L (ν1...νl−1)θl =
(ν1...νl−1)Rl,

(P.124)

where (ν1...νl−1)Rl , (ν1...νl−1)Rl are likewise also of order l+1 = n+1 and their leading
terms from the point of view of behavior as we approach the singularities are

2(Lλ)d/(E(νl−1) . . . E(ν1) tr χ̃) = 2λ−1(Lλ)
(
(ν1...νl−1)θl − d/(E(νl−1) . . . E(ν1) f )

)
,

2(Lλ)d/(E(νl−1) . . . E(ν1) tr χ̃) = 2λ−1(Lλ)
(
(ν1...νl−1)θl − d/(E(νl−1) . . . E(ν1) f )

)
.
(P.125)

As mentioned above, Proposition 3.3, the propagation equations for λ, λ, express
Lλ and Lλ in terms of 1st-order quantities with vanishing 1st-order acoustical part.
These imply expressions for L4/ λ and L4/ λ in terms of 3rd-order quantities with
vanishing 3rd-order acoustical part. To be able then to estimate 4/ λ, 4/ λ in terms
of 2nd-order quantities, so that we can estimate (P.118) in terms of quantities of the
top order m + l + 1 = n + 1, we must express the principal (3rd-order) part of the
expressions for L4/ λ and L4/ λ in the form L ĵ and L ĵ respectively, up to lower-order
terms, with ĵ and ĵ being quantities of 2nd order. That this is possible follows again
from the fact that the quantities M and M defined by (P.119) are actually 1st-order
quantities. The functions ĵ, ĵ each contain a singular term with coefficient λ−1, λ−1

respectively. The functions j = λ ĵ, j = λ ĵ are then regular, and transferring the
corresponding terms to the left-hand side, we obtain propagation equations for the
quantities

ν = λ4/ λ − j, ν = λ4/ λ − j (P.126)

of the form
L(ν − τ) = I, L(ν − τ) = I, (P.127)



26 Prologue

where τ, τ are quantities of order 1, while I, I are quantities of order 2, their 2nd-order
acoustical parts being given by Proposition 11.2. The leading terms in I, I from the
point of view of behavior as we approach the singularity at u = 0 (that is C0) and the
stronger singularity at u = 0 (that is S0,0) are the terms

2(Lλ)4/ λ = 2λ−1(Lλ)(ν+ j) : in I, 2(Lλ)4/ λ = 2λ−1(Lλ)(ν+ j) : in I . (P.128)

To estimate (P.118) we introduce the quantities, of order m + l + 1 = n + 1,
(ν1...νl )νm−1,l+1 = λE(νl ) . . . E(ν1)T

m−14/ λ − E(νl ) . . . E(ν1)T
m−1 j,

(ν1...νl )νm−1,l+1∗ = λE(νl ) . . . E(ν1)T
m−14/ λ − E(νl ) . . . E(ν1)T

m−1 j .
(P.129)

These quantities then satisfy propagation equations of the form

L
(
(ν1...νl )νm−1,l+1 −

(ν1...νl )τm−1,l+1

)
= (ν1...νl )Im−1,l+1,

L
(
(ν1...νl )νm−1,l+1 −

(ν1...νl )τm−1,l+1

)
= (ν1...νl )Im−1,l+1,

(P.130)

where (ν1...νl )τm−1,l+1, (ν1...νl )τm−1,l+1 are quantities of order m + l = n, while
(ν1...νl )Im−1,l+1, (ν1...νl )Im−1,l+1 are quantities of order m + l + 1 = n + 1 and their
leading terms from the point of view of behavior as we approach the singularities are

2(Lλ)d/(E(νl ) . . . E(ν1)T
m−14/ λ)

= 2λ−1(Lλ)
(
(ν1...νl )νm−1,l+1 + E(νl ) . . . E(ν1)T

m−1 j
)
,

2(Lλ)d/(E(νl ) . . . E(ν1)T
m−14/ λ)

= 2λ−1(Lλ)
(
(ν1...νl )νm−1,l+1 + E(νl ) . . . E(ν1)T

m−1 j
)
.

(P.131)

Now, in accordance with the discussion following (P.25), we have

λ ∼ u, λ ∼ u2, (P.132)

where we denote by ∼ the ratio being bounded above and below by positive constants.
The propagation equations for λ, λ of Proposition 3.3 then imply

Lλ = O(u), Lλ = O(u). (P.133)

Then, integrating the 1st of (P.124) from C0, the contribution of the term

−2λ−1(Lλ)d/(E(νl−1) . . . E(ν1) f )

from the 1st of (P.125) to ‖ (ν1...νl−1)θl ‖L2(Su1,u )
is bounded by

Cu−2
∫ u1

0
‖d/(E(νl−1) . . . E(ν1) f )‖L2(Su,u )u du. (P.134)
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Now from the expression for the function f of Proposition 11.1 we see that the term

−
1
2
β2
N LH

in f makes the leading contribution, and this contribution to (P.134) is bounded, up
to lower-order terms, by

Cu−2
∫ u1

0

∑
νl

‖NµL (0,ν1...νl−1νl )βµ‖L2(Su,u )u du (P.135)

(compare with (10.371)). From the 2nd of (P.81) and from (P.62) with (0,ν1...νl )βµ,
(V ;0,ν1...νl )ξ in the roles of βµ, (V )ξ, in view of (P.97), we have

(V ;0,ν1...νl )Eu1(u) =
∫
C

u1
u

Ω
(d−1)/2

(
( (V ;0,ν1...νl )ξL)

2 + 3a| (V ;0,ν1...νl )ξ/|2
)

(P.136)

( (V )ξ/ is the 1-form (V )ξ induced on the Su,u). Now, the quantity

‖NµL (0,ν1...νl )βµ‖L2(Su,u ) (P.137)

in the integrand in (P.135) can only be estimated through

‖ (Y ;0,ν1...νl )ξL ‖L2(Su,u ). (P.138)

Comparing with (P.64), in view of the fact that by (P.66)–(P.68) and (P.132) we have

γ ∼ u, (P.139)

we conclude that (P.137) can only be bounded in terms of

Cu−1‖ (Y ;0,ν1...νl )ξL ‖L2(Su,u ); (P.140)

therefore (P.135) can only be bounded in terms of

Cu−3
∑
νl

∫ u1

0
‖ (Y ;0,ν1...νl−1νl )ξL ‖L2(Su,u )u du. (P.141)

This bounds the leading contribution to ‖ (ν1...νl−1)θl ‖L2(Su1,u )
. The corresponding

contribution to ‖ (ν1...νl−1)θl ‖L2(C
u1
u1 )

is then bounded by

C
∑
νl

{∫ u1

u1

(
u−3

∫ u1

0
‖ (Y ;0,ν1...νl−1νl )ξL ‖L2(Su,u )u du

)2
du

}1/2

. (P.142)
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To bound the integral in the square root wemust use the Schwarz inequality to replace
it by (1/3 times)

u3
1

∫ u1

u1

u−6
(∫ u1

0
‖ (Y ;0,ν1...νl−1νl )ξL ‖

2
L2(Su,u )

du
)

du

= u3
1

∫ u1

0

(∫ u1

u1

u−6‖ (Y ;0,ν1...νl−1νl )ξL ‖
2
L2(Su,u )

du

)
du

≤ u−3
1

∫ u1

0
‖ (Y ;0,ν1...νl−1νl )ξL ‖

2
L2(C

u1
u )

du

≤ Cu−3
1

∫ u1

0

(Y ;0,ν1...νl−1νl )Eu1(u)du. (P.143)

Then (P.142) is bounded by

C
∑
νl

u−3/2
1

{∫ u1

0

(Y ;0,ν1...νl−1νl )Eu1(u)du
}1/2

. (P.144)

In regard to (P.112) with m = 0, V = Y , the factor Yµ (0,ν1...νl ) ρ̃µ in the integrand
contains the term

1
2 ρ(Y

µLβµ)E(νl ) . . . E(ν1) tr χ̃ (P.145)

contributed by the 1st term in (P.115). Here, by (P.64), (P.66),

YµLβµ = NµLβµ + γNµLβµ = λ tr s//+γsNL, (P.146)

where
s//= d/xµ ⊗ d/βµ, hence tr s//= (d/xµ, d/βµ)h/, (P.147)

and (see (P.51))
sNL = NµLβµ . (P.148)

Expression (P.145) contributes through (P.123) the term

1
2 sNLργλ

−1E(νl ) ·
(ν1...νl−1)θl . (P.149)

In view of (P.132), (P.139), this term contributes to (Y ;0,ν1...νl )Gu1,u1
3 (see (P.112))

through the L component of X (see (P.97)) a term which can only be bounded in
terms of

C
∫
Ru1,u1

uu−1 | (Y ;0,ν1,...,νl )ξL | |Eνl ·
(ν1...νl−1)θl |

≤ C
∫ u1

0
‖ (Y ;0,ν1...νl )ξL ‖L2(C

u1
u )
‖E(νl ) ·

(ν1...νl−1)θl ‖L2(C
u1
u )

du. (P.150)
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Substituting for ‖ (ν1...νl−1)θl ‖L2(C
u1
u )

the leading contribution (P.144) we see that
(P.150) can in turn only be bounded in terms of

C
∑
µ

∫ u1

0

(
(Y ;0,ν1...νl )Eu1(u)

)1/2
{

1
u

∫ u

0

(Y ;0,ν1...νl−1µ)Eu1(u′)du′
}1/2 du

u
, (P.151)

a singular integral.
However, this is the lesser of the difficulties one faces in regard to (P.112) with

m = 0. The greater difficulty arises in estimating the contribution through the factor
Vµ (0,ν1...νl ) ρ̃µ in the integrand of the terms

1
2
ρ(VµLβµ)E(νl ) . . . E(ν1) tr χ̃ +

a
2c

hν1,κNκVµ(d/βµ)] · d/(E(νl ) . . . E(ν2) tr χ̃) (P.152)

contributed by the terms involving tr χ̃ in (P.115). This is because the 2nd of
(P.124) must be integrated from K where a boundary condition holds which equates
rd/(E(νl−1) . . . E(ν1) tr χ̃) to d/(E(νl−1) . . . E(ν1) tr χ̃) to leading terms (see paragraph fol-
lowing (P.39)). In view of definitions (P.123) and (P.39) this takes the form of a
relation between r2 (ν1...νl−1)θl and

(ν1...νl−1)θl on K. Integrating the 2nd of (P.124)
from K, the contribution of the term

−2λ−1(Lλ)d/(E(νl−1) . . . E(ν1) f )

from the 2nd of (P.125) to ‖ (ν1...νl−1)θl ‖L2(Su,u1 )
is, in view of (P.132), (P.139),

bounded by

C
∫ u1

u

‖d/(E(νl−1) . . . E(ν1) f )‖L2(Su,u )du (P.153)

(compare with (P.134)). This causes no difficulty. The difficulty arises from the
boundary term ‖ (ν1...νl−1)θl ‖L2(Su,u ). Taking account of the fact that r ∼ τ along K,
we multiply the inequality for ‖ (ν1...νl−1)θl ‖L2(Su,u1 )

by u2 and take the L2 norm with
respect to u on [0, u1] to seek a bound for ‖u

2 (ν1...νl−1)θl ‖L2(C
u1
u1 )

. The contribution of
the boundary term to this is bounded by a constant multiple of ‖r2 (ν1...νl−1)θl ‖L2(Ku1 ),
which by the above is bounded in terms of

‖ (ν1...νl−1)θl ‖L2(Ku1 ). (P.154)

To estimate this wemust revisit the argument leading from (P.141) to (P.144). Herewe
are to set u1 = u in (P.141) to obtain the leading contribution to ‖ (ν1...νl−1)θl ‖L2(Su,u ).
The corresponding contribution to ‖ (ν1...νl−1)θl ‖L2(Ku1 ) is then bounded by

C
∑
νl

{∫ u1

0

(
u−3

∫ u

0
‖ (Y ;0,ν1...νl−1νl )ξL ‖L2(Su,u )u du

)2
du

}1/2

. (P.155)
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The integral in the square root is now bounded by (1/3 times)∫ u1

0
u−3

(∫ u

0
‖ (Y ;0,ν1...νl−1νl )ξL ‖

2
L2(Su,u )

du
)

du

=

∫ u1

0

(∫ u1

u

u−3‖ (Y ;0,ν1...νl−1νl )ξL ‖
2
L2(Su,u )

du

)
du

≤

∫ u1

0
u−3‖ (Y ;0,ν1...νl−1νl )ξL ‖

2
L2(C

u1
u )

du

≤ C
∫ u1

0
u−3 (Y ;0,ν1...νl−1νl )Eu1(u)du (P.156)

and (P.155) is bounded by

C
∑
νl

{∫ u1

0

(Y ;0,ν1...νl−1νl )Eu1(u)
du
u3

}1/2
. (P.157)

This is not only singular but, placing a lower cutoff ε > 0 on u, blows up like
ε−1 as ε → 0. Moreover, this only bounds ‖u2 (ν1...νl−1)θl ‖L2(C

u1
u1 )

rather than
‖ (ν1...νl−1)θl ‖L2(C

u1
u1 )

. Nevertheless, from the point of view of scaling, the singu-
lar bound (P.157) is similar to the bound (P.144). Also, in view of (P.132), (P.133),
the contribution to (P.152) of (ν1...νl−1)θl is pointwise bounded by

Cu2 | (ν1...νl−1)θl | (P.158)

as compared with (P.149) which is pointwise bounded by

Cuu−1 | (ν1...νl−1)θl |. (P.159)

As a consequence, the two contributions to (Y ;0,ν1...νl )Gu1,u1
3 are similar from the

point of view of scaling, both being borderline.
Similar results are obtained in regard to the error integral (V ;m,ν1...νl )Gu1,u1

3
for m ≥ 1, with E(νl ) . . . E(ν1)T

m−14/ λ, E(νl ) . . . E(ν1)T
m−14/ λ playing the roles of

d/(E(νl−1) . . . E(ν1) tr χ̃), d/(E(νl−1) . . . E(ν1) tr χ̃), respectively. (Compare (P.116) with
(P.115).) In fact, integrating the 1st of (P.130) from C0, the contribution of the term

2λ−1(Lλ)E(νl ) . . . E(ν1T
m−1 j

from the 1st of (P.131) to ‖ (ν1...νl )νm−1,l+1‖L2(Su1,u )
is bounded by

Cu−2
∫ u1

0
‖E(νl ) . . . E(ν1)T

m−1 j‖L2(Su,u )u du. (P.160)



Prologue 31

From the expression for the function j of Proposition 11.2 we see that the term

1
4 β

2
N L2H

makes the leading contribution. More precisely, writing L2H = LTH − LLH the
leading contribution is that of

1
4 β

2
N LTH

and this contribution to (P.160) is bounded, up to lower-order terms, by

Cu−2
∫ u1

0
‖NµL (m,ν1...νl )βµ‖L2(Su,u )u du. (P.161)

Using the fact that

(V ;m,ν1...νl )Eu1(u) =
∫
C

u1
u

Ω
(d−1)/2

(
( (V ;m,ν1...νl )ξL)

2 + 3a| (V ;m,ν1...νl )ξ/|2
)
, (P.162)

we deduce, in analogy with (P.141), that we can bound the leading contribution to
‖ (ν1...νl )νm−1,l+1‖L2(Su1,u )

by

Cu−3
∫ u1

0
‖ (Y ;m,ν1...νl )ξL ‖L2(Su,u )u du. (P.163)

By an argument analogous to that leading from (P.141) to (P.144) we then deduce
that the leading contribution to ‖ (ν1...νl )νm−1,l+1‖L2(C

u1
u1 )

is bounded by

Cu−3/2
1

{∫ u1

0

(Y ;m,ν1...νl )Eu1(u)du
}1/2

. (P.164)

Then in analogy with (P.151) the corresponding contribution to the error integral
(Y ;m,ν1...νl )Gu1,u1

3 is bounded in terms of the mildly singular integral

C
∫ u1

0

(
(Y ;m,ν1...νl )Eu1(u)

)1/2
{

1
u

∫ u

0

(Y ;m,ν1...νl )Eu1(u′)du′
}1/2 du

u
. (P.165)

On the other hand, the contribution through the factor Vµ (m,ν1...νl ) ρ̃µ in the
integrand in (P.112) for m ≥ 1 of the term

ρ(VµLβµ)E(νl ) . . . E(ν1)T
m−14/ λ, (P.166)

contributed by the term involving 4/ λ in (P.116), can only be bounded in terms
of a severely singular integral. This is because the 2nd of (P.130) must be inte-
grated from K where a boundary condition which equates rE(νl ) . . . E(ν1)T

m−14/ λ to



32 Prologue

E(νl ) . . . E(ν1)T
m−14/ λ holds, a differential consequence of the boundary condition

(P.39). In view of definitions (P.129) and (P.39) this takes the form of a relation
between r2 (ν1...νl )νm−1,l+1 and

(ν1...νl )νm−1,l+1 onK. The contribution of the bound-
ary term to ‖u2 (ν1...νl )νm−1,l+1‖L2(C

u1
u1 )

is then bounded by a constant multiple of
‖r2 (ν1...νl )νm−1,l+1‖L2(Ku1 ), which in view of this relation is bounded in terms of

‖ (ν1...νl )νm−1,l+1‖L2(Ku1 ). (P.167)

Proceeding as in the argument leading to (P.157) we conclude that the leading con-
tribution to (P.167) is only bounded in terms of the severely singular integral

C
{∫ u1

0

(Y ;m,ν1...νl−1νl )Eu1(u).
du
u3

}1/2
. (P.168)

Additional difficulties of the same kind as those discussed above arise indirectly
in estimating the contribution of the terms involving the top-order (order-(n + 1))
derivatives of the transformation functions to the integral which appears as the last
term on the right in (P.100) when (V )b is replaced by (V ;m,l)b, (V ;m,ν1...νl )b according
to (P.107), (P.108).

The new analytic method is designed to overcome the difficulties due to the
appearance of the singular integrals. The starting point is the observation that, in
view of the fact that these integrals are borderline from the point of view of scaling,
they would become regular borderline integrals if the energies (V ;m,ν1...νl )Eu(u),
(V ;m,ν1...νl )Eu(u) had a growth from the singularities at u = 0 (C0) and u = 0 (S0,0)
like u2amu2bm for some sufficiently large exponents am and bm, and, moreover, the
flux (V ;m,ν1...νl )F ′τ had a growth from the singularity at τ = 0 (S0,0) on K like
τ2cm , where cm = am + bm. That is, if we assume the stated growth properties
then these integrals would give contributions on the right-hand side of the energy
identities which would be bounded proportionally to u2amu2bm , in consistency with
the assumption, and moreover with a coefficient which is small if am and bm are
accordingly large. This observation seems at first sight irrelevant since on the right-
hand side of the energy identities we also have the initial data terms (V ;m,ν1...νl )Eu(0)
which are independent of u (and do not have the assumed growth with u). In fact,
the growth assumptions for (V ;m,ν1...νl )Eu(u), (V ;m,ν1...νl )Eu(u), and (V ;m,ν1...νl )F ′τ
cannot possibly hold.

However, given that the initial data of the problem are expressed as smooth
functions of (u, ϑ), as we have seen above in our review of Chapter 5, the derived
data, that is, the T-derivatives on C0 of up to any desired order N of the unknowns
((xµ : µ = 0, . . . , n), b, (βµ : µ = 0, . . . , n)) in the characteristic and wave systems,
are determined as smooth functions of (u, ϑ). TheT-derivatives of the transformation
functions (v, γ) on S0,0 of up to order N−2 are also determined at the same time as
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smooth functions of ϑ. Therefore we can define the Nth approximants ((xµN : µ =
0, . . . , n), bN, (βµ,N : µ = 0, . . . , n)) as the corresponding Nth degree polynomials in
τ = u with coefficients which are known smooth functions of (σ = u−u, ϑ). Similarly
we can define the Nth approximants (vN, γN ) as the corresponding (N − 2)th degree
polynomials in τ with coefficients which are known smooth functions of ϑ. If the
N approximants, so defined, are inserted into the equations of the characteristic and
wave systems, these equations fail to be satisfied by errors which are known smooth
functions of (u, u, ϑ) and whose derivatives up to order n are bounded by a known
constant times τN−n+k , where k is a fixed integer depending onwhich equation we are
considering. Similarly, inserting the N approximants into the boundary conditions
and into the identification equations, these fail to be satisfied by errors which are
known smooth functions of (τ, ϑ) and whose derivatives up to order n are likewise
bounded by a known constant times τN−n+k , where k is a fixed integer depending
on which equation we are considering. Moreover, in connection with the equation
�h̃βµ = 0 satisfied by an actual solution, the corresponding Nth approximant quantity
�h̃N

βµ,N is a known smooth function of (u, u, ϑ) and whose derivatives up to order
n are bounded by a known constant times τN−n+k , where k is a fixed integer.

As we shall presently outline, by considering the differences from the Nth ap-
proximants and the associated difference energy identities, the corresponding initial
data terms vanish and their role as the inhomogeneous terms in these identities is
now played by quantities involving the errors committed by the Nth approximation,
quantities which do have the required growth properties if N is chosen suitably large.

The construction of the truncated power series approximation and the analysis of
the errors committed at truncation order N are discussed in detail in Chapter 9, in the
case d = 2, the extension to the case d > 2 being straightforward. Note that in this
construction we have, in terms of (τ = u, σ = u − u, ϑ) coordinates,

TN =
∂

∂τ
= T, ΩN =

∂

∂ϑ
= Ω, (P.169)

independently of the approximation. On the other hand, LN , LN , EN depend on the
approximation, the 1st two through bN , and the last through h/N , where

h/N= hµν,N (ΩxµN )(ΩxνN ). (P.170)

We then define the difference quantities
(m,l) β̌µ = E lTmβµ − E l

NTmβµ,N, (P.171)
(V ;m,l)ξ̌ = Vµd (m,l) β̌µ . (P.172)

We also define (V ;m,l)Š as in (P.61), (P.62) with (V ;m,l)ξ̌ in the role of (V )ξ, that is,
(V ;m,l)Š = h̃−1 · (V ;m,l)Š[, (P.173)
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where

(V ;m,l)Š[ = (V ;m,l)ξ̌ ⊗ (V ;m,l)ξ̌ −
1
2
( (V ;m,l)ξ̌, (V ;m,l)ξ̌)hh. (P.174)

Defining, moreover, in analogy with (P.70),
(V ;m,l)P̌ = − (V ;m,l)Š · X, (P.175)

we have, in analogy with (P.71)–(P.75),

divh̃
(V ;m,l)P̌ = (V ;m,l)Q̌, (P.176)

where
(V ;m,l)Q̌ = (V ;m,l)Q̌1 +

(V ;m,l)Q̌2 +
(V ;m,l)Q̌3 (P.177)

with
(V ;m,l)Q̌1 = −

1
2
(V ;m,l)Š] · (X)π̃, (P.178)

(V ;m,l)Q̌2 = −(
(V ;m,l)ξ̌, (V )θµ)h̃X (m,l) β̌µ + ( (V ;m,l)ξ̌, d (m,l) β̌µ)h̃

(V )θµ(X)

− ( (V )θµ, d (m,l) β̌µ)h̃
(V ;m,l)ξ̌(X), (P.179)

(V ;m,l)Q̌3 = −
(V ;m,l)ξ̌(X)Vµ�h̃

(m,l) β̌µ . (P.180)

We then deduce, in analogy with (P.100), the (m, l) difference energy identity
(V ;m,l)Ěu1(u1) +

(V ;m,l)Ěu1
(u1) +

(V ;m,l)F̌ ′u1

= (V ;m,l)Ěu1
(0) + (V ;m,l)Ǧu1,u1 + 2C ′

∫
Ku1
Ω

1/2( (V ;m,l)b̌)2 (P.181)

(here d = 2), where (see (P.81))

(V ;m,l)Ěu1(u1) =

∫
C

u1
u1

Ω
1/2 (V ;m,l)Š[(X, L)

=

∫
C

u1
u1

Ω
1/2

(
3( (V ;m,l)ξ̌L)

2 + a( (V ;m,l)ξ̌/)2
)
,

(V ;m,l)Ěu1
(u1) =

∫
C

u1
u1

Ω
1/2 (V ;m,l)Š[(X, L)

=

∫
C

u1
u1

Ω
1/2

(
3a( (V ;m,l)ξ̌/)2 + ( (V ;m,l)ξ̌L)

2
)

(P.182)

are the (m, l) difference energies. Also, in (P.181),

(V ;m,l)F̌ ′u1 = (V ;m,l)F̌u1 + 2C ′
∫
Ku1
Ω

1/2( (V ;m,l)b̌)2 (P.183)
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is positive definite (see (9.337)), (V ;m,l)F̌u1 being the (m, l) difference flux

(V ;m,l)F̌u1 =

∫
Ku1
Ω

1/2 (V ;m,l)Š[(X, M), (P.184)

and (V ;m,l)b̌ representing the boundary values on K of (V ;m,l)ξ̌(B) (see (13.1)).
Finally, in (P.181),

(V ;m,l)Ǧu1,u1 :=
∫
Ru1,u1

2aΩ3/2 (V ;m,l)Q̌ (P.185)

is the (m, l) difference error integral.
Now, from definition (P.171) and the preceding discussion it follows that for any

solution of the problem the functions (m,l) β̌µ vanish with all their T-derivatives up
to order n on C0 if we choose N ≥ n. We then have

(V ;m,l)Ěu1
(0) = 0 : ∀m = 0, . . . , n; (P.186)

therefore the (m, l) difference energy identity simplifies to

(V ;m,l)Ěu1(u1) +
(V ;m,l)Ěu1

(u1) +
(V ;m,l)F̌ ′u1

= (V ;m,l)Ǧu1,u1 + 2C ′
∫
Ku1
Ω

1/2( (V ;m,l)b̌)2. (P.187)

Expecting that the growth of (V ;m,l)Ěu(u), (V ;m,l)Ěu
(u) is like u2amu2bm and that the

growth of (V ;m,l)F̌ ′τ is like τ2cm , we define the weighted quantities

(V ;m,l)B(u1, u1) = sup
(u,u)∈Ru1,u1

u−2amu−2bm (V ;m,l)Ěu(u), (P.188)

(V ;m,l)B(u1, u1) = sup
(u,u)∈Ru1,u1

u−2amu−2bm (V ;m,l)Ěu
(u), (P.189)

and

(V ;m,l)A(τ1) = sup
τ∈[0,τ1]

τ−2(am+bm) (V ;m,l)F̌ ′τ, (P.190)

the exponents am, bm being non-negative real numbers which are non-increasing
with m. Of course the above definitions do not make sense unless we already
know that the quantities (V ;m,l)Ěu(u), (V ;m,l)Ěu

(u), (V ;m,l)F̌ ′τ have the appropriate
growth properties. Making this assumption would introduce a vicious circle into
the argument, so this is not what we do. What we actually do is presented in
Section 14.11. There we regularize the problem by giving initial data not on C0 but
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on Cτ0
for τ0 > 0, but not exceeding a certain fixed positive number which is much

smaller than δ. The initial data on Cτ0
is modeled after the restriction to Cτ0

of the
Nth approximate solution, the difference being bounded by a fixed constant times
τN−1

0 . Similarly considering the mth derived data on Cτ0
, m = 1, . . . , n + 1 we show

that the difference from the corresponding Nth approximants on Cτ0
is bounded by a

fixed constant times τN−1−m
0 . The (m, l) difference energy identity now refers to the

domainRu1,u1,τ0 inN which corresponds to the domain

Ru1,u1,τ0 =
{
(u, u) : u ∈ [u, u1], u ∈ [τ0, u1]

}
(P.191)

in R2, so the 1st term on the right in (P.181) is replaced by

(V ;m,l)Ěu1
(τ0) ≤ Cτ2(N−2−m)

0 . (P.192)

Moreover, in reference to (P.191), if u1− τ0 is suitably small then given a solution de-
fined inRu1,u1,τ0 of the problem with initial data on Cτ0

, the quantities (V ;m,l)Ěu
(u),

(V ;m,l)Ěu(u), and (V ;m,l)F̌ , for (u, u) ∈ Ru1,u1,τ0 , are likewise bounded by a constant
times τ2(N−2−m)

0 . Therefore replacing the supremum over Ru1,u1 and the supremum
over [0, τ1], by the supremum over Ru1,u1,τ0 and the supremum over [τ0, τ1], respec-
tively, in definitions (P.188)–(P.190), and taking N ≥ m + 2 + cm, everything now
makes sense. In fact, we take N > m + 5

2 + cm, in which case the modifications in
the resulting estimates for the quantities (P.189), (P.190) tend to 0 as τ0 → 0. The
estimates in the preceding chapters, namely Chapters 10, 12, and 13, concluding with
the top-order energy estimates in Chapter 13, are thus derived with the foreknowledge
that such modifications involving a very small positive τ0 will be made which will
tend to 0 as τ0 → 0. We have chosen not to introduce such a small positive τ0
from the beginning, because that would have made the exposition more complicated,
lengthening the monograph unnecessarily.

The argument relies on the derivation of energy estimates of the top orderm+l = n
only. Since these are derived in Chapter 13 before the regularization of the problem
by the introduction of the small positive τ0, they are to be thought of as a priori
estimates. In our exposition, at first we ignore all but the principal terms involved.
Thus in Chapters 10 and 11, the aim of which is to derive estimates for the top-order
acoustical difference quantities corresponding to (P.123), (P.129),

(ν1...νl−1)θ̌l =
(ν1...νl−1)θl −

(ν1...νl−1)θl,N,

(ν1...νl−1)θ̌l =
(ν1...νl−1)θl −

(ν1...νl−1)θl,N,

(ν1...νl )ν̌m−1,l+1 =
(ν1...νl )νm−1,l+1 −

(ν1...νl )νm−1,l+1,N,

(ν1...νl )ν̌m−1,l+1 =
(ν1...νl )νm−1,l+1 −

(ν1...νl )νm−1,l+1,N

(P.193)
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for d > 2,

θ̌l = θl − θl,N, θ̌l = θl − θl,N,

ν̌m−1,l+1 = νm−1,l+1 − νm−1,l+1,N, ν̌m−1,l+1 = νm−1,l+1 − νm−1,l+1,N
(P.194)

in the case d = 2, we ignore all but the top-order terms, namely those of order n+1.
An exception occurs in regard to the terms in the boundary estimates for ν̌m−1,l+1

involving the transformation function differences ˇ̂f , v̌, γ̌ (see Proposition 10.9),
where the terms of orders 2, 1, 3 lower must be kept because they enter the estimates
multiplied by correspondingly lower powers of τ. The only essential change when
passing from the case d = 2 to d > 2, is that in higher dimensions we must also
derive L2(Su,u) estimates for λD/ (ν1...νl−1) ˇ̃χl−1, λD/ (ν1...νl−1) ˇ̃χ

l−1
in terms of L2(Su,u)

estimates for (ν1...νl−1)θ̌l , (ν1...νl−1)θ̌l respectively, where

(ν1...νl−1) ˇ̃χl−1 = L/E(νl−1)
. . .L/E(ν1)

χ̃ − L/E(νl−1),N
. . .L/E(ν1),N

χ̃N,

(ν1...νl−1) ˇ̃χ
l−1
= L/E(νl−1)

. . .L/E(ν1)
χ̃ − L/E(νl−1),N

. . .L/E(ν1),N
χ̃
N
.

(P.195)

The required estimates are derived using elliptic theory in connectionwith theCodazzi
equations on the Su,u . We must also derive L2(Su,u) estimates for λD/2 (ν1...νl )λ̌m−1,l ,
λD/2 (ν1...νl )λ̌m−1,l in terms of L2(Su,u) estimates for (ν1...νl )ν̌m−1,l+1, (ν1...νl )ν̌m−1,l+1
respectively, where

(ν1...νl )λ̌m−1,l = E(νl ) . . . E(ν1)T
m−1λ − E(νl ),N . . . E(ν1),NTm−1λN,

(ν1...νl )λ̌m−1,l = E(νl ) . . . E(ν1)T
m−1λ − E(νl ),N . . . E(ν1),NTm−1λN .

(P.196)

The required estimates are derived using elliptic theory for the Laplacian on Su,u .
The aim of Chapter 12 is to derive estimates for the derivatives of top order, n+1,

of the transformation function differences ˇ̂f , v̌, γ̌, and at the same time more precise
estimates for the next-to-top-order acoustical differences (l−1) χ̃, (l−1) χ̃ : l = n, and
(m,l)λ̌, (m,l)λ̌ : m + l = n, in terms of the top-order difference energies and fluxes.
Here, all terms of order up to n−1 are ignored and of the terms of order n only those
involving acoustical quantities of order n, namely the quantities being estimated, are
considered. The sharpest estimates for the transformation function differences are
needed to appropriately bound, in Chapter 13, the integral on Ku1 involving (V ;m,l)b̌
which constitutes the 2nd term on the right in (P.187). These estimates require, and
are coupled to, the sharpest estimates for the next-to-top-order acoustical differences.
For this reason Chapter 12 is the longest chapter of the monograph.

In Chapter 13, which contains the derivation of the top-order energy estimates,
we again ignore all but the top-order terms.
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The estimates of Chapters 10–13 require taking the exponents am, bm, cm to
be suitably large. This is in accordance with our preceding heuristic discussion.
Moreover, the estimates of Chapters 12 and 13, in particular the top-order energy
estimates, require that δ does not exceed a positive constant which is independent of
m and n.

In the above, only the treatment of the principal terms is shown, and these are esti-
mated using only the fundamental bootstrap assumptions. The full treatment, which
includes all the lower-order terms, uses the complete set of bootstrap assumptions
stated in Section 14.2. In the same section it is shown how all the lower-order terms
are treated. We return to the treatment of the lower-order terms in Section 14.9 where
it is shown that the lower-order terms are treated in an optimal manner if we choose
all the exponents am equal and all the exponents bm equal:

am = a, bm = b : m = 0, . . . , n, (P.197)

and this optimal choice is taken from that point on. In Section 14.5, L2(Su,u)
estimates for the (m,l) β̌µ : m+ l = n are deduced. In Section 14.6, L2(Su,u) estimates
for the (n−1)th-order acoustical differences are deduced. In Section 14.7, L2(Su,u)
estimates for all nth-order derivatives of the β̌µ are deduced. In Section 14.10
pointwise estimates are deduced and the bootstrap assumptions are recovered as
strict inequalities. This recovery, however, requires a further smallness condition on
δ which now depends on n. The derivation of pointwise estimates from L2(Su,u)
estimates of derivatives intrinsic to the Su,u requires k0 derivatives, where k0 is the
smallest integer greater than (d − 1)/2, so in the case d = 2 we have k0 = 1. Then,
first we set

n = n0 := 2k0 + 3. (P.198)

The smallness condition on δ needed to recover the bootstrap assumptions is then
that corresponding to n = n0. Then given any n > n0, the nonlinear argument having
closed at order n0, the bootstrap assumptions are no longer needed, therefore no new
smallness conditions on δ are required to proceed inductively to orders n0 + 1, . . . , n.
We remark that n0 can be lowered to

n0 = k0 + 1 (P.199)

if our treatment of the lower-order terms, which uses only L∞(Su,u) and L2(Su,u)
estimates, is refined to make full use of the Sobolev inequalities on the Su,u .

In Section 14.11, first we regularize the problem by giving the initial data on Cτ0
as discussed above. We then apply a continuity argument to establish the existence of
a solution to this regularized problem defined on the whole ofRδ,δ,τ0 . This argument
relies on the solution by Majda and Thomann [Ma-Th] of the restricted local shock
continuation problem. Our continuity argument relies on [Ma-Th] at two points:
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first, to construct a solution on Rτ0+ε,τ0+ε,τ0 for some ε > 0, which could be very
small, even much smaller than τ0, and second, at the end of the continuity argument,
starting with a solution defined on a maximal Ru∗,u∗,τ0 , to extend a solution which
has previously been shown to be defined onRu∗,u∗+ε,τ0 to the domain corresponding
to the triangle {

(u, u) : u ∈ [u, u∗ + ε∗], u ∈ [u∗, u∗ + ε∗]
}

for some ε∗ > 0, not exceeding ε. Since the union contains Ru∗+ε∗,u∗+ε∗,τ0 we then
arrive at a contradiction to the maximality of u∗, unless u∗ = δ. This double use of a
local existence theorem is typical of continuity arguments.

After obtaining a solution onRδ,δ,τ0 satisfying the appropriate estimates, we take
τ0 to be any member of a sequence (τ0,m : m = M, M + 1, M + 2, . . .) converging to
0, and pass to the limit in a subsequence to obtain the solution to our problem.

We shall now state an abbreviated version of the theorem, the proof of which is
the aim of the present monograph. We denote by Bd the background spacetime, that
is, (d + 1)-dimensional Minkowski, or Galilei, spacetime according to whether we
are in the relativistic, or the non-relativistic context.

Theorem. In any spatial dimension d ≥ 2, given a prior maximal classical so-
lution there is a δ > 0 and a unique solution of the restricted shock development
problem, defined on Rδ,δ by the triplet (xµ, b, βµ), where xµ : µ = 0, . . . , d and
βµ : µ = 0, . . . , d are smooth functions and b is a smooth mapping of Rδ,δ into
the space of smooth vectorfields on Sd−1. The smooth mapping Rδ,δ → B

d by
(u, u, ϑ) 7→ (xµ(u, u, ϑ) : µ = 0, . . . , d) has negative Jacobian in Rδ,δ except on C0
where the Jacobian vanishes. The boundaries Cδ

0 and Kδ are mapped onto smooth
hypersurfaces in Bd, an acoustically null hypersurface C and the shock hypersurface
respectively, the latter being acoustically timelike except along its past boundary
where it is acoustically null and transverse to the latter. The βµ expressed through
the inverse mapping in terms of rectangular coordinates in Bd are smooth functions
on the image of Rδ,δ in Bd except on C, the image of C0. The new solution βµ so
expressed extends the prior solution β′µ in a C1,1/2 manner across C.

The full statement of the theorem is found at the end of Section 14.1.

It is to be noted from the proof of the theorem that when only finite differen-
tiability of the data is assumed, the solution is shown to exist in a finite and lower
differentiability class. The question then arises of whether the solution possesses
the additional derivatives. Presumably it does, but these satisfy bounds weaker than
those shown to hold for the lower derivatives.

Another open question is the following. If we consider the least upper bound δ of
the set of all δ > 0 such that a smooth solution as above exists onRδ,δ , what happens
at Cδ

δ
, the future boundary of Rδ,δ? Recall that we have not imposed any smallness
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conditions on the initial data. Presumably, if appropriate smallness conditions are
imposed the answer will be that somewhere on Cδ

δ
there is a singularity signaling the

formation of another shock.

We conclude this prologue with a few historical remarks to acknowledge the fact
that the methods of the present monograph have their roots in the past and that at
best we simply develop things a little further in a particular direction. The method of
continuity, using a local existence theorem together with a priori bounds, derived on
the basis of bootstrap assumptions which are recovered in the course of the argument,
originated in the field of ordinary differential equations, in particular the classical
problem of the motion of N point masses under their mutual gravitational attraction
formulated by Newton in his Principia [Ne]. This corresponds to a Hamiltonian
system with Hamiltonian function H = K + V where

K =
N∑
α=1

|pα |2

2Mα

is the kinetic energy, pα, being the momentum of the mass labeled α, a vector in
Euclidean 3-dimensional space E3 at the point xα ∈ E3, the position of the mass α,
and Mα > 0 its mass. Also,

V = −
1
2

∑
α,β

GMαMβ

rαβ

is the potential energy, rαβ being the distance between the masses α and β and G
being Newton’s gravitational constant. The potential energy is defined when the
xα are distinct. If it is regularized by replacing rαβ by

√
r2
αβ + ε

2, the simplest
application of the method of continuity, without bootstrap assumptions, shows that
for any initial condition we have a solution defined for all future time. For the actual
problem the same method gives a basic theorem due to Painlevé (see [Si-Mo]) stating
that for any initial condition either we have a solution defined for all future time,
or the maximal existence interval is [0, t∗), in which case, with ρ = minα,β rαβ the
minimal mutual distance, we have ρ(t) → 0 as t → t∗, so in a sense at time t∗ we have
a collision. To this day it is still not known whether in the 6N-dimensional space
of initial conditions, the subset leading to a collision in the above sense, has zero
measure or positive measure. Incidentally, the Principia is the work where power
series were first introduced.

Another example of the method of continuity in conjunction with a local existence
theorem and a priori bounds is from the field of elliptic partial differential equations.
This is the non-parametric minimal hypersurface problem: given a domain in a
hyperplane in En+1 and a graph over the boundary, find an extension to a graph over
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the interior which is of minimal n-dimensional area. The graph is that of the height
function above the hyperplane. We can assume that the mean value of the height
function on the boundary vanishes. To apply the method of continuity we multiply
the boundary height function, the data of the problem, by t ∈ [0, 1]. Then for t = 0
we have the trivial solution where the graph coincides with the hyperplane domain.
For any t0 ∈ [0, 1] for which we have a regular solution, the implicit function theorem
plays the role of a local existence theorem giving us a solution for t suitably close
to t0. The problem then reduces to that of deriving the appropriate a priori bounds.
Once these have been established, the method of continuity yields a solution for
all t ∈ [0, 1], in particular for t = 1, which is the original problem. The required
a priori bounds were established in two steps. The 1st step was the derivation of
gradient bounds on the height function and was done by Bernstein in his fundamental
works [Be1], [Be2], [Be3]. The 2nd step was the derivation of Hölder estimates for
the gradient. This step was done half a century later, independently by De Giorgi
[DG] and by Nash [Na]. While De Giorgi’s work was in the framework of minimal
surface theory, Nash’s motivation was actually a very different problem, the study
of the evolution of a viscous, heat conducting compressible fluid, which is why he
addressed an analogous problem for parabolic equations and deduced the result for
elliptic equations as a corollary in the time-independent case. The complete result for
the original problem, which is that mean convexity of the boundary of the domain is
both necessary and sufficient for the problem to be solvable for all data, was deduced
later by Jenkins and Serrin [Je-Se].

A last example of the method of continuity, which uses a local existence theorem
and a priori bounds which are derived on the basis of bootstrap assumptions recovered
in the course of the argument, is from the field of hyperbolic partial differential
equations, therefore closer to the topic of the present monograph. This is the work
[Ch-Kl], mentioned above, on the problem of the stability of the Minkowski metric.
In this case the local existence theorem had been established in the basic work of
Fourès-Bruhat [FB]. We then consider the least upper bound t∗ of the set of all
positive times t1 for which we have a solution on the spacetime slab corresponding to
the time interval [0, t1] satisfying the bootstrap assumptions. So if t∗ is finite, while
the solution extends to the spacetime slab corresponding to [0, t∗], the inequalities
corresponding to the bootstrap assumptions are saturated on that slab. The a priori
bounds are then derived through a construction on the slab in questionwhich proceeds
from the future boundary of the slab, which corresponds to the time t∗. This is because
the derivation of the a priori bounds uses approximate symmetries, which a posteriori
are shown to become exact in the limit t∗ → ∞. The a priori bounds show that the
inequalities corresponding to the bootstrap assumptions are in fact not saturated on
the slab in question. Then after another application of the local existence theorem
we arrive at a contradiction to the maximality of t∗.


