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Introduction

0.1 About this book

This book presents the theory of flows, that is, continuous-time dynamical systems
from the topological, smooth, and measurable points of view, with an emphasis on
the theory of (uniformly) hyperbolic dynamics. It includes both an introduction and
an exposition of recent developments in uniformly hyperbolic dynamics, and it can be
used as both a textbook and a reference for students and researchers.

Books on dynamics tend to focus on discrete time, largely leaving it to the reader
(or unaddressed) to transfer those insights to flows, where the origins of the theory
actually lie.1 It is thus often implicit that “things work analogously for flows,” or that
“this is different for flows,” and aside from geodesic flows, many theorems about flows
have had little visibility beyond the research literature. Although much about flows
can indeed be found in the research literature, doing so usually involves a combination
of diligence and consultation with experts. We fill this gap in the expository literature
by giving a deep “flows-first” presentation of dynamical systems and focusing on
continuous-time systems, rather than treating these as afterthoughts or exceptions to
methods and theory developed for discrete-time systems.

We point to a few additional features of interest and to some new results in this
book:

• Chapter 5 is to our knowledge unique in the literature for the extent to which
it implements the Anosov–Katok–Bowen program of developing the dynamical
features of hyperbolic sets for flows from shadowing alone.2

• Section 5.2 and Chapter 8 provide an exceptional range of examples of (uniformly)
hyperbolic flows. To our knowledge, these are more examples than have appeared
in any one other source, in no small part because several of them are quite recent
discoveries.

• Chapter 5 may be the first account to provide a proper, natural definition of a
1This might in some part be because there are simpler examples available in discrete time, and longitudinal

issues do not obscure the main effects of hyperbolicity—however, these longitudinal effects are quite interesting
and indeed define the forefront of some research areas in dynamical systems.

2Specifically, the Shadowing Lemma and the Shadowing Theorem, which include uniqueness, so in terms of
customary usage one should say that shadowing and expansivity produce the insights in Chapter 5.
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(uniformly) hyperbolic flow (Definition 5.3.50) based on the equivalence of the
three popular notions (Theorem 5.3.47 on page 305). Although this equivalence is
not new, it does not seem to be broadly known.

• Section 6.6 gives a stronger theorem about existence of Markov sections than
anywhere else in the literature.

• Other new results are that discreteness of centralizers is a topological fact (The-
orem 9.1.3) and our results on trivial centralizers in Section 9.1.

• In addition to topological and smooth dynamics, we cover the ergodic theory of flows
to a considerable extent, and this as well may be singular in the literature—while
most of what we present can be found somewhere in the (often original research)
literature, the ergodic theory of flows is not common textbook material.

• We also call attention to a proof (by Abdenur and Viana) of absolute continuity of
the invariant foliations in the generality of partially hyperbolic dynamical systems
(Section B.7). This exceeds what we need, but seemed like a desirable addition to
the literature.

• Chapters 8 and 9 include a range of advanced topics mainly from the theory of
Anosov flows (such as their topology and dynamics, as well as rigidity phenomena);
some of these are from recent research and have not previously appeared in any
expository literature.

• At the end of the main chapters there are a number of exercises.

• Thorough indexing facilitates the use of this book as a reference.

Chapters 8 and 9 are no less accessible than the introductory subjects, but here we take
even more opportunities to augment the results we prove with complements whose
proofs we do not include, or to outline proofs rather than giving full proofs. This is
meant to provide a substantial introduction to these subjects with proofs.

As complements to this book the reader can choose from an abundance of books
on ergodic theory and dynamical systems [221, 204, 289, 348, 317, 97, 98, 274, 329,
55, 70, 112, 32, 283, 251, 242, 263, 264, 315, 301, 334, 279, 268, 281, 257, 113, 114,
154, 176, 178, 133, 71]. Here we single out just a brisk introduction in a similar spirit
that focuses on discrete time [174], the rather larger books [213] and [314], and the
more example-driven text [177].

The text is divided into two parts. The first of these develops the general theory
of flows (that is, not assuming hyperbolicity, but with a bias toward those aspects of
the theory that are most pertinent to hyperbolic flows), both in the topological and
measurable realm. The second part is about hyperbolicity and includes an introduction,
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advanced material, and a panorama of current topics. The book is self-contained in
the technical sense, that is, it includes definitions of all dynamics concepts with which
we work, but without any pretense to being comprehensive with introductory material.

We intend this book to be useful for courses, directed study, self-study, and as
a reference. For the latter, the broad and deep coverage combined with thorough
indexing should be helpful. It has been written in a way that it can be adapted to a
course (or independent study) in a number of different ways, depending on the purpose
of the course. Starred chapters and sections are optional. They are not necessarily
“harder,” but the material is not needed for further sections except for an occasional
result that can be used as a black box. Much of this material is hard to find in the
literature except for original sources.

The core chapters are Chapters 1, 5, and 6. If one wants to emphasize ergodic
properties of flows then one could include Chapters 3, 4, and 7, or at least portions
of them. For a more topological or geometric course one would instead include
Chapter 2, and portions from Chapters 8 or 9 (several sections of the latter invoke
some ergodic theory, however). A topics course, especially to an audience with some
prior knowledge, could more extensively cover those last chapters. The core chapters
include exercises.

The appendices contain background material on discrete-time dynamical systems,
some of which is invoked on a few occasions in the main text. Those already familiar
with it can omit it, refer to it as needed, or review it quickly. For those not familiar
with the discrete-time theory, the appendices should provide sufficient background
to understand either the material on ergodic theory in Chapter 3 or the material on
invariant foliations in Chapter 6.

0.2 Continuous and discrete time

To give our selection of flows versus discrete-time systems some context, we describe
a few connections between these. Historically, dynamical systems came about in
the form of flows, such as those that arise from differential equations that describe
a mechanical system. Poincaré is widely regarded as the founder of the discipline
of dynamical systems as we know it, and among the wealth of notions he created is
that of a local section, known also as a Poincaré section. This is natural when using
periodic orbits (trajectories) of a continuous-time dynamical system as anchors to
study other motions in the system. Such a nearby motion will track the periodic motion
for possibly considerable amounts of time, and it is often of less interest whether it
lags or leads a little than how it moves closer to or further from the periodic orbit.
To focus on these transverse phenomena Poincaré considered a small hypersurface
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perpendicular to the periodic orbit on which he could track successive “hits” by a
nearby motion. This defines a map on this disk, called the Poincaré (first) return map;
see Figure 0.2.1. This is an early way in which discrete-time dynamical systems arose.

x

f(x)

Figure 0.2.1. Poincaré section and map. [Reprinted from [213] (© Cambridge University Press, all
rights reserved) with permission.]

Coming from a different direction, billiard systems illustrate how a similar approach
works both naturally and globally. A mathematical billiard system idealizes physical
billiards by ignoring the spin and rolling of the balls: a point particle moves along
straight lines and is reflected in the boundary with incoming angle equal to outgoing
angle. This makes them more like air hockey or a description of light in a mirrored
room, and tables of shapes other than rectangular are of considerable interest. These340 9. Variational aspects of dynamics

Figure 9.2.1. A convex billiard

A calculation of S and Θ is rather unpleasant and, in fact, not necessary to
understand the dynamics. We point to two important features of f .

First S(s0, ·) is a monotone function of θ which increases from s0 to s0 + L

(mod L) when θ changes from 0 to π. In fact,
∂S

∂θ
=

h

sin Θ
, where h is the

length of the chord connecting the boundary points p and P with coordinates
(s, θ) and (S, Θ), respectively. Thus

∂S

∂θ
> 0 (9.2.1)

for 0 < θ < π. (In addition, as shown in Exercise 9.2.4, the limit of
∂S

∂θ
as

θ → 0 or π equals the radius of curvature at p.) This property is called the
twist property and will play an important role in the subsequent discussion.

Figure 9.2.2. The twist property

Figure 0.2.2. Billiard. [Reprinted from [213] (© Cambridge University Press, all rights reserved)
with permission.]

are naturally continuous-time systems, but they come with natural discrete moments
in time: the moments in which collisions occur. Indeed, all information about the
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evolution of such a system is contained in the locations and velocities of all balls at the
moment of a collision, because this determines the motion until the next collision and
the positions and velocities at that subsequent moment. Therefore, the dynamics can
be described as a map on the “collision space” that sends each collision configuration
to the next one. Once again, a discrete-time system describes the dynamics of a
continuous-time system.3

This latter process can be reversed. Given the discrete-time system, one more piece
of information reconstructs the flow entirely: the “return time” from one collision
to the next. We call this assembly of a map and a return-time function a suspension
if the return time is constant (Definition 1.2.8), and a special flow or flow under a
function otherwise (Definition 1.2.11).

We digress to note that some discrete-time dynamical systems arise directly in
scientific problems, such as the population biology of species with nonoverlapping
generations (cicadas, for instance). While the preceding process could be used to
embed this in continuous-time dynamics, this is neither helpful nor meaningful.

There are also aspects of dynamics in which pronounced differences between
flows and discrete-time systems are manifested. On one hand, this occurs when
“longitudinal” effects matter, that is, when time changes make a difference. In the case
of a special flow this amounts to properties that are affected by the choice of “roof” or
return-time function versus those that are not. For instance, the existence of a dense
orbit is unaffected by the choice of roof function, but whether all periodic orbits are
commensurate (their periods are various multiples of one positive number) clearly does
depend on return times. Another notable feature of flows is that they permit surgery
constructions to construct new flows. Accordingly, such a construction establishes
that Anosov flows need not have a dense orbit (Section 8.3), but it is a long-open and
exceedingly difficult problem to decide whether Anosov diffeomorphisms always have
a dense orbit. In fact, it is not even known whether every Anosov diffeomorphism has
a fixed point.

The theory of continuous-time dynamical systems does not directly reduce to that
of discrete-time dynamical systems in the most obvious way: few diffeomorphisms
arise as time-t maps of flows (Definition 1.1.1) since (every time-t map of) every
flow is isotopic to the identity.4 Also, time-t maps of flows have “roots” of all orders,
being the nth iterate of the time-t/n map. But one might say that a full continuous-
time theory yields a full discrete-time theory because every diffeomorphism can
be represented as a Poincaré section for some flow via the suspension/special-flow
construction—provided one has a comprehensive understanding of the dynamics of

3This goes back to Birkhoff; see the discussion leading up to Theorem 5.2.49.
4One point of view from which flows produce a “sparse” set of maps of a given manifold is related to the

mapping-class group. For a manifold M themapping-class group is the set of isotopy-classes of homeomorphisms
(or diffeomorphisms) of M . Flows are contained in the trivial equivalence class of the mapping-class group.
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a section in terms of that of the flow. This does not work in reverse because that
construction is not unique, and many flows generate a given diffeomorphism, with
confounding “longitudinal” effects as above.

More to the point, for the study of hyperbolic flows (Chapter 5) it may be useful
to know all about hyperbolic maps, but that theory does not apply directly to time-1
maps of flows unless the periodic points for the flow are all hyperbolic equilibria.
More specifically, the time-t map of a hyperbolic flow satisfies a weaker condition
called partial hyperbolicity due to the flow direction, in which neither contraction nor
expansion occur. Thus, this “flows-first” book complements the existing literature
emphasizing discrete-time systems.

Once more, beyond the general theory, our emphasis is on uniformly hyperbolic
dynamics. Neither partial nor nonuniform hyperbolicity are themselves subjects in
this book. (The sole exception being the proof of absolute continuity of the invariant
foliations for partially hyperbolic diffeomorphisms: while it is provided here to be
applied to uniformly hyperbolic flows via time-1 maps, the proof covers partially
hyperbolic diffeomorphisms in full generality.)

In short, discrete-time dynamics and continuous-time dynamics have closely
related toolkits and close interactions, but the discrete-time focus of the existing
literature leaves room for an explicit presentation of continuous-time dynamics.5

0.3 Historical sketch

We now outline some of the developments that brought about the theory of hyperbolic
flows.6 There are several intertwined strands of the history of hyperbolic dynamics,
including geodesic flows and statistical mechanics on one hand, and hyperbolic
phenomena ultimately traceable to some application of dynamical systems. Geodesic
flows were studied, for example, by Hadamard, Hedlund, Hopf (primarily either
on surfaces or in the case of constant curvature) and Anosov–Sinai (negatively
curved surfaces and higher-dimensional manifolds). Other hyperbolic phenomena
appear in the work of Poincaré (homoclinic tangles in celestial mechanics [295]),
Perron (differential equations [285]), Cartwright, Littlewood (relaxation oscillations
in radio circuits [87, 88, 243]), Levinson (the van der Pol equation [241]) and Smale
(horseshoes [338, 337]), to name a few.

0.3.a Homoclinic tangles and negative curvature. The advent of complicated
dynamics took place in the context of Newtonian mechanics, according to which

5To be clear, the research literature does not omit the continuous-time theory altogether; it is among books
that this work occupies a unique place.

6An expanded version can be found in [174].
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simple underlying rules governed the evolution of the world in clockwork fashion.
The successes of classical and especially celestial mechanics in the 18th and 19th
centuries were seemingly unlimited and Pierre Simon de Laplace felt justified in
saying (in the opening passage he added to [231, p. 2]),

Nous devons donc envisager l’état présent de l’univers, comme l’effet de son
état antérieur, et comme la cause de celui qui va suivre. Une intelligence qui
pour un instant donné, connaîtrait toutes les forces dont la nature est animée, et
la situation respective des êtres qui la composent, si d’ailleurs elle était assez
vaste pour soumettre ces données à l’analyse, embrasserait dans la même formule
les mouvemens des plus grands corps de l’univers et ceux du plus léger atome:
rien ne serait incertain pour elle, et l’avenir comme le passé, serait présent à
ses yeux.7

The enthusiasm in this passage is understandable and its forceful description of
(theoretical) determinism is a good anchor for an understanding of one of the basic
aspects of dynamical systems. Moreover, the titanic life’s work of Laplace in celestial
mechanics earned him the right to make such bold pronouncements. Another bold
pronouncement of his, that the solar system is stable, came under renewed scrutiny
later in the 19th century, and Henri Poincaré was expected to win a competition
to finally establish this fact. However, Poincaré came upon hyperbolic phenomena
in revising his prize memoir [295] on the three-body problem. He found that a
phenomenon now called homoclinic tangles (Figure 6.5.1) (which he had initially
overlooked) caused great difficulty and necessitated essentially a reversal of the main
thrust of that memoir [34]. He perceived that there is a highly intricate web of invariant
curves and that this situation produces dynamics of unprecedented complexity:

Que l’on cherche à se représenter la figure formée par ces deux courbes et
leurs intersections en nombre infini dont chacune correspond à une solution
doublement asymptotique, ces intersections forment une sorte de treillis, de tissu,
de réseau à mailles infiniment serrées; chacune des deux courbes ne doit jamais
se recouper elle-même, mais elle doit se replier sur elle-même d’une manière trés
complexe pour venir recouper une infinité de fois toutes les mailles du réseau.
On sera frappé de la complexité de cette figure, que je ne cherche même pas à
tracer.8

7We ought then to consider the present state of the universe as the effects of its previous state and as the cause
of that which is to follow. An intelligence that, at a given instant, could comprehend all the forces by which nature
is animated and the respective situation of the beings that make it up, if moreover it were vast enough to submit
these data to analysis, would encompass in the same formula the movements of the greatest bodies of the universe
and those of the lightest atoms. For such an intelligence nothing would be uncertain, and the future, like the past,
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Figure 6.5.2. The homoclinic web

work for the stable manifold we obtain similar oscillations for it and thus the
complete picture is as in Figure 6.5.2.

In particular we obtain a whole mesh of “new” transverse homoclinic points.
By the Inclination Lemma (Proposition 6.2.23) this picture is correct inde-

pendently of area preservation or local smooth linearization. Thus any trans-
verse homoclinic point produces the homoclinic oscillations depicted in Figure
6.5.2.

c. Horseshoes near homoclinic points. We can now establish a connection
between transverse homoclinic points and the existence of horseshoes.

Theorem 6.5.5. Let M be a smooth manifold, U ⊂ M open, f : U → M an
embedding, and p ∈ U a hyperbolic fixed point with a transverse homoclinic
point q. Then in an arbitrarily small neighborhood of p there exists a horseshoe
for some iterate of f . Furthermore the hyperbolic invariant set in this horseshoe
contains an iterate of q.

Proof. We will use the following notation several times. For x ∈ A ⊂ Rn

denote by CC(A, x) the connected component of A containing x. Via adapted
coordinates on a neighborhood O we may assume that the hyperbolic fixed
point is at the origin and that Wu

loc(0) := CC(Wu(0) ∩ O, 0) ⊂ Rk ⊕ {0} and
W s

loc(0) := CC(W s(0) ∩O, 0) ⊂ {0}⊕ Rl where Rn = Rk ⊕ Rl.
Since q′ := f−N0(q) ∈ Int D1 is transverse homoclinic we can take δ > 0

sufficiently small so that if x ∈ δD2 :={δz z ∈ D2} then D1×{x} is transverse
to W s

loc(q
′) := CC(W s(p) ∩ ∆, q′) where ∆ := D1 × δD2. By the Inclination

Lemma, Proposition 6.2.23, we can choose δ > 0 and N1 ∈ N such that if
z ∈ δD2 and Dz :=CC(fN1(D1×{z})∩B, fN1(D1×{z})∩W s

loc(q
′)) then TxDz

is in a horizontal ϵ-cone for x ∈ Dz, and π1Dz = D1.
This shows that ∆1 :=

⋃
z∈δD2

Dz is a full component of ∆∩fN1(∆). We have
in fact shown that in a natural sense this component can be taken arbitrarily
close to horizontal. Together with ∆0 := CC(∆ ∩ fN1(∆), 0) which is obviously
a full component, we thus have verified (1) of Definition 6.5.2. It remains to

Figure 0.3.1. Homoclinic tangles. [Reprinted from [213] (© Cambridge University Press, all rights
reserved) with permission.]

This is often viewed as the moment chaotic dynamics was first noticed. He concluded
that in all likelihood the prize problem could not be solved as posed; which was to
find series expansions for the motions of the bodies in the solar system that converge
uniformly for all time. Indeed, when Birkhoff picked up the study of this situation in
his prize memoir [51] for the Papal Academy of Sciences, he noted that and described
how this implies complicated dynamics [51, p. 184] (Theorem 6.5.2).

0.3.b Geodesic flows. Amajor class of mathematical examples motivating the devel-
opment of hyperbolic dynamics is that of geodesic flows (that is, free-particle motion)
of Riemannian manifolds of negative sectional curvature. Hadamard considered (non-
compact) surfaces in R3 of negative curvature [166] and found, with apparent delight,
that if the unbounded parts are “large” (do not pinch to arbitrarily small diameter
as you go outward along them) then at any point the initial directions of bounded
geodesics form a Cantor set. Since only countably many directions give geodesics
that are periodic or asymptotic to a periodic one, this also proves the existence of
more complicated bounded geodesics. Hadamard was fully aware of the connection to
Cantor’s work and similar sets discovered by Poincaré, and he appreciated the relation
between the complicated dynamics in the two contexts. Hadamard also showed that
each homotopy class (except for the “waists” of cusps) contains a unique geodesic.

would be open to its eyes.
8If one tries to imagine the figure formed by these two curves with an infinite number of intersections, each

corresponding to a doubly asymptotic solution, these intersections form a kind of trellis, a fabric, a network of
infinitely tight mesh; each of the two curves must not cross itself but it must fold on itself in a complicated way to
intersect all of the meshes of the fabric infinitely many times. One will be struck by the complexity of this picture,
which I will not even attempt to draw



0.3 Historical sketch 9

Figure 0.3.2. Negatively curved surface. [Reproduced from Hadamard [166] (© 1898 Elsevier
Masson SAS, all rights reserved) with permission.]

Duhem [123] seized upon this to describe the dynamics of a geodesic flow in terms of
what might now be called deterministic chaos—the system is completely determined
(no randomness), but one would need infinite precision for long-term predictability.

Several authors trace the introduction of symbolic dynamics to the work of
Hadamard on geodesic flows. Birkhoff is among them. Indeed, in his proof of the
Birkhoff–Smale Theorem (see Theorem 6.5.2) symbolic sequences appear (as well
as a picture that resonates with Figure 6.5.2). It appears, however, that only in 1944
did symbol spaces begin to be seen as dynamical systems, rather than as a coding
device [99].

0.3.c Boltzmann’s Fundamental Postulate. Well before Poincaré’s work, James
Clerk Maxwell (1831–1879) and Ludwig Boltzmann (1844–1906) had aimed to give
a rigorous formulation of the kinetic theory of gases and statistical mechanics. A
central ingredient was Boltzmann’s Fundamental Postulate, which says that the time
and space (phase or ensemble) averages of an observable (a function on the phase
space) agree. Apparently because of a misstatement by Maxwell,9 one often ascribes
to him the so-called ergodic hypothesis:

The trajectory of the point representing the state of the system in phase space
passes through every point on the constant-energy hypersurface of the phase
space.

Poincaré and many physicists doubted its validity since no example satisfying it had
been exhibited [296]. Accordingly, in 1912 Paul and Tatiana Ehrenfest [127] proposed
the alternative quasi-ergodic hypothesis:

9“The system, if left to itself in its actual state of motion, will, sooner or later, pass through every phase.”
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Figure 0.3.3. The pseudosphere. [Reprinted from [213] (© Cambridge University Press, all rights
reserved) with permission.]

The trajectory of the point representing the state of the system in phase space is
dense on the constant energy hypersurface of the phase space.

Indeed, within a year proofs (by Rosenthal and Plancherel) appeared that the ergodic
hypothesis fails [291, 316]. (This is obvious today because a trajectory has measure 0
in an energy surface.) These difficulties led to the search for any mechanical systems
with this second property. The motion of a single free particle (that is, the geodesic
flow) in a negatively curved space (beginning with the pseudosphere, Figure 0.3.3)
emerged as the first and for a long time sole class of examples with this property.
Within a decade, the understanding of the problem led to the pertinent contemporary
notion, and this turned out to be probabilistic in nature.10 The 1931 Birkhoff Ergodic
Theorem (Theorem 3.2.15) (“time averages exist a.e.”)11 laid the foundation for
the definition of ergodicity now in use, which is that “any invariant set has zero
measure or full measure.”12 If this is the case, then time averages agree with space
averages—Boltzmann’s Fundamental Postulate. Furthermore, almost every orbit is
dense in the support of the measure.

The 1930s saw a flurry of work in which Artin’s 1924 work on the modular
surface was duly extended to other manifolds of constant negative curvature. For
constant curvature, finite volume, and finitely generated fundamental groups the

10This serves to point out that the earlier quote by Laplace about determinism comes from his “Philosophical
essay on probabilities,” where he goes on to say that we often do not have sufficiently detailed initial data, and
must hence resort to a probabilistic approach. The motion of a molecule of air was a prominent instance he
mentioned in that context.

11This was proved after the von Neumann Ergodic Theorem (Theorem 3.2.4) but published earlier [358]—and
the true foundational paper of ergodic theory is much more likely [265].

12These two combine to give the Strong Law of Large Numbers.
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geodesic flow was shown to be topologically transitive [225, 249], topologically
mixing [191], ergodic [196], and mixing [192, 197]. (In the case of an infinitely
generated fundamental group the geodesic flow may be topologically mixing without
being ergodic [327].) If the curvature is allowed to vary between two negative
constants then finite volume implies topological mixing [155] (see also [158, p. 183]).
But as Hedlund noted in an address delivered before the New York meeting of the
American Mathematical Society on October 27, 1938,

Outstanding problems remain unsolved, a notable one being the problem of
metric transitivity [ergodicity] of the geodesic flow on a closed analytic surface
of variable negative curvature.

It so happens that Eberhard Hopf was just then working on this problem [197]. He
considered compact surfaces of nonconstant (predominantly) negative curvature and
was able to show ergodicity of the Liouville measure (phase volume).

From Hopf’s work there was no progress in the direction of ergodicity of geodesic
flows for almost 30 years. Hopf’s argument had shown roughly that Birkhoff averages
of a continuous function must be constant on almost every leaf of the horocycle
foliation, and, since these foliations are C1, the averages are constant a.e. He
realized that much of the argument was independent of the dimension of the manifold
(indeed, he carried much of the work out in arbitrary dimension), but could not
verify the C1 condition in higher dimension. Dmitri Anosov [10] axiomatized Hopf’s
instability, defining Anosov flows, and he showed that differentiability may indeed fail
in higher dimension, but that the Hopf argument can still be used because the invariant
laminations have an absolute continuity property [10, 12, 303, 23, 70, 31]. This
extension is interesting because, despite the ergodicity paradigm central to statistical
mechanics, Boltzmann’s Fundamental Postulate, there was a dearth of examples of
ergodic Hamiltonian systems. The quintessential model for the Fundamental Postulate,
the gas of hard spheres, resisted sustained attempts to prove ergodicity for half a
century [332, 330, 331].13

The Hopf argument remains a main method for establishing ergodicity of volume
in hyperbolic dynamical systems without an algebraic structure (the alternative tool
being the theory of equilibrium states; see [213, Theorem 20.4.1]).

0.3.d Picking up from Poincaré. Like Hadamard, several mathematicians had
begun to pick up some of Poincaré’s work during his lifetime; Birkhoff did so
soon after Poincaré’s death. He addressed issues that arose from the mathematical
development of mechanics and celestial mechanics such as Poincaré’s Last Geometric
Theorem and the complex dynamics necessitated by homoclinic tangles [49, Section 9].

13Half a century because Sinai convinced physicists that he had solved this problem in 1963 [232].



12 0 Introduction

He was also important in the development of ergodic theory,14 notably by proving the
Pointwise Ergodic Theorem (Theorem 3.2.15).

The work of Cartwright and Littlewood during World War II on relaxation
oscillations in radar circuits [88, 87, 243] consciously built on Poincaré’s work.
Further study of the van der Pol equation by Levinson [241] contained the first
example of a structurally stable diffeomorphism with infinitely many periodic points.
Structural stability had originated in 1937withAndronov and Pontryagin [9] (necessary
and sufficient conditions on singularities and periodic orbits for structural stability
of vector fields on a disk) but began to flourish only 20 years later—thanks in no
small part to Pontryagin’s favorite student, Anosov. Inspired by Peixoto’s work, which
generalized [9] to any orientable closed surface [284], Smale had been after a program
of studying diffeomorphisms with a view to classification [339], and he proved that
Morse–Smale systems (finitely many periodic points with stable and unstable sets
in general position) are structurally stable. The Cartwright–Littlewood example was
brought to his attention by Levinson just as he conjectured that Morse–Smale systems
are the only structurally stable ones [336]. He eventually extracted from Levinson’s
work the horseshoe [338, 337]. Independently, Thom (unpublished) studied hyperbolic
toral automorphisms (Example 1.5.26) and their structural stability.

Smale in turn was in contact with the Russian school, where Anosov systems
(then C- or U-systems) had been shown to be structurally stable, and their ergodic
properties were studied by way of further development of the study of geodesic flows
in negative curvature.

This book focuses on uniformly hyperbolic flows, and even in this realm there are
plenty of new developments. Section 5.2 gives instances of uniformly hyperbolic flows
of which several are quite new, and Chapter 8 includes various further constructions
of such (notably in Sections 8.2 and 8.3). Our presentation of these includes results in
a range of directions that still await publication.

The initial development of the theory of hyperbolic systems in the 1960s was
followed by the founding of the theory of nonuniformly hyperbolic dynamical systems
in the 1970s, mostly by Pesin [273, 286, 32] (during which time the hyperbolic theory
continued its development). One of the high points in the development of smooth
dynamics is the proof by Robbin, Robinson, Mañé, and Hayashi [189] that structural
stability indeed characterizes hyperbolic dynamical systems. For diffeomorphisms
this was achieved in the 1980s, for flows in the 1990s. Starting in the 1980s the field
of geometric and smooth rigidity came into being and is flourishing now (Chapter 9).
At the same time topological and stochastic properties of attractors began to be
better understood with techniques that nowadays blend ideas from hyperbolic and
1-dimensional dynamics. Meanwhile, the theory of partially hyperbolic dynamical

14The Poincaré Recurrence Theorem (Theorem 3.2.1) is proved in Poincaré’s prize memoir [295].
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systems, which goes back to seminal works of Brin and Pesin in the 1970s, has seen
explosive development since the last years of the 20th century [288], which in turn has
entailed renewed interest in the methods of uniformly hyperbolic dynamical systems
and their possible extensions to this new realm.

Of course, insights into complicated dynamics have penetrated well beyond pure
mathematics. In the sciences, these ideas have fundamentally changed the appreciation
of nonlinear behavior and that complex data may arise from simple models; they have
also provided terminology for describing complexity [152]. Celestial mechanics is
the realm where applications have most clearly gone beyond the descriptive; since
the 1980s the design of trajectories for space probes has irreversibly moved beyond
perturbing the 2-body problem in ways that make entirely newmission designs feasible
and economical in astonishing ways [38]. This can also be said to have added to the
very foundation of how evidence is used to build science [351].


