
Chapter 1

Introduction

1.1 Introduction

Quantum Field Theory arose from the need to unify Quantum Mechanics with spe-
cial relativity. It is usually formulated on the flat Minkowski spacetime, on which
classical field equations, such as the Klein–Gordon, Dirac or Maxwell equations are
easily defined. Their quantization rests on the so-called Minkowski vacuum, which
describes a state of the quantum field containing no particles. The Minkowski vacuum
is also fundamental for the perturbative or non-perturbative construction of interact-
ing theories, corresponding to the quantization of non-linear classical field equations.

Quantum Field Theory on Minkowski spacetime relies heavily on its symmetry
under the Poincaré group. This is apparent in the ubiquitous role of plane waves in
the analysis of classical field equations, but more importantly in the characterization
of the Minkowski vacuum as the unique state which is invariant under the Poincaré
group and has some energy positivity property.

Quantum Field Theory on curved spacetimes describes quantum fields in an exter-
nal gravitational field, represented by the Lorentzian metric of the ambient spacetime.
It is used in situations when both the quantum nature of the fields and the effect of
gravitation are important, but the quantum nature of gravity can be neglected in a first
approximation. Its non-relativistic analog would be for example ordinary Quantum
Mechanics, i.e. the Schrödinger equation, in a classical exterior electromagnetic field.

Its most important areas of application are the study of phenomena occurring in
the early universe and in the vicinity of black holes, and its most celebrated result is
the discovery by Hawking that quantum particles are created near the horizon of a
black hole.

The symmetries of the Minkowski spacetime, which play such a fundamental role,
are absent in curved spacetimes, except in some simple situations, like stationary or
static spacetimes. Therefore, the traditional approach to quantum field theory has to
be modified: one has first to perform an algebraic quantization, which for free theo-
ries amounts to introducing an appropriate phase space, which is either a symplectic
or an Euclidean space, in the bosonic or fermionic case. From such a phase space
one can construct CCR or CAR �-algebras, and actually nets of �-algebras, each
associated to a region of spacetime.

The second step consists in singling out, among the many states on these �-
algebras, the physically meaningful ones, which should resemble the Minkowski
vacuum, at least in the vicinity of any point of the spacetime. This leads to the
notion of Hadamard states, which were originally defined by requiring that their
two-point functions have a specific asymptotic expansion near the diagonal, called
the Hadamard expansion.
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A very important progress was made by Radzikowski, [R1, R2], who introduced
the characterization of Hadamard states by the wavefront set of their two-point func-
tions. The wavefront set of a distribution is the natural way to describe its singulari-
ties in the cotangent space, and lies at the basis of microlocal analysis, a fundamental
tool in the analysis of linear and non-linear partial differential equations. Among
its avatars in the physics literature are, for example, the geometrical optics in wave
propagation and the semi-classical limit in Quantum Mechanics.

The introduction of microlocal analysis in quantum field theory on curved space-
times started a period of rapid progress, non only for free (i.e. linear) quantum fields,
but also for the perturbative construction of interacting fields by Brunetti and Freden-
hagen [BF]. For free fields it allowed to use several fundamental results of microlocal
analysis, like Hörmander’s propagation of singularities theorem and the classification
of parametrices for Klein–Gordon operators by Duistermaat and Hörmander.

1.2 Content

The goal of these lecture notes is to give an exposition of microlocal analysis methods
in the study of Quantum Field Theory on curved spacetimes. We will focus on free
fields and the corresponding quasi-free states and more precisely on Klein–Gordon
fields, obtained by quantization of linear Klein–Gordon equations on Lorentzian man-
ifolds, although the case of Dirac fields will be described in Chapter 17.

There exist already several good textbooks or lecture notes on quantum field the-
ory in curved spacetimes. Among them let us mention the book by Bär, Ginoux and
Pfaeffle [BGP], the lecture notes [BFr] and [BDFY], the more recent book by Rejz-
ner [Re], and the survey by Benini, Dappiagi and Hack [BDH]. There exist also more
physics oriented books, like the books by Wald [W2], Fulling [F] and Birrell and
Davies [BD]. Several of these texts contain important developments which are not
described here, like the perturbative approach to interacting theories, or the use of
category theory.

In this lecture notes we focus on advanced methods from microlocal analysis, like
for example pseudodifferential calculus, which turn out to be very useful in the study
and construction of Hadamard states.

Pure mathematicians working in partial differential equations are often deterred
by the traditional formalism of quantum field theory found in physics textbooks, and
by the fact that the construction of interacting theories is, at least for the time being,
restricted to perturbative methods.

We hope that these lecture notes will convince them that quantum field theory
on curved spacetimes is full of interesting and physically important problems, with a
nice interplay between algebraic methods, Lorentzian geometry and microlocal meth-
ods in partial differential equations. On the other hand, mathematical physicists with
a traditional education, which may lack familiarity with more advanced tools of mi-
crolocal analysis, can use this text as an introduction and motivation to the use of
these methods.
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Let us now give a more detailed description of these lecture notes. The reader
may also consult the introduction of each chapter for more information.

For pedagogical reasons, we have chosen to devote Chapters 2 and 3 to a brief out-
line of the traditional approach to quantization of Klein–Gordon fields on Minkowski
spacetime, but the impatient reader can skip them without trouble.

Chapter 4 deals with CCR �-algebras and quasi-free states. A reader with a PDE
background may find the reading of this chapter a bit tedious. Nevertheless, we think
it is worth the effort to get familiar with the notions introduced there.

In Chapter 5 we describe well-known concepts and results concerning Lorentzian
manifolds and Klein–Gordon equations on them. The most important are the notion
of global hyperbolicity, a property of a Lorentzian manifold implying global solv-
ability of the Cauchy problem, and the causal propagator and the various symplectic
spaces associated to it.

In Chapter 6 we discuss quasi-free states for Klein–Gordon fields on curved space-
times, which is a concrete application of the abstract formalism in Chapter 4. Of
interest are the two possible descriptions of a quasi-free state, either by it spacetime
covariances, or by its Cauchy surface covariances, which are both important in prac-
tice. Another useful point is the discussion of conformal transformations.

Chapter 7 is devoted to the microlocal analysis of Klein–Gordon equations. We
collect here various well-known results about wavefront sets, Hörmander’s propaga-
tion of singularities theorem and its related study with Duistermaat of distinguished
parametrices for Klein–Gordon operators, which play a fundamental role in quan-
tized Klein–Gordon fields.

In Chapter 8 we introduce the modern definition of Hadamard states due to Radzi-
kowski and discuss some of its consequences. We explain the equivalence with the
older definition based on Hadamard expansions and the well-known existence result
by Fulling, Narcowich and Wald.

In Chapter 9 we discuss ground states and thermal states, first in an abstract set-
ting, then for Klein–Gordon operators on stationary spacetimes. Ground states share
the symmetries of the background stationary spacetime and are the natural analogs of
the Minkowski vacuum. In particular, they are the simplest examples of Hadamard
states.

Chapter 10 is devoted to an exposition of a global pseudodifferential calculus on
non compact manifolds, the Shubin calculus. This calculus is based on the notion
of manifolds of bounded geometry and is a natural generalization of the standard
uniform calculus on R

n. Its most important properties are the Seeley and Egorov
theorems.

In Chapter 11 we explain the construction of Hadamard states using the pseudo-
differential calculus in Chapter 10. The construction is done, after choosing a Cauchy
surface, by a microlocal splitting of the space of Cauchy data obtained from a global
construction of parametrices for the Cauchy problem. It can be applied to many
spacetimes of physical interest, like the Kerr–Kruskal and Kerr–de Sitter spacetimes.

In Chapter 12 we construct analytic Hadamard states by Wick rotation, a well-
known procedure in Minkowski spacetime. Analytic Hadamard states are defined
on analytic spacetimes, by replacing the usual C1 wavefront set by the analytic



4 1 Introduction

wavefront set, which describes the analytic singularities of distributions. Like the
Minkowski vacuum, they have the important Reeh–Schlieder property. After Wick
rotation, the hyperbolic Klein–Gordon operator becomes an elliptic Laplace operator,
and analytic Hadamard states are constructed using a well-known tool from elliptic
boundary value problems, namely the Calderón projector.

In Chapter 13 we describe the construction of Hadamard states by the character-
istic Cauchy problem. This amounts to replacing the space-like Cauchy surface in
Chapter 11 by a past or future lightcone, choosing its interior as the ambient space-
time. From the trace of solutions on this cone one can introduce a boundary symplec-
tic space, and it turns out that it is quite easy to characterize states on this symplectic
space which generate a Hadamard state in the interior. Its main application is the con-
formal wave equation on spacetimes which are asymptotically flat at past or future
null infinity. We also describe in this chapter the BMS group of asymptotic symme-
tries of these spacetimes, and its relationship with Hadamard states.

In Chapter 14 we discuss Klein–Gordon fields on spacetimes with Killing hori-
zons. Our aim is to explain a phenomenon loosely related with the Hawking radiation,
namely the existence of the Hartle–Hawking–Israel vacuum, on spacetimes having a
stationary Killing horizon. The construction and properties of this state follow from
the Wick rotation method already used in Chapter 12, the Calderón projectors playing
also an important role.

Chapter 15 is devoted to the construction of Hadamard states by scattering theory
methods. We consider spacetimes which are asymptotically static at past or future
time infinity. In this case one can define the in and out vacuum states, which are
states asymptotic to the vacuum state at past or future time infinity. Using the tools
from Chapters 10, 11 we prove that these states are Hadamard states.

In Chapter 16 we discuss the notion of Feynman inverses. It is known that a Klein–
Gordon operator on a globally hyperbolic spacetime admits Feynman parametrices,
which are unique modulo smoothing operators and characterized by the wavefront set
of its distributional kernels. One can ask if one can also define a unique, canonical
true inverse, having the correct wavefront set. We give a positive answer to this
question on spacetimes which are asymptotically Minkowski.

Chapter 17 is devoted to the quantization of the Dirac equation and to the defi-
nition of Hadamard states for Dirac quantum fields. The Dirac equation on a curved
spacetime describes an electron-positron field which is a fermionic field, and the CCR
�-algebra for the Klein–Gordon field has to be replaced by a CAR �-algebra. Apart
from this difference, the theory for fermionic fields is quite parallel to the bosonic
case. We also describe the quantization of the Weyl equation, which originally was
thought to describe massless neutrinos.

1.2.1 Acknowledgments. The results described in Chapters 11, 12, 15, and part
of those in Chapters 10 and 13, originate from common work with Michal Wrochna,
over a period of several years.
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1.3 Notation

We now collect some notation that we will use.
We set h�i D .1C �2/

1
2 for � 2 R.

We write A b B if A is relatively compact in B .

If X; Y are sets and f W X ! Y we write f W X ��! Y if f is bijective. If X; Y
are equipped with topologies, we write f W X ! Y if the map is continuous, and

f W X ��! Y if it is a homeomorphism.

1.3.1 Scale of abstract Sobolev spaces. Let H a real or complex Hilbert
space and A a selfadjoint operator on H. We write A > 0 if A � 0 and KerA D f0g.

If A > 0 and s 2 R, we equip DomA�s with the scalar product .ujv/�s D
.A�sujA�sv/ and the norm kA�suk. We denote byAsH the completion of DomA�s

for this norm, which is a (real or complex) Hilbert space.


