
Preface

The expansion of scientific knowledge and the development of technology are strongly
connected with quantitative analysis of mathematical models. Accuracy and reliabil-
ity are the main properties we wish to know about when considering a mathematical
model. Reliability of Mathematical Models is a fundamental interdisciplinary prob-
lem, which has many aspects and includes subproblems related to different areas
(natural sciences, computational methods, mathematical analysis, etc.). It is not sur-
prising that many experts in the field of mathematical modelling consider the question

How accurate is a mathematical model ‹

as the most difficult to answer.
Natural sciences have developed a number of well-tested principles (e.g., conser-

vation laws) that allow us to reject deliberately wrong models and to develop new
ones, which are consistent with the physical axioms/laws. For example, a model does
not deserve attention if it violates well-established physical laws or if it is in contra-
diction with laws and principles in other sciences. This “physical consistency” leaves
only those models that are relevant from the physical point of view.

The second crucial step in the analysis of a mathematical model is verification
of its mathematical correctness. It is commonly accepted that a mathematical model
is well posed if it is free from mathematical contradictions (which arise, e.g., in the
case of overdetermined systems or problems with inconsistent data) and possesses
a solution that depends continuously on the problem data. As usual, we also need
that the solution is unique within a certain suitable functional class. These questions
together with the regularity theory (which states additional properties of solutions)
are at the core of the modern theory of partial differential equations and there is an
extensive literature devoted to this subject.

However, while being necessary, the above mentioned stages of verification are in
general not sufficient for an unambiguous judgement on the suitability or unsuitabil-
ity of the chosen mathematical model. Only quantitative verification enables us to
make the final decision about the validity and accuracy of a model. Indeed, a model
may be perfectly consistent from the viewpoint of physics and mathematics, but prac-
tically invalid because it produces wrong results. This situation may arise for many
different reasons, for example due to instability of the model or because the model
does not properly account for some essential physical effects (e.g., turbulence). In
many cases, a particular phenomenon or process can be modelled by several different
computer simulation codes based on competing mathematical models (which yield
different results). It is often difficult to say whether the major differences came from
the models or it is generated by computational methods, approximations, and algo-
rithms. A similar question arises when experimental data are compared with results
of computer simulations. If they are different, then we must understand the reason:
is it the model itself or are the errors mainly associated with computations? In fact,
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we cannot answer this question unless the “modelling error” and the “approximation
error” are clearly separated. Notice that the separation is always necessary, even in
those cases where numerical results are in good agreement with experimental data.
This fact does not fully confirm the validity of a model because modelling errors
might be compensated by numerical ones (if they have opposite signs). Effects of
this type are indeed known for some approximation methods.

This book presents a mathematical theory developed for explicit evaluation of
modelling errors. It summarises our experience gained by studying this problem for
about 20 years. Clearly, the theme in the title of the book is extremely wide and we
are forced to confine ourselves to only one class of deterministic models. The main
goal of our analysis is to create a unified approach to quantitative analysis of the accu-
racy of mathematical models associated with variational and saddle point problems
in mathematical physics. Though the book is focused on the modelling errors, we
also discuss approximation errors that arise if a mathematical model is approximated
in order to obtain a numerical solution. For example, in the dimension reduction, ho-
mogenization, and simplification models, the overall error contains two major com-
ponents: a modelling one and an approximation one. This fact leads to estimates of
the difference between a numerical solution of a simplified mathematical model and
the exact solution of the original (complicated) problem and makes the whole analysis
fully practical. The reader will find several numerical examples of this kind. How-
ever, in the book we do not focus on estimates of approximation errors, which are
well known and presented in numerous publications (including several monographs).
Instead, we focus our attention on the errors that arise due to differences in math-
ematical models (“complicated” and “simplified”). The corresponding estimates of
modelling errors contain only known data and solutions of “simplified” models. For
example, the solution of a dimensionally reduced 2D model (or a suitable approxi-
mation of it) is used in order to approximate the solution a full-scale 3D problem and
have a computable and guaranteed bound of the error arising in this process.

Basically, the book deals with stationary models, but the proposed concepts and
methods of analysis can be naturally generalized to many evolutionary models. The
reader will find several comments and references that could help in studying accuracy
of time-dependent models. Moreover, in Chapter 6 we deduce estimates of errors
generated by semi-discrete (incremental) approximations of parabolic-type problems.

As implied by the title, the main subject of the book is modelling error. De-
pending on the context, this term has two close but nontheless different meanings.
First, the modelling error is a quantity (or a collection of quantities) that measures
how a mathematical model differs from a physical phenomenon or process under
consideration. This error is always present because mathematical models describe
physical phenomena with a limited accuracy. Modelling error of this kind can be
evaluated only by a systematic comparison of the data obtained in the respective
physical and mathematical experiments. Here, the main mathematical problem to
be solved is the fully guaranteed estimation of computational errors. We briefly dis-
cuss it at the end of Chapter 2 and refer the reader to the relevant literature. However,
the book is mainly devoted to modelling errors of another kind, namely, those that
arise if we compare solutions of different mathematical models related to one and the
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same object. For example, in dimension reduction models, we compare solutions
of three-dimensional (3D) models of an elastic body with solutions of simplified
two-dimensional (2D) models (which contain errors caused by a dimension reduc-
tion method). Analogously, models arising in homogenization theory contain errors
arising when the original periodic structure is replaced by the corresponding homog-
enized model.

The book consists of six chapters. Chapter 1 contains all preliminary information
subsequently used in different parts of the book. Also, it includes a special section
related to functional inequalities and respective constants.

Chapter 2 gives a fairly complete exposition of the mathematical theory that al-
lows us to estimate the distance to exact solutions of elliptic boundary value prob-
lems. The main attention is paid to the error identities (such as (2.21), (2.26), or
(2.29)) that are further used in error analysis. They are derived for a wide class of
problems related to the variational functional J.v/ D G.ƒv/C F.v/, where G and
F are convex functionals andƒ is a differential operator. This class encompasses the
majority of linear and nonlinear elliptic problems, including variational inequalities.
We show that error identities define error measures, which are natural for the prob-
lem in question and serve as a source of computable two-sided error bounds for these
measures.

We should emphasize that the derivation of error bounds is based on purely func-
tional arguments and do not use special properties of approximations or properties of
the method by which they were constructed. Besides, the error bounds do not contain
analytic quantities, which could be uncontrollably large (or even unbounded) as, e.g.,
H 2 regularity constants of problems with smooth but oscillatory coefficients. This
fact is rather essential for the analysis of modelling errors because we are able to
keep maximal generality of the results and are not confined to considerations of some
specially selected methods and models.

We can apply the estimates to approximations of quite different types obtained
by, e.g., reconstruction of dimensionally reduced models, regularisation, penalisa-
tion, linearisation, etc. General results are illustrated by several examples related to
particular classes of problems. Special attention is paid to linear elliptic problems of
divergence type. At the end of the chapter, we discuss possible applications of the es-
timates to validation of a mathematical model based on analysis of physical data and
direct comparison of them with results of computational experiments. The estimates
could guarantee the accuracy of computational data and confirm that they possess the
same level of accuracy as in physical experiments. In this case, we are indeed able to
draw reliable conclusions on the validity (accuracy) of a mathematical model within
the selected range of physical data (parameters, geometry, other conditions).

Chapter 3 is concerned with dimension reduction models. First, we consider
diffusion-type equations in “thin” domains. Formally this means that one character-
istic size of the domain is much smaller than the other. No other essential restrictions
on the shape and other properties of the domain and coefficients are imposed and we
can analyse different models of lower dimensions based on various representations
of the solution in the “degenerate” direction. Explicitly computable bounds of the
errors are obtained for plate-type domains with plane faces as well as for domains
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with curvilinear faces. Finally, we investigate problems arising in linear elasticity.
Simplification of models is widely used in applied analysis. It has various forms

related to geometry, coefficients, boundary conditions, etc. Modelling errors of this
type appear in defeaturing (simplification) of mathematical relations when compli-
cated coefficients (boundary conditions, geometrical details) are approximated by
simpler ones. In Chapter 4 we study the main question that always arises:

What we loose in the process of simplification?

If one is able to answer it, then we get a certain accuracy level within which a sim-
plified model can be successfully used instead of the original one. We consider two
main cases: simplification of the coefficients of a partial differential equation and
simplification of the underlying geometry.

Boundary value problems with periodic structures arise in various applications.
Chapter 5 is devoted to mathematical models of homogenization theory, which is the
major tool used to quantitatively analyse media with periodic structures (e.g., see
[46, 92, 146] and other publications cited in the chapter). Typically, a homogenized
boundary value problem is a problem with specially constructed smooth coefficients.
It has been proved that the functions constructed by this procedure converge (with
respect to some topology) to the exact solution as the cell size " tends to zero.
Moreover, known a priori error estimates qualify the convergence rate in terms of
": However, a priori convergence estimates give only qualitative information on the
behaviour of the error. In general, they are unable to provide a sharp and reliable
quantitative information on the difference between the exact solutions of the original
problem and the respective homogenized counterpart.

In contrast, the goal in Chapter 5 is to develop error majorants which allow to
evaluate the quality of the model and its discretization in a split and a posteriori way
(but not to develop new advanced homogenization models, which is also an important
topic of intensive research in applied analysis).

To highlight the principal ideas in a most transparent way and to keep this expo-
sition self-contained, we have chosen a relatively simple, first-order homogenization
model and we obtain fully guaranteed and computable bounds of the difference be-
tween the exact solution of a particular elliptic boundary value problem with periodic
coefficients and an abridged problem generated by homogenization. The difference is
measured in terms of the energy norm of the basic problem and also in the combined
primal-dual norm. Using the technique discussed in Chapter 2, we obtain two-sided
bounds of the modelling error, which depend only on the solution of the homogenized
problem, auxiliary problems defined on the periodicity cell, and known data. The es-
timates include only global constants associated with embedding-type inequalities in
the domain and in the periodicity cell. Also, they contain constants in some new regu-
larity type estimates for functions defined in convex domains. Formally, the estimates
are valid for any number of cells and could be used for thin periodic structures as well
as for coarse ones (though in the latter case errors generated by a homogenized model
may be quite large). If the overall number of cells increases, then the respective mod-
elling error decreases. We prove that the error majorant behaves accordingly, i.e., if
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the parameters of the majorant are selected in an appropriate manner, then it decreases
with the same rate as the true error.

Finally, in Chapter 6 we consider various situations where one model is converted
into another one. Usually this is done in order to obtain a more convenient problem
(from the computational point of view) that can be solved by well developed numeri-
cal methods and/or standard computational software. A typical example of this kind
is provided by a wide collection of methods sharing the name penalization. In these
methods, various additional conditions imposed on the exact solutions are accounted
in a weaker sense (as penalties). Penalization is widely used in the analysis of ap-
plied problems (if the “exact” incorporation of some constraints is difficult) and the
question

How different are the solutions of the original and penalized problems?

is the first to be answered. Certainly asymptotic type estimates expressed in terms
of the penalization parameter(s) are known for a rather wide collection of problems.
We present estimates of a different type: they show the distance to the exact solu-
tion in terms of a fully computable functional, which contains only known constants
and quantities that come from the solution of the penalized problem (or its numerical
approximation). The well-known fictitious domains method (see, e.g., [126]) uses
related ideas in order to reduce problems with complicated geometry to problems de-
fined in simple domains (e.g., rectangles) where numerical approximations use sim-
ple meshes. We present the respective estimates and examples that demonstrate the
efficiency of the approach.

Similar ideas of model transformation are used in the regularization method. We
discuss it on the example of the Bingham problem, where the nondifferentiable term
in the energy functional is replaced by a smoothed one. Linearization of nonlinear
models is one of the most common approaches used in both theoretical and com-
putational analysis of mathematical models. We consider applications of our error
estimation method to this case and deduce error estimates in several examples. The
estimates provide quantitative qualification of the linearized model, which enables the
scientist to judge whether it can be successfully used as a replacement of the original
one.
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