
Chapter 1

Introduction

This chapter contains a concise mathematical background. We present
the basic notation and functional inequalities used in different parts of
the book. Since the inequalities are used mainly for quantitative analy-
sis, special attention is paid to computable estimates of the correspond-
ing constants. Also, the chapter includes a literature overview and an
outline of the material exposed in subsequent chapters.

1.1 Basic notation

1.1.1 Domains and operators

Throughout the book we denote domains by the letters � and !. They are assumed
to be open, bounded, and connected sets in the Euclidean space Rd , where d 2 N>0.
Here, N WD f0; 1; : : :g is the set of natural numbers and N>0 WD N n f0g.

By R and R>0 we denote the set of real numbers and the set of positive real
numbers, respectively. In some cases, it is convenient to use the extended set R of
real numbers, which contains �1 and C1. The vector space R

d is endowed with
the cartesian coordinate system, so that a point x has coordinates .x1; x2; : : :; xd /.
B.x; ı/ denotes the open ball of radius ı centered at x 2 R

d .
All the domains are assumed to be bounded and have Lipschitz continuous bound-

ary (denoted @�, @!, or �), which may have several nonintersecting parts (e.g., �1
and �2). By n we denote the outward unit normal to � . The diameter of the set �
and its Lebesgue measure are denoted by diam� and j�j, respectively.

Latin letters (e.g., u, v, w) are typically used to denote scalar-valued functions.
We use special (sans serif or bold) letters p; q; y;� to indicate that the object is a vec-
tor or a vector-valued function. The same rule is used for matrices and tensor-valued
functions (e.g., A, � .x/, �.x/). All the quantities are assumed to be real-valued.

Calligraphic and capital Greek letters (e.g., B, ƒ) are used for the operators and
functionals. L.X; Y / denotes the space of bounded linear operators acting from X
to Y .

The scalar product of vectors is denoted by the dot, i.e.

p � q WD
dX
iD1

piqi ; p; q 2 R
d ;
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where the symbol := means “equals by definition”. Analogously, the product of d �d
matrices (or matrix-valued functions) is denoted by a colon, i.e.,

" W � WD
dX

i;jD1
"ij�ij :

Norms of vectors and matrices are associated with the respective scalar products,
namely,

jqj WD .q � q/1=2; j� j2 WD .� W � /1=2:
Note that j� j is called the Frobenius norm of � . The tensor product of two vectors a
and b is denoted by a ˝ b. It is a matrix with entries faibj g. By M

d�d we denote
the space of real d � d matrices and 1 denotes the unit matrix (if d D 2 we use
a special notationb1). Symmetric matrices form the subspace Md�d

s . For A 2M
d�d
s ,

the smallest and largest eigenvalues are denoted by ��.A/ and �˚.A/, respectively.
The trace and the deviator of � 2M

d�d are defined by the formulas

tr � WD
dX
iD1

�i i and �D WD � � 1

d
tr �1: (1.1)

Since 1 W �D D 0, the above decomposition of � is orthogonal and for any tensor �

we have the identity j� j2 D j�D j2 C 1
d
jtr � j2.

By Œg�� we denote the jump (difference of the left-hand side and right-hand side
limits of the function g) on a line (surface) � .

1.1.2 Spaces of functions

Spaces of functions are denoted by capital letters X; Y; V . By default, all of them are
assumed to be reflexive Banach spaces over the field of real numbers. The respective
topologically dual spaces (which consist of linear continuous functionals) are marked
by an asterisk (e.g., X�; Y �; V �) and the duality pairings are denoted by round or
angle brackets (e.g., .y�; y/ or hv�; vi). If V is a Banach space, then V � can also be
normed by setting

kv�k� WD sup
v2V nf0g

hv�; vi
kvk :

For ˛ 2 Œ1;1�, we denote by L˛ .�/ the usual Lebesgue space of functions with
norm k�k˛;�. If ˛ D 2 then we may also use the simplified notation k � k� and for
the scalar product .�; �/�. L2.�;Rd / is the Hilbert space of vector-valued functions,
whose components are square integrable in �. The analogous space of tensor-valued
functions is denoted L2.�;Md�d /.

By fjgjg! we denote the mean value of g 2 L1.!/ in !, i.e.,

fjgjg! WD 1

j!j
Z
!

gdx; (1.2)
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where j!j is the Lebesgue measure of the set !. For vectors and matrices, the symbol
fj�jg means componentwise averaging.eL2.�/ denotes a subspace of L2.�/ consisting of the functions with zero mean
values and L1.�/ is the space of functions bounded almost everywhere in �, en-
dowed with the supremum norm k � k1;�. If f is a vector-valued function, than

kfk1;! WD ess sup
x2!

jf.x/j ;

where jfj is the Euclidean norm. Whenever a different norm will be used this fact will
be specially mentioned.

For 1 � p � 1, j � j`p denotes the discrete `p-norm in R
d . If p D 2, then we

use j � j instead of j � j`2 . For any p 2 Œ1;1�, the conjugate number p0 is defined by
the relation 1

p
C 1

p0 D 1 (in some formulas the adjoint numbers are marked by stars,
e.g., p?). Analogously, for p 2 Œ2;1�, the number p00 2 Œ1;1� satisfies the relation
2
p
C 1

p00 D 1.

P k.�/ is the space of polynomials of maximal degree k defined in �.
For derivatives, we use the standard notation (e.g., @f

@x1
and @2G

@x1@x2
). In some parts,

we also apply a shortened notation, where the directions of differentiation are shown
in subscripts (e.g., f;1 and G;12). Also, in expressions containing multiindexes, we
use Einstein’s convention on summation over the repeated indices, e.g., uivi (where
i 2 f1; 2; : : :; dg) means the sum

Pd
iD1 uivi .

C k.�/ denotes the space of k-times differentiable scalar-valued functions and
C k0 .�/ is the subspace consisting of the functions with compact support in�. C1

0 .�/
is the space of all infinitely differentiable functions with compact support in �.

In the book, we use standard differential operators: gradient (r), curl, and div.
The divergence of a tensor-valued function � is denoted by Div �. It is defined by the
vector .div 	i /diD1, where 	j is the j -th row of �.

S.�/ denotes the set of solenoidal (divergence-free) vector-valued functions de-

fined in � and
ı
S.�;Rd / denotes the closure of the set of smooth divergence-free

functions vanishing on the boundary with respect to the norm of H 1.�;Rd /.
Standard Sobolev spaces of functions having in � generalized derivatives up to

the order l in Lp.�/ are denotedW l;p.�/ and k �kl;p;� denotes the respective norm.
Similar notation is used for spaces of vector- and tensor-valued functions. Also, for
a sufficiently smooth vector field v W �! R

d we define the norms

krvk21;2;� WD krvk2� C
dX

l;kD1

��v;lk
��2
�
;

kvk22;2;� WD
dX
iD1
kvik22;2;� D kvk2� C krvk21;2;�:

If p D 2, then for Sobolev spaces we use the simplified notation H l .�/. The sub-
space of H 1.�/ consisting of the functions that vanish on the boundary is denoted
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ı
H 1.�/. H�1.�/ is the space dual to

ı
H 1.�/. The space W �1;p .�/ is dual to

ı
W 1;p0

.�/. It is endowed with the standard dual norm k � k�1;p;�.
H.div; �/ denotes the Hilbert space of square-integrable vector-valued functions

with square-integrable divergence, endowed with the scalar product and the norm

.u; v/div WD
Z
�

.u � vC div u div v/dx; kvkdiv WD .v; v/1=2div :

Analogously,H.Div; �/ denotes the Hilbert space of square-integrable tensor-valued
functions with square-integrable divergence and

.�; � /Div WD
Z
�

.� W � C div � � div � /dx; k�kDiv D .� ; � /1=2Div :

Let M 2 L1 �
�;Md�d

s

�
. We define


 .M/ WD ess sup
x2�

 
sup

�2Rd nf0g
kM.x/�k
k�k

!
: (1.3)

For p � 2, we introduce the functionm 2 L1 .�/ by

m WD sup
�2Rd nf0g

kM .�/ �k`p0

k�k`p

and the norm jjj M jjjp00;�D kmkp00;� :

If p D 2 then p0 D 2, p00 D1, and

jjj M jjj1;�D 
 .M/ : (1.4)

We say that a matrix function B 2 L1 �
�;Md�d

s

�
is uniformly positive definite

if B.x/ is positive definite for all x 2 � and

0 < �1� .B/ WDjjj B�1 jjj�11;� � jjj B jjj1;�DW �1̊.B/ <1 (1.5)

and define the spectral condition number

�B WD �1̊.B/=�1� .B/: (1.6)

1.1.3 Convex functionals

A set K � V is called convex if �v1 C .1 � �/v2 2 K for any v1; v2 2 K and
� 2 Œ0; 1�. Conv.K/ denotes a smallest convex set containing K. It is called the
convex hull of K.

Let K be a convex set in a Banach space V . A functional I W K ! R is called
convex if

I.�1v1 C �2v2/ � �1I.v1/C �2I.v2/ (1.7)
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for all v1; v2 2 K and all �1; �2 2 R�0 such that �1 C �2 D 1. It is called strictly
convex if for positive �i , i D 1; 2 the inequality is strict. A functional I is called con-
cave (resp., strictly concave) if the functional �I is convex (resp., strictly convex).

The characteristic functional of the the set K

K.v/ D
�
0; if v 2 K;
C1; if v 62 K; (1.8)

is convex if and only if K is a convex set.
The functional I� W V � ! R defined by the relation

I�.v�/ D sup
v2V
fhv�; vi � I.v/g (1.9)

is called dual (or conjugate) to I (see, e.g., [103, 110, 280]). For example, the func-
tional �

K conjugate to K is a cone in the space V �, called the support functional of
the set K.

If V D R and I is a smooth function, then I� coincides with the Legendre
transform of I .

The second conjugate is defined by the relation

I��.v/ WD sup
v�2V �

fhv�; vi � I�.v�/g:
If V is a reflexive Banach space and I is convex, then I�� coincides with I .

By definition,

hv�; vi � I.v/C I�.v�/: (1.10)

For example, if V D R
d and I.v/ D 1

˛
jvj˛, then I�.v�/ D 1

˛� jv�j˛�
, where ˛

and ˛� are positive real numbers such that 1
˛� C 1

˛
D 1 (these numbers are called

conjugate). In this case (1.10) reads

v � v� � 1

˛
jvj˛ C 1

˛� jv�j˛�

: (1.11)

This inequality is also known as the Young inequality. It also holds for the space
V DM

d�d endowed with the Frobenius matrix norm.
From (1.11) we deduce the inequality

jv1 C v2j2 � .1C ˇ/jv1j2 C 1C ˇ
ˇ
jv2j2; (1.12)

valid for any ˇ > 0 and any pair of vectors v1 and v2 in R
d . Setting �1 D 1C ˇ and

�2 D 1Cˇ
ˇ

, we rewrite this inequality in the somewhat different form

jv1 C v2j2 � �1jv1j2 C �2jv2j2: (1.13)

Clearly (1.11), (1.12), and (1.12) can be extended to spaces of functions. Let V be
a Hilbert space with the norm k � kV . For any v1; v2 2 V , we have

kv1 C v2k2V � �1kv1k2V C �2kv2k2V ; (1.14)

where �1 and �2 are positive numbers such that 1
�1
C 1

�2
D 1.
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For a given v0 2 V , an element v� 2 V � satisfying

hv�; v � v0i C I.v0/ � I.v/ 8 v 2 V (1.15)

is called a subgradient of I at v0. The set of all subgradients of I at v0 forms the
subdifferential @I.v0/. By I 0.v0/ we denote an element v� 2 V � such that the
derivative of I at v0 2 V in the direction w has the form hv�; wi for any w 2 V .
This element is called the Gâteaux derivative of I at v0 (if this notation is used, then
it is assumed that the derivative exists).

The functional DI W V � V � ! R defined by the relation

DI.v; v
�/ WD I.v/C I�.v�/ � hv�; vi;

where I and I� are conjugate functionals, is called a compound functional. These
functionals play an important role in error analysis of nonlinear problems. Through-
out the book, we denote them by the letter D supplied with an index that shows the
functional used to form it. In view of (1.10), DI is nonnegative. Moreover, it vanishes
only if v and v� satisfy the subdifferential (duality) relations (see, e.g., [103])

v 2 @I�.v�/ and v� 2 @I.v/: (1.16)

In general, compound functionals are not convex. However, they possess a certain
property similar to convexity. Let �1 and ��

1 be real numbers in Œ0; 1� and �2 D 1��1,
��
2 D 1 � ��

1 . For any y1; y2 2 Y and y�
1 ; y

�
2 2 Y �, we have

DI
�
�1y1 C �2y2;��

1y
�
1 C ��

2y
�
2

� � �1��
1DI.y1; y

�
1 /C �1��

2DI.y1; y
�
2 /

C �2��
1DI.y2; y

�
1 /C �2��

2DI.y2; y
�
2 /: (1.17)

Indeed,

DI
�
y; ��

1y
�
1 C ��

2y
�
2

� D I.y/C I�.��
1y

�
1 C ��

2y
�
2 / � .��

1y
�
1 C ��

2y
�
2 ; y/

� I.y/C ��
1I�.y�

1 /C ��
2I�.y�

2 / � .��
1y

�
1 C ��

2y
�
2 ; y/

D ��
1DI.y; y

�
1 /C ��

2DI.y; y
�
2 /: (1.18)

Analogously

DI
�
�1y1 C �2y2; y�� � �1DI.y1; y

�/C �2DI.y2; y
�/: (1.19)

Therefore,

DI.�1y1 C �2y2; ��
1y

�
1 C ��

2y
�
2 /

� �1DI.y1; �
�
1y

�
1 C ��

2y
�
2 /C �2DI.y2; �

�
1y

�
1 C ��

2y
�
2 //

and (1.17) follows from (1.18) and (1.19).

Remark 1.1.1. From (1.19) it follows that for any z1; z2 2 Y and y� 2 Y �

DI
�
z1 C z2; y�� � �1DI

�
z1

�1
; y�

�
C �2DI

�
z2

�2
; y�

�
: (1.20)

Similarly, for any z�
1 ; z

�
2 2 Y � and y 2 Y

DI
�
y; z�

1 C z�
2

� � ��
1DI

�
y;
z�
1

��
1

�
C ��

2DI

�
y;
z�
2

��
2

�
: (1.21)
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1.2 Functional inequalities

For functions in Sobolev spaces, there exists a wide collection of so-called embedding
inequalities (see, e.g., S. L. Sobolev [295], O. A. Ladyzhenskaya and N. N. Uraltseva
[168], D. Gilbarg and N. S. Trudinger [120], R. A. Adams and J. J. Fournier [4]).
They are of crucial importance for both qualitative and quantitative analysis of partial
differential equations. For the convenience of the reader we discuss briefly below
some of the results used in subsequent chapters. A systematic overview of sharp
estimates of constants in various functional inequalities is presented in [162].

1.2.1 Hölder type inequalities

The discrete Hölder inequality

ja � bj �
 

dX
iD1
jai j˛

!1=˛  
dX
iD1
jbi j˛�

!1=˛�

(1.22)

holds for a; b 2 R
d . For w 2 L˛.!/ and v 2 L˛�

.!/, ˛ 2 Œ1;C1�, where ! is
a bounded Lipschitz domain, the integral Hölder inequality readsZ

!

w v dx � kwk˛;!kvk˛�;!: (1.23)

Similar inequalities hold for vector- and matrix-valued functions. For instance, if
� 2 L˛.�;Md�d / and � 2 L˛�

.�;Md�d /, thenZ
!

� W � dx � k�k˛;!k�k˛�;! : (1.24)

We will also use the following multiplicative estimate, which is valid for scalar and
vector valued functions.

Let 2 < r < t < C1 and �.r; t/ WD 2.t�r/
r.t�2/ 2 .0; 1/. For w 2 Lt .�/,

kwkr;� � kwk�.r;t/2;� kwk1��.r;t/
t;� : (1.25)

A similar inequality holds for vector-valued functions. Hence for w 2 W 1;t.�/, we
have

krwkr;� � krwk�.r;t/2;� krwk1��.r;t/
t;� : (1.26)

1.2.2 Friedrichs and Poincaré inequalities

Let ` W W 1;p.�/ ! R (p 2 Œ1;C1) be a linear continuous functional satisfying
the condition: if `.w/ D 0 for any constant function w, then w D 0. In this case,
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the original norm of W 1;p.�/ is equivalent to the norm j`.w/j C krwkp;� (this fact
is proved with the help of the compactness method). Since W 1;p.�/ is embedded in
Lp.�/, we conclude that

kwkp;� � C.p;�; d/
�j`.w/j C krwkp;�� 8w 2 W 1;p.�/: (1.27)

Particular forms of (1.27) arise if w belongs to the subspace of W 1;p.�/ defined by
the condition `.w/ D 0. Then, (1.27) reads

kwkp;� � C.p;�; d/krwkp;� 8w 2 fW 1;p.�/ j w 2 ker `g: (1.28)

In our analysis, we need guaranteed and explicitly computable estimates of the con-
stant C.p;�; d/. Henceforth, for simplicity we often use a shorter notation C.�/
for such type constants.

The Poincaré inequality If `.w/ D R
�

w dx, then the set ker ` consists of the func-

tions satisfying the condition fjwjg� D 0 and (1.28) yields

kwkp;� � CP.�/krwkp;� 8w 2 eW 1;p.�/; (1.29)

where eW 1;p.�/ WD fW 1;p.�/ j fjwjg� D 0g:
If p D 2, we obtain the classical inequality established by H. Poincaré [239] (orig-
inally for convex domains with smooth boundaries). For piecewise smooth domains
this inequality (and a similar inequality for functions vanishing on the boundary) was
independently established by V. Steklov [298], who proved that CP D �� 1

2 , where �
is the smallest positive eigenvalue of the problem

��u D �u in �; (1.30)

@u

@n
D 0 on @�: (1.31)

Getting guaranteed and computable bounds of CP (and other constants in various
functional inequalities; see, e.g., S. Mikhlin [203]) is a question of utmost importance
for quantitative analysis of partial differential equations. Sometimes this question can
be answered fairly easily. The very first estimates of CP was actually obtained by H.
Poincaré (CP.�/ � 0:5401 diam� for d D 2, where diam� denotes the diameter
of �). In general, finding the constant is equivalent to finding a lower bound of the
smallest positive eigenvalue associated with some differential problem (as in (1.10)–
(1.11)). Such a problem may be rather difficult. Below we briefly discuss different
results that help to overcome these difficulties.

If � is a convex domain and p D 2, then for any d we have the following easily
computable upper bound of the constant (see L. Payne and H. Weinberger [232]):

CP.�/ � diam�

�
� 0:3183 diam�: (1.32)
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A lower bound of CP.�/ was derived in S. Cheng [82] (for d D 2):

CP.�/ � diam�

2j0;1
� 0:2079 diam�: (1.33)

Here j0;1 � 2:4048 is the smallest positive root of the Bessel function J0.
For isosceles triangles an improvement of the upper bound is due to R. S. Lauge-

sen and B. A. Siudeja [174], who proved that

CP.�/ � diam�

8̂<̂
:

1
j1;1

; if ˛ � �
3
;

minf 1
j1;1

; 1
j0;1

.2.� � ˛/ tan.˛=2//�1=2g; if ˛ 2 .�
3
; �
2
�;

1
j0;1

.2.� � ˛/ tan.˛=2//�1=2; if ˛ 2 .�
2
; �/;

(1.34)

and j1;1 � 3:8317 is the smallest positive root of the Bessel function J1.
G. Acosta and R. Duran [3], have shown that for convex domains the constant in

the L1 Poincaré type inequality satisfies the estimate

inf
c2R kw � ck1;� �

diam�

2
krwk1;�: (1.35)

Estimates of the constant for other p can be found in S.-K. Chua and R. L. Wheeden
[87] (also for convex domains).

The Friedrichs inequality Another important case is when the functional ` is de-

fined by the trace operator, so that the condition `.w/ D 0 defines a subspace
ı
H 1.�/

containing functions vanishing on @� (or a part of @� with positive boundary mea-
sure). Then we arrive at the Friedrichs inequality

kwk� � CF.�/krwk� 8w 2 ı
H 1.�/: (1.36)

Analogous estimates hold for Lp norms p 2 Œ1;C1/ (see, e.g., [120]) provided that
w is a function in W 1;p.�/ vanishing on the boundary.

It is easy to show that the constant in (1.36) is defined by the lowest eigenvalue of
the operator�, which satisfies the Rayleigh relation

1

C 2F .�/
D �� WD inf

w2
ı

H1.�/
w 6D0

krwk2
kwk2 : (1.37)

Therefore, lower estimates of the minimal eigenvalue generate upper estimates of the
Friedrichs constant, and vice versa.

An upper bound of CF.�/ is easy to find by means of monotonicity arguments
if the homogeneous boundary condition is imposed on the whole boundary @�. Let
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� � �C. For any w 2 ı
H 1.�/, we can define bw 2 ı

H 1.�C/ by setting bw D w in �
and bw.x/ D 0 for any x 2 �C n�. Since

kwk�C
� CF.�C/krwk�C

8w 2 ı
H 1.�C/;

we see that CF.�/ � CF.�C/. This simple observation opens a way of deriving
simple upper bounds for the Friedrichs constant by using known constants for some
special domains. For example, if

� � �C WD fx 2 R
d j ai < xi < bi ; bi � ai D li ; i D 1; : : :; dg;

then

CF.�/ � CF.�C/ D 1

�

 
dX
iD1

1

l2i

!�1
: (1.38)

For problems with mixed boundary conditions, the monotonicity approach is not
applicable. However, there exist numerical methods that generate lower bounds of
eigenvalues (see [54, 79, 290, 312] and references therein) and upper bounds of the re-
spective constants. Also, we note that discrete versions of the Friedrichs and Poincaré
inequalities valid for piecewise H 1 functions are established in [67]. They are often
used in error analysis of various nonconforming approximations (e.g., see [216]).

1.2.3 Inequalities for functions with zero mean traces on the boundary

In some cases, the following advanced forms of the Poincaré estimate are useful. Let
� be a measurable part of @� (we assume that the surface measure of � is positive)
and eH 1.�; �/ WD

�
w 2 V WD H 1.�/ j fjwjg� D 1

j�j
Z
�

w ds D 0
�
;

It is clear that the linear functional `�.w/ WD
R
�
w ds satisfies the condition

`�.w/ D 0 ) w D 0 for any w 2 P 0:
Therefore, we have the estimates

kwk2;� � C1.�; �/krwk2;�; 8w 2 eH 1.�; �/; (1.39)

kwk2;� � C2.�; �/krwk2;�; 8w 2 eH 1.�; �/: (1.40)

Exact constants C1.�; �/ and C2.�; �/ are known for some basic domains (rect-
angles, parallelepipeds, right triangles; see [209]). For example, if � is a rectangle
…h1�h2

WD .0; h1/ � .0; h2/ and � D fx1 D 0; x2 2 Œ0; h2�g, then

C1 D maxf2h1; h2g
�

and C2 D
�
�

h2
tanh

�
�h1

h2

���1=2
: (1.41)
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If � is a parallelepiped …h1�h2�h3
WD .0; h1/ � .0; h2/ � .0; h3/ and � is the face

defined by the condition x1 D 0, then

C1 D maxf2h1; h2; h3g
�

and C2 D .� tanh.�h1//
�1=2; (1.42)

where � D �
maxfh2Ih3g .

If � D f0 < x2 < x1 < hg and � D fx1 D h, x2 2 Œ0; h�g (i.e., � is a cathetus
of the right triangle), then C1 D h��1, where � � 2:02876 is the unique root of the

equation �cot � C 1 D 0 in .0; �/ and C2 D
	
�
h

tanh �

�1=2

, where � � 2:3650 is

the unique root of the equation tan � C tanh � D 0 in .0; �/.
A wider class of domains is considered in [190], where estimates ofCP,C1.�; �/,

and C2.�; �/ are deduced for convex polygonal and polyhedral domains. Applica-
tions of these type estimates to a posteriori error estimation for elliptic and parabolic
problems are discussed on [259, 189, 191].

1.2.4 Korn’s inequalities

Korn’s inequalities [157] (first and second) establish the coercivity of bilinear forms
generated by the linearised deformation tensor in continuum mechanics. For a
bounded Lipschitz domain�, the second Korn inequality states thatZ

�

�jwj2Cj".w/j2� dx � CK.�/kwk21;2;� 8w 2 H 1.�;Rd /; (1.43)

where CK.�/ is a constant independent of w and ".w/ WD 1
2

�rwC .rw/T
�
.

The kernel of ".w/ is the space of rigid motions R.�/. Any vector field w 2 R.�/
has the form w D w0 C !0x, where w0 is a vector independent of x 2 R

d , and !0 is
a skew-symmetric tensor with coefficients independent of x, dim R.�/ D d.dC1/

2
.

In general, finding the constant CK.�/ may be a very difficult problem. One
exception is related to the case of homogeneous Dirichlet boundary conditions. For

w 2 ı
H 1.�/, it is easy to show that

krwk � p2k".w/k: (1.44)

The Korn inequalities are well studied. First, we mention the classical work of
Friedrichs [113] and subsequent publications [142, 144, 159, 212, 222, 75, 210] (see
also the monographs [89, 102]). Korn-type inequalities for piecewiseH 1 vector fields
(which are important for certain classes of numerical approximations) were estab-
lished in [68] and some interesting generalizations of the Korn inequality have been
recently presented in [213].

For analysis of models in continuum mechanics we often need certain analogues
of the Friedrichs and Poincaré inequalities valid for vector valued functions and the
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operator ". They are

kwk � CF;"k".w/k 8w 2 V�0
.�/; (1.45)

inf
z2R
kw � zk � CP;"k".w/k 8w 2 H 1.�;Rd /; (1.46)

where V�0
denotes a subspace of H 1.�;Rd / consisting of the functions that vanish

on the boundary of � or on some measurable part �0 with positive surface measure.
The value of CF;" (or CP;") readily follows from the respective Friedrichs (Poincaré)
constant and CK. However, this method is applicable only provided that CK is known.
In Chapter 4, related to dimension reduction models, we suggest a way to bypass this
difficulty for 3D plate-type domains, where a simpler majorant of the constant is
deduced by using separation of variables.

1.2.5 Inf–Sup condition

Well-posedness of mathematical problems in the theory of viscous incompressible
fluids is based on the following result.

Lemma 1.2.1 ([22, 71, 167]). Let� be a bounded domain with Lipschitz continuous
boundary. There exists a constant �� > 0 (which depends only on � ) such that for
any function f 2 L2.�/ satisfying the condition fjf jg� D 0 one can find a vector-

valued function wf 2
ı
H 1.�;Rd / such that

div wf D f in � (1.47)

and
krwf k � ��kf k: (1.48)

This lemma is also called the “stability lemma for the Stokes problem” or “exis-
tence of a bounded inverse to the operator div”. Also, (1.48) can be viewed as a form
of the Nečas inequality [211] (for Lipschitz domains a simple proof of this fact can
be found in [64]).

Thanks to the paper by C. Horgan and L. Payne [144], it is known that for simply
connected domains in d D 2 the constants �� and CK.�/ in (1.43) are joined by the
relation

2�� D CK.�/ D 2.1C L�/; (1.49)

where L� is the constant in the Friedrichs type inequality kuk2 � L�kvk2; which
holds for an analytic function uC iv provided that fjujg� D 0 (see [112]).

Lemma 1.2.1 can be extended to Lq spaces for 1 < q < C1 (see [56, 237, 238,

118]), namely, for f 2 Lq.�/ satisfying fjf jg� D 0, there exists wf 2
ı
W 1;q.�;Rd /

such that

div wf D f and krwf kq � ��;qkf kq : (1.50)
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Another form of Lemma 1.2.1 is known in the literature as the Inf–Sup (or
Ladyzhenskaya–Babuška–Brezzi (LBB)) condition: there exists a positive constant
c� such that

inf
q2eL2.�/
q¤0

sup
w2 ı

H1.�;Rd /
w¤0

R
� q div wdx

kqk krwk � c�: (1.51)

It is easy to show that (1.51) holds with c� D .��/
�1. Indeed, for arbitrary

q 2 eL2.�/, we can find wq such that div wq D q and krwqk � ��kqk, which
implies the required result. The condition (1.51) and its discrete analogues are used
for proving the stability and convergence of numerical methods in various problems
related to the theory of viscous incompressible fluids (e.g., in [70, 71] this condition
was proved and used to justify the convergence of the so-called mixed methods, in
which a boundary-value problem is reduced to a saddle-point problem).

Estimates of �� Estimates of �� for various domains are important for the quan-
titative analysis of incompressible media problems. It is not difficult to see that the
constant c� in (1.51) is nonnegative and cannot exceed 1 (hence �� � 1). More-
over, c� > 0 for any bounded Lipschitz domain. For domains with cusps, c� may be

equal to zero. For a ball in R
d , c� D 1p

d
and for the ellipse x2

a2 C y2

b2 < 1, where

a < b, the constant satisfies the estimate c2
�
� a2

a2Cb2 . Estimates for a number of
other domains can be found in [100, 85, 152]. The latter publication is mainly de-
voted to numerical computation of c� (what may be not an easy task even for simple
domains). A variational principle obtained for �� in [262] can help in constructing
numerical approximations of this constant.

Estimates of c� are also known for Lipschitz domains in R
2, which are star-

shaped with respect to a ball with center x0. Let r be the ray from x0 crossing � at
x. For almost all x 2 � , there exists a unique tangent line, which forms a positive
angle � � �=2 with the ray r . The quantity ‚� WD maxx2� �.x/ generates the first
guaranteed lower bound that can be computed by simple geometrical analysis (see
[144]):

c� � sin
‚�

2
: (1.52)

However, this bound may be rather pessimistic (e.g., for a square ‚� D �
4

and,
therefore, the estimate shows that c� � sin �

8
� 0:0069 and �� � 146).

In [98], a significant improvement of these estimates was obtained for domains
in R

2 which are contained in a disc of radiusR and are star-shaped with respect to
a concentric disc of radius
. Specifically, it was shown that

c� � �p
2

	
1C
p
1 � �2


�1=2
; (1.53)

where � D �
R

.
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For d D 3, explicit bounds of �� are known only for domains with sufficiently
regular boundaries. In [231], it was shown that for star shaped domains in R

3 with
C 1 boundary presented in the form r D r0.�;  /, where .r; �;  / are spherical coor-
dinates. Estimates of the constants �� and c� for exterior domains have been recently
obtained in [230].

Distance to the set of divergence free fields The constant �� arises in estimates

of the distance between a function v 2 ı
H 1.�;Rd / and the space

ı
S.�;Rd / consist-

ing of divergence-free (solenoidal) vector functions vanishing on the boundary if the
distance is measured in terms of the H 1 norm.

In view of Lemma 1.2.1, for f D div v there exists wf 2
ı
H 1.�;Rd / such that

krwf k � ��kf k and div wf D f . Hence the function w0 WD v � wf belongs to

the space
ı
S.�;Rd / and kv � w0k � ��kf k. Therefore,

dist.v;
ı
S.�;Rd // WD kr.v �…ı

S
v/k� � ��k div vk�; (1.54)

where …ı
S
W ı
H 1.�;Rd / ! ı

S.�;Rd / is the orthogonal projector. This estimate

also follows from (1.51) (see [254]).
Estimates of this type are important in the evaluation of the accuracy of numerical

solutions, which satisfy the divergence-free conditions only approximately or in com-
paring solutions of models accounting for the incompressibility condition in different
(weaker) forms (see Chapter 6). For domains with complicated boundaries and holes,
it may be very difficult to find sharp and guaranteed majorants of the constant ��
(especially for 3D domains). Therefore, there arises the question of how to get prac-
tically applicable versions of (1.54) for domains of such a type. To answer it, we use
ideas of domain decomposition. Below we briefly discuss the corresponding method
referring for a more detailed exposition to [258, 260] and some other publications
cited therein.

Assume that� is decomposed into N non-overlapping Lipschitz subdomains�i ,
i D 1; 2; : : :; N and f 2 Lq.�/ (0 < q < 1) satisfy the conditions

fjf jg�i
D 0; i D 1; 2; : : :; N: (1.55)

Using (1.50), we obtain the following result:

Lemma 1.2.2. If f satisfies (1.55), then there exists vf 2
ı
W 1;q.�;Rd / such that

div vf D f and krvf kq�;q �
NX
iD1

�
q
�i ;q
kf kq�i ;q

; (1.56)

where ��i ;q are positive constants associated with subdomains�i .
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To prove this estimate, note that by (1.50) there exists vf; i 2
ı
W 1;q.�i ;R

d / such
that

div vf; i D f in �i and krvf; ik�i ;q � ��i ;qkf k�i ;q:

Define vf .x/ D vf; i .x/ if x 2 �i . Then, vf 2
ı
W 1;q.�;Rd /, div vf D f , and

krvf kq�;q D
nX
iD1
kvf;ikq�i ;q

�
nX
iD1

�
q
�i ;q
kf kq�i ;q

:

Lemma 1.2.2 yields an estimate of the distance from v 2 W 1;q.�;Rd / to the set
of divergence-free fields provided that v satisfy additional conditions

fjdiv vjg�i
D 0 i D 1; 2; : : :; N: (1.57)

Since fjdiv vjg� D 0, the vector-valued function v satisfies
R
�

v � n ds D 0 and, there-
fore, the nonhomogeneous boundary condition on � admits a divergence-free exten-
sion. Thus, by shifting we can reduce this case to the above discussed case with
homogeneous boundary conditions.

Notice that the integral conditions (1.57) do not lead to essential technical difficul-
ties provided thatN is not too large. Indeed, if v does not satisfy the conditions (1.57)
exactly, then it is easy to correct it by changing values of v � n on �ij D �i \�j and
�1 \ �i . The corresponding procedure changes N parameters in the representation
of v such that all the boundary integrals vanish.

Lemma 1.2.3. Let v 2 W 1;q.�;Rd / satisfy (1.57) and div v 2 L	i .�i ;R
d /, where

�i � q, i D 1; 2; : : :; N . Then, there exists v0 2 W 1;q.�;Rd / such that div v0 D 0,
v D v0 on � , and

kr.v � v0/k�;q �
 
NX
iD1

�
q
�i ;q
j�i j1� q

�i k div vkq�i ;	i

!1=q
: (1.58)

Remark 1.2.4. If div v is bounded almost everywhere (which is typical for piecewise
polynomial approximations), then (1.58) yields the estimate

kr.v � v0/kq�;q �
NX
iD1

�
q
�i ;q
j�i j

�
ess sup�i

j div vj�q : (1.59)

1.3 Computable bounds of constants
in functional inequalities

The computation of exact (minimal) constants in Poincaré, Friedrichs, and other func-
tional inequalities may be a very difficult problem, especially for multi-connected do-
mains with complicated boundaries. However, for quantitative analysis it is usually
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enough to have guaranteed and realistic bounds of these constants. Here we discuss
a method (suggested in [257, 261], see also [263]) capable of providing them. In gen-
eral, the main idea of this method is similar to the one that was used for the derivation
of a posteriori estimates of functional type: use the integration by parts formulas
generated by a pair of adjoint differential operators in order to transform certain
unknown integral expressions into computable ones.

As a result, estimates of constants in functional inequalities contain “free func-
tions” (i.e., have the same principal structure as the estimates derived for measuring
distances to the exact solution of a problem).

Any choice of such free functions (and of the supplementary parameters) provides
a guaranteed upper bound, but, certainly, getting a good bound requires a rational
selection (which can be done by the direct minimization of the majorant with respect
to the set of free functions and parameters). Advanced forms of the method are based
on ideas of domain decomposition.

1.3.1 Constant in the Friedrichs inequality

Let � be a bounded domain in R
d whose boundary has two measurable non-inter-

secting parts �1 and �2. Our first goal is to estimate integral quantities associated
with a function

v 2 V0 WD fv 2 W 1;˛.�/ j v D 0 on �1g; ˛ > 1:

For this purpose, we use a vector-valued function � in the set

Q
 WD
n
� 2 L˛�

.�;Rd / j div � D �.x/ 2 L1.�/; � � n D 0 on �2
o
;

where the condition � � n D 0 on �2 is understood in the sense that

`�.w/ WD
Z
�

.rw � � Cw div �/dx D 0 8w 2 V0: (1.60)

Notice that the set Q
 is not empty if the equation �u D � with the boundary
conditions u D g on �1 and ru � n D 0 on �2 has a solution in W 1;˛�

for some g.
In view of (1.60), we have for any v 2 V0ˇ̌̌̌

ˇ̌Z
�

�v dx

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌Z
�

v div � dx

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌Z
�

� � rv dx

ˇ̌̌̌
ˇ̌ � k�k˛�krvk˛ ;

which yields the estimateˇ̌̌̌
ˇ̌Z
�

�v dx

ˇ̌̌̌
ˇ̌ � C.˛�; �;�/krvk˛ ; where C.˛�; �;�/ D inf

�2Q�

k�k˛� :
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If �.x/ � 0, it can be viewed as a weight function. Certainly, the exact value of
C.˛�; �;�/ may be difficult to find. Nevertheless, each � 2 Q
 yields a computable
majorant of this constant, which can be used in quantitative estimates. In particular,
for � D 1 we have an upper bound of the mean value

jfjvjg�j � 1

j�jk�k˛�krvk˛ : (1.61)

Using (1.61) with ˛ D 2 and the identity

kvk2 D kv � fjvjg�k2 C j�jfjvjg2�; (1.62)

we find that

kvk � C�krvk; where C� WD
�
C 2P .�/C j�j�1k�k2

�1=2
: (1.63)

If the Poincaré constant CP (or a majorant of it) is known, then (1.63) easily yields
computable majorants of the Friedrichs constant for problems with mixed boundary
conditions defined on �1 and �2. The condition div � D 1 (contained in the definition
of Q
) can be weakened and replaced by fjdiv �jg� D 1. Indeed, let %.�/ D div ��1.
Since

j�j jfjvjg�j �
ˇ̌̌̌
ˇ̌Z
�

v%.�/ dx

ˇ̌̌̌
ˇ̌C

ˇ̌̌̌
ˇ̌Z
�

� � rvdx

ˇ̌̌̌
ˇ̌ ;

we obtain

jfjvjg�j � 1

j�j .CP.�/k%.�/k C k�k/krvk; (1.64)

kvk � eC �krvk; eC 2� D C 2P .�/C .CP.�/k%.�/k C k�k/2
j�j : (1.65)

1.3.2 Constants in Poincaré-type inequalities

The same method allows us to deduce estimates of the constants in (1.39) and (1.40).
Theorem below presents an upper bound of the constant C1.�; �/.

Theorem 1.3.1. [261] Suppose � has a positive surface measure. Then for any
v 2 eH 1.�; �/,

C 21 .�; �/ � C 2P .�/C
j�j
j�j2 inf

�2Q� .�/;

ˇ>0

E.�; ˇ/; (1.66)

where

E.�; ˇ/ D .1C ˇ/k�k2 C 1C ˇ
ˇ

C 2P .�/

����div � � j�jj�j
����2 ;
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and

Q�.�/ WD f� 2 H.�; div/ j � � n D 1 on �; � � n D 0 on @� n �g:

Proof. Notice that for any � 2 Q�.�/ and v 2 eH 1.�; �/

`�.v/ D
Z
�

v ds D 0 and fjdiv �jg� D j�jj�j :

Therefore,

j�j jfjvjg�j D
ˇ̌̌̌
ˇ̌Z
�

�
.� � rv C

�
div � � j�jj�j

�
v

�
dx

ˇ̌̌̌
ˇ̌ :

Estimating the terms in the right-hand side, we obtain

jfjvjg�j � k�k C CP.�/k div � � fjdiv �jg�k
j�j krvk: (1.67)

Now (1.62) and (1.67) show that for any ˇ > 0,

kvk2 � C 2P .�/krvk2 C
j�j
j�j2E.�; ˇ/krvk

2:

This inequality implies (1.66). �

Remark 1.3.2. If � 2 Q� .�/ is selected such that div � D j�j
j�j , then the estimate

(1.66) has the simplified form

C 21 .�; �/ � C 2P .�/C
j�j
j�j2 inf

�2Q� .�/
k�k2: (1.68)

Different � yield different upper bounds of the constant. The best � in (1.68) is defined
as �� D ru�, where u� solves the auxiliary Neumann problem

�u� D j�jj�j in �; ru� � n D g on @�;

where g D 0 on @� n � and g D 1 on � .

Example 1.3.3. We compare approximate values of the constantC1.�; �/ computed
with the help of the above presented method with the exact ones (if they are known).
Let

� D �h WD .0; h/ � .0; 1/ and � D fx1 D 0; x2 2 Œ0; 1�g:
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By (1.41) we find that C1.�; �/ D maxf2h; 1g 1
�

. Set � D f�1 C x1

h
; 0g. Since

k�k2 D h
3

and j�j
j�j2 D h, we use (1.68) and find that

C 21 .�h; �/ � C 2P .�h/C h2

3
DW C 1.�h; �/ : (1.69)

Here C 2P .�h/ D 1
�2 maxfh2; 1g. The ratio C1.�h;�/

C1.�;�/
changes from 1 to 1:35 if h 2

.0; 0:5�, from 1:35 to 1:04 in the interval Œ0:5; 1�, and it is close to 1:04 for h > 1.

Example 1.3.4. By (1.69) we also obtain estimates for simplices. Let

� D 4h WD Convf.0; 0/; .h; 0/; .0; 1/g and � D fx1 D 0; x2 2 Œ0; 1�g:
In this case, j�j D h

2
. Set � D f�1C x1

h
; x2

h
g. Then,

k�k2 D h

6

�
1C 1

4
C 1

4
C 1

2h2

�
D h

�
1

4
C 1

12h2

�
and

C 21 .�; �/ � C 2P .4h/C
h2

8
C 1

24
DW C 1.4h; �/: (1.70)

In [174], it was shown that CP.4h/ � diam4h

J1
, where J1 D 3:8317 is the first root of

the Bessel function J1. Therefore, we obtain an upper bound of the constant in the
form

C
2

1.4h; �/ D
1C h2
J 21

C 3h2 C 1
24

D �h2 C ı; (1.71)

where � D 1

J2
1

C 1
8
� 0:1931 and ı D 1

J2
1

C 1
24
� 0:1098: If h D 1, then we find that

C 1.4h; �/ D 0:5504 (the exact constant is equal to 0:4929, see [209]). Hence we
see that the above simple choice of � generates quite realistic bounds of the constant.

Similar arguments can be applied to the simplex

4a;b WD Convf.0; 0/; .1; 0/; .a; b/g;
where a 2 Œ0; 1� and � D f0 � x1 � 1; x2 D 0g. In this case,

C 21 .4a;b; �/ �
diam2.4a;b/

J 21
C a2 � aC b2

8
C 1

24
: (1.72)

If a D b D 1
2

, then C1.4 1
2
; 1

2
; �/ � 0:3314 (the exact constant is 0:2465).

Consider the reference simplex in R
3:

41;1;1 WD Convf.0; 0; 0/; .1; 0; 0/; .0; 1; 0/; .0; 0; 1/g
and set � D Convf.0; 0; 0/; .1; 0; 0/; .0; 1; 0/g: In this case, j�j D 1

6
, j�j D 1

2
, and

CP.41;1;1/ �
p
2
�

. We use (1.68) with � D fx1; x2;�1C x3g and find that

C
2

1.41;1;1; �/ �
2

�2
C 4

45
:

Using affine-equivalent coordinate transformations we can deduce guaranteed bounds
of the constants for various nondegenerate simplices in R

2 and R
3 (see [190]).
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1.3.3 Constants in trace-type inequalities

Next we discuss briefly estimates of the constant C2.�; �/, where � is a part of @�
and v 2 eH 1.�; �/ (see Sect. 1.2.3). If the constant C1.�; �/ has been defined, then
an upper bound of C2.�; �/ follows from the integral identityZ

�

v2 ds D
Z
�

.v2 div � C � � r.v2/ dx;

where � is selected so that � � n D 1 on � , � 2 L1.�;Rd /, and div � 2 L1.�/.
We have

kvk2� � k div �k1;�C
2
1 .�; �/krvk2� C k�k1;�kr.v2/k�:

This inequality shows that C2.�; �/ � C 2.�; �/, where

C
2

2.�; �/ WD k div �k1;�C
2
1 .�; �/C 2C1.�; �/k�k1;�: (1.73)

Now we can obtain a computable bound of the constant in the trace estimate. Let
v 2 H 1.�/ and � 2 Q� . Then

j�j jfjvjg� j D
Z
�

.v div � Crv � �/dx � .kvk2� C krvk2�/1=2k�kdiv;�:

Since

kvk2� D kv � fjvjg�k2 C j�jjfjvjg� j2 � C 22 .�; �/krvk2� C kvk21;2;�k�k2div;�;

we conclude that
kvk� � Ctr.�; �/kvk1;2;�;

where C 2tr .�; �/ D C 22 .�; �/C k�k2div;�.

1.3.4 Estimates of constants based on domain decomposition

The estimate (1.66) yields easily computable bounds of the constant for domains with
complicated boundaries if we combine it with domain decomposition. In the simplest
case,� is decomposed into two non-overlapping domains and � � @�\@�1 (typical
examples are depicted in Fig. 1.3.1). We define � such that div � D c 2 R in �1,
� D 0 in�2 and � �n D 0 on @�1n� . If in addition � �n D 1 on � , then � 2 Q�.�/.

Since c D j�j=j�1j and fjdiv �jg� D j�j=j�j, we find that

k div � � j�jj�jk
2
� D

j�j2j�2j
j�jj�1j :
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Figure 1.3.1. Decomposition of � into non-overlapping subdomains.

Then (1.66) yields the estimate

C 21 .�; �/ � C 2P .�/C
 
j�j1=2
j�j k�k�1

C CP.�/
j�2j1=2
j�1j1=2

!2
: (1.74)

If j�2j D 0, then (1.74) reduces to (1.68).
In particular, if �1 D �h and j�j D 1 (see Fig. 1.3.1, left), then using (1.69) we

obtain

C 21 .�; �/ � C 2P .�/C
 
j�j1=2

r
h

3
C CP.�/

j�2j1=2p
h

!2
: (1.75)

If �1 D 4a;b (i.e., b is the height of the triangle) and j�j D 1 (Fig. 1.3.1, right),
then we can take the same � as for the triangle 4a;b . Then j�j

j�j2 k�k2�1
is defined by

the last two terms of (1.72) and we can use (1.74) with C P.�/ D .diam�/
�

.
More complicated (e.g., multi connected domains) can be decomposed into a

larger number of subdomains. Then estimates of C 21 .�; �/ can be deduced by ob-
vious generalisations of the method discussed above. However, using (1.74), (1.75),
and other similar estimates requires a computable bound of the constant CP.�/. This
question is considered next.

Assume that � can be divided into N disjoint subdomains �i such that
� D SN

iD1�i and the constants CP.�i/ associated with the subdomains �i are
known (e.g., if all the subdomains are convex, then we can use the estimate (1.32)).
We wish to find a computable majorant of CP.�/ using these known constants.

Introduce the set of vector-valued functions fy.1/; y.2/; : : : ; y.N�1/g such that

y.i/ 2 H.�; div/; y.i/ � n D 0 on � D @�: (1.76)

Let !i D supp.y.i//, � DSN�1
iD1 !i and

N�1X
jD1
kwk2!i

� C!kwk2� 8w 2 L2.�/; (1.77)
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where C! is a positive constant (it depends on the maximal number of intersections
between different sets !i ). One more requirement is that the matrix B WD fˇij gNi;jD1,
where ˇij WD fjdiv y.i/jg�j

, ˇNj D 1 for i D 1; : : :; N � 1; j D 1; : : :; N , is
nondegenerate, i.e.,

detB 6D 0: (1.78)

Remark 1.3.5. It is not difficult to show that functions y.i/ with the required prop-
erties exist. For example, we can set y.i/ D rui , where ui is the solution of the
problem

�ui D 1 in �i ; �ui D � j�i jj�N j in �N ;

�ui D 0 in � n .�i \�N / ; @ui

@n
D 0 on �:

This Neumann boundary-value problem is solvable for any i D 1; 2; : : :; N � 1 and
the corresponding matrix B has the entries ˇi i D 1, ˇiN D � j�i j

j�N j , i D 1; : : : ; N�1,
ˇij D 0 if i 6D j and j 6D N , i D 1; : : : ; N � 1; j D 1; : : : ; N , ˇNj D 1,
j D 1; : : : ; N . Since

detB D 1C
N�1X
iD1

j�i j
j�N j D

j�j
j�N j > 0;

we see that (1.78) holds. Certainly the above example has mainly a theoretical mean-
ing and in a particular practical example the functions y.i/ can be constructed in
a simpler way without solving auxiliary boundary value problems (see [257]).

Theorem 1.3.6 ( [257]). Let y.i/ satisfy the conditions (1.76)–(1.78) and ˛ 2 R
N�1

be a vector with positive components ˛i . Then, the following estimate holds

C 2P .�/ � max
1�i�N

C 2P .�i /C �˚.D/
 
N�1X
iD1

.1C ˛i /E2i C �.˛; y/;
!

(1.79)

where D D �B�1�T ‡ B�1, ‡ is a diagonal matrix with entries 1=j�i j, i D 1; 2; : : :;
N � 1,

E2i D
NX
jD1

C 2P .�j /k div y.i/ � ˇij k2�j
;

and

�.˛; y/ D C! max
1�i�N

n�
1C ˛�1

i

� ky.i/k2o :
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Corollary 1.3.7. If the functions y.i/ satisfy the condition div y.i/ D const on any�j ,
j D 1; 2; : : : ; N (such vector fields can be constructed with the help of the Raviart–
Thomas approximations [245]), then the majorant has the following simplified form:

C 2P .�/ � max
1�i�N

C 2P .�i /C �˚.D/C!
N�1X
jD1
ky.i/k2:

Finally, we note that estimates of the constants C1.�; �/ and C2.�; �/ have
been used in a posteriori error estimation methods for elliptic and parabolic problems
(see [259, 189, 191]) and in special interpolation methods for polygonal domains (see
[261, 263]). In these publications, the reader will find explicit bounds of the constants
for a wide collection of domains.


