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Introduction

In the following we give a brief outline of the book. For simplicity, we call a 1-
dimensional compact connected complex manifold a curve. Curves are classified by
their genus, and a curve of genus 0 is a projective line P1, and a curve of genus 1 is an
elliptic curve. There exist g linearly independent holomorphic 1-forms on any curve
of genus g. By taking period integrals of them we associate a g-dimensional abelian
variety (a projective g-dimensional complex torus) called the Jacobian variety, and
the Torelli theorem for curves claims that if their Jacobian varieties are isomorphic
then the original curves are isomorphic. There exists a unique non-zero holomorphic
1-form on an elliptic curve up to a constant; on the other hand, any K3 surface has a
unique non-zero holomorphic 2-form up to a constant. In this sense, K3 surfaces can
be seen as a 2-dimensional generalization of elliptic curves. An elliptic curve can be
realized as a cubic curve in a projective plane P2 by Weierstrass’s ℘-function. On the
other hand, a non-singular quartic surface in P3 is an example of a K3 surface. In the
19th century, E. Kummer discovered a K3 surface called the Kummer quartic surface.
A Kummer quartic surface is realized as the quotient surface of the Jacobian of a
curve of genus 2 and has 16 rational double points of type A1. They form a beautiful
microcosm with a line geometry in P3, but also are important in a proof of the Torelli-
type theorem. At the present time a Kummer surface means the minimal model of the
quotient surface of a 2-dimensional complex torus by the (−1)-multiplication. The
set of isomorphism classes of Kummer surfaces has 4-dimensional parameters, but
that of Kummer quartic surfaces has only 3-dimensional parameters. A difference
from the case of curves is the existence of non-projective surfaces. For example, the
existence of K3 surfaces not realized as quartic surfaces results from the following
argument. Let V be the vector space of homogeneous polynomials of degree 4 in 4
variables. By counting monomials we know that V has dimension 35. Each point in
the projective space P(V) defines a quartic surface and the set of isomorphism classes
of quartic surfaces has 34−dim PGL(4,C) = 19 parameters by considering the action
of projective transformations. On the other hand, the isomorphism classes of all K3
surfaces have 20-dimensional parameters by deformation theory. Roughly speaking,
the set of isomorphism classes of K3 surfaces is a 20-dimensional connected complex
manifold in which there are countably many 19-dimensional submanifolds, each of
which is the set of polarized K3 surfaces parametrized by an even positive integer
called the degree of polarization. For example, a non-singular quartic surface has
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a polarization of degree 4. In the case of complex tori, they can be constructed
concretely as the quotient of a complex vector space by a discrete subgroup, but it
is difficult to construct a general projective K3 surface. This causes a difficulty in
studying K3 surfaces uniformly.

Nowwe briefly recall the theory of periods of elliptic curves to understand the case
of K3 surfaces. We denote by Im(z) the imaginary part of a complex number z. To
each τ in the upper half-plane H+ = {τ ∈ C : Im(τ) > 0}, we associate the subgroup
Z+Zτ of the additive groupC generated by {1, τ}. The quotient group E = C/(Z+Zτ)
naturally has the structure of a 1-dimensional compact complex manifold, which is
called an elliptic curve. A holomorphic 1-form dz on C is invariant under translation
and hence induces a nowhere-vanishing holomorphic 1-form ωE on E . We remark
that ωE is unique up to a constant. On the other hand, E is a 2-dimensional real torus
S1 × S1 and hence H1(E,Z) � Z ⊕ Z. Now let us fix a basis {γ1, γ2} of H1(E,Z).
Then the integrals ∫

γ1

ωE,

∫
γ2

ωE

are linearly independent over R and therefore, if necessary by changing γ1 and γ2,
we may assume

Im
(∫
γ1

ωE

/ ∫
γ2

ωE

)
> 0.

Then by defining

τE =

(∫
γ1

ωE

) / (∫
γ2

ωE

)
we have a point τE in H+. Here we remark that τE is independent of the choice of
ωE , that is, the constant multiplication, because we take the ratio of two integrals.
On the other hand, τE depends on the choice of a basis {γ1, γ2}. In fact, for another
basis {γ′1, γ

′
2}, let

τ′E =

( ∫
γ′1

ωE

)/ ( ∫
γ′2

ωE

)
∈ H+

and let
γ′1 = aγ1 + bγ2, γ′2 = cγ1 + dγ2 (a, b, c, d ∈ Z)

be the change of basis; then we have

τ′E =
aτE + b
cτE + d

.

The matrix of a base change is contained in GL(2,Z), and the conditions Im(τE ) >
0 and Im(τ′E ) > 0 imply that

(
a b
c d

)
∈ SL(2,Z). Thus the changing of a basis

corresponds to the action of an element of SL(2,Z) on the upper half-plane H+
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by a linear fractional transformation. After all, the point τE in the quotient space
H+/SL(2,Z) is independent of the choice of holomorphic 1-forms and a basis of
the homology group, and depends only on the isomorphism class of E . We call τE
the period of the elliptic curve E and the upper half-plane the period domain. Thus
the set of isomorphism classes of elliptic curves (called the moduli space of elliptic
curves) bijectively corresponds to H+/SL(2,Z) by sending an elliptic curve to its
period. This is an outline of the period theory of elliptic curves.

Now we return to the case of K3 surfaces. Let X be a K3 surface on which there
exists a unique nowhere-vanishing holomorphic 2-form ωX up to a constant. By
integrating it over the second homology group H2(X,Z),

ωX : H2(X,Z) → C, γ →

∫
γ
ωX,

ωX can be considered an element in H2(X,C), which is the period of the K3 surface
X . The second cohomology group H2(X,Z) is a free abelian group of rank 22, and
together with the cup

〈 , 〉 : H2(X,Z) × H2(X,Z) → H4(X,Z) � Z,

H2(X,Z) has the structure of a lattice. In this book a lattice means a pair of a free
abelian group of finite rank and an integral-valued non-degenerate symmetric bilinear
form on it. The period satisfies

〈ωX,ωX〉 =

∫
X

ωX ∧ ωX = 0, 〈ωX, ω̄X〉 =

∫
X

ωX ∧ ω̄X > 0,

which is called the Riemann condition. The topology of K3 surfaces is unique and
is independent on complex structures. In particular, the isomorphism class of the
lattice H2(X,Z) is independent on X and hence is denoted by L. Now we define

Ω = {ω ∈ P(L ⊗ C) : 〈ω,ω〉 = 0, 〈ω, ω̄〉 > 0},

which is called the period domain of K3 surfaces and corresponds to the upper half-
plane of elliptic curves (here, for simplicity, we use the same symbol ω for a point
in L ⊗ C and its image in P(L ⊗ C)). Since L has rank 22, Ω is a 20-dimensional
complex manifold. An isomorphism

αX : H2(X,Z) → L

of lattices is called a marking for X and the pair (X, αX) a marked K3 surface. To a
marked K3 surface we associate a point αX(ωX) ∈ Ω. By considering the projective
space, this is independent of the choice of holomorphic 2-forms.
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As in the case of elliptic curves, to get the period independent of the choice
of αX we need to take the quotient of Ω by the automorphism group O(L) of L,
but the quotient space Ω/O(L) has no complex structure. Therefore, we define the
period only for marked K3 surfaces. And we can also define the period of a family
of complex analytic surfaces π : X → B which is a smooth deformation of a K3
surface. Here X , B are complex manifolds, the fibers of π are K3 surfaces, and the
fiber over the base point t0 ∈ B is the given K3 surface X . We may assume that B is
a neighborhood or a germ at t0. Moreover, we assume that B is contractible. Then a
marking αX of X induces a marking of every fiber simultaneously, and hence gives
an associated holomorphic map

λ : B→ Ω.

The map λ is called the period map for a family π. We have a map from the set of
isomorphism classes of marked K3 surfaces to Ω by associating their periods, which
is called the period map too. When we discuss the local isomorphism of the period
map we use the former sense, and when discussing the surjectivity of the period map
we use the period map in the latter sense.

Now consider two marked K3 surfaces whose periods coincide. Then the Torelli-
type theorem for K3 surfaces answers the question of when the isomorphism

(αX′)
−1 ◦ αX : H2(X,Z) → H2(X ′,Z) (0.1)

of lattices preserving the classes of their holomorphic 2-forms is induced from an
isomorphism between X and X ′. If an isomorphism is induced from an isomorphism
between complex manifolds, then it preserves the classes of Kähler forms. The
Torelli-type theorem claims that the converse, that is, “an isomorphism of lattices
preserving holomorphic 2-forms is induced from an isomorphism of complex man-
ifolds if and only if it preserves the classes of Kähler forms”, is true. In this book
we assume the fact, proved by Siu, that every K3 surface is Kähler. We remark
that all Kähler forms form a subset of H2(X,R), called the Kähler cone, which is
a fundamental domain for an action of some reflection group on a cone, called the
positive cone of the K3 surface. Preserving Kähler classes is nothing but preserving
the Kähler cone.

Next we discuss the periods of projective K3 surfaces. The pair (X,H) of a
projective K3 surface X and a primitive ample divisor H with H2 = 2d is called a
polarized K3 surface of degree 2d. Here H is called primitive if the quotient module
H2(X,Z)/ZH has no torsion. It follows from lattice theory that a primitive element
of L with norm 2d is unique up to the action of the automorphism group O(L) of L.
Therefore, for a fixed primitive element h ∈ L with 〈h, h〉 = 2d, we can take an
isomorphism αX : H2(X,Z) → L satisfying αX(H) = h. On the other hand, ωX is
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perpendicular to any classes represented by curves. In particular 〈ωX,H〉 = 0. Thus
we define

L2d = {x ∈ L : 〈x, h〉 = 0},

Ω2d = {ω ∈ P(L2d ⊗ C) : 〈ω,ω〉 = 0, 〈ω, ω̄〉 > 0},

and then associate a pair (X,H, αX) to αX(ωX) ∈ Ω2d. Since L2d has rank 21, the
set Ω2d is a 19-dimensional complex manifold. The group Γ2d of isomorphisms of
the lattice L fixing h acts on Ω2d properly discontinuously and hence the quotient
Ω2d/Γ2d has the structure of a complex analytic space. This follows from the fact
that the lattice has the signature (2,19) and hence the associatedΩ2d has the structure
of a bounded symmetric domain (more precisely, a disjoint union of two bounded
symmetric domains). We note that the upper half-plane H+ is the simplest example
of a bounded symmetric domain. We may conclude that we can define the map from
the set of isomorphism classes of polarized K3 surfaces of degree 2d to Ω2d/Γ2d,
called the period map for polarized K3 surfaces, and the Torelli-type theorem for
polarized K3 surfaces claims the injectivity of this map. In this case, if the images
of two polarized K3 surfaces under the period map coincide, then there exists an
isomorphism (0.1) of lattices preserving their periods and ample classes, and in
particular preserving Kähler classes, and hence the proof of the Torelli-type theorem
is reduced to the case of Kähler K3 surfaces.

The proof of the Torelli-type theorem consists of special and peculiar arguments.
First, the local isomorphism of the period map is proved by deformation theory of
complex structures. On the other hand, any Kummer surface is the quotient of a
complex torus, and the complex torus can be reconstructed from the period of the
Kummer surface. Then the Torelli-type theorem for Kummer surfaces follows from
the Torelli theorem for complex tori. Moreover, it is proved that the period points
of Kummer surfaces are dense in the period domain Ω. Finally, one can prove
the Torelli-type theorem for the general case by using a density argument and the
Torelli-type theorem for Kummer surfaces. This is an outline of the proof.

On the other hand, the proof of the surjectivity of the period map depends on
a result of the Calabi conjecture. In the case of projective K3 surfaces there is
another proof that uses degeneration. In this book we give only a brief outline of the
surjectivity of the period map.

As we will mention in some history in Remark 0.1, the Torelli-type theorem for
projective K3 surfaces was established first, then the one for Kähler K3 surfaces,
and it was later that the surjectivity of the period map and finally the Kählerness of
K3 surfaces were proved. In this book we will carry out the argument under the
assumption that any K3 surface is Kähler.
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The above is the main theme of this book, but concrete geometric examples are
only Kummer surfaces because we treat analytic K3 surfaces mainly. Therefore we
will consider Enriques surfaces and plane quartic curves in the final two chapters.
An Enriques surface is a non-rational algebraic surface with vanishing geometric
and arithmetic genus, discovered by F. Enriques, a member of the Italian school
of algebraic geometry. Any Enriques surface is algebraic and its Picard number is
10, and hence it contains many curves, and various constructions by a projective
geometry are known. A K3 surface appears as the universal covering (the covering
degree is 2) of an Enriques surface. In other words, any Enriques surface can be
defined as the quotient surface of a K3 surface by a fixed-point-free automorphism
of order 2. In the case of polarized K3 surfaces we fix a sublattice ZH of rank 1 in
H2(X,Z), and in the case of Enriques surfaces we will fix a sublattice of rank 10,
which might be a typical example of a lattice polarized K3 surface. In this book, as
applications of the Torelli-type theorem for K3 surfaces, we prove the Torelli-type
theorem for Enriques surfaces, and mention the automorphism groups of Enriques
surfaces and various concrete constructions of Enriques surfaces. In Chapter 9 we
consider, as a topic, Reye congruence associated with a line geometry which was
studied in the later half of the 19th century and the beginning of the 20th century.

In Chapter 10 we give an application to non-singular plane quartic curves (quartic
curves in P2). Plane quartics are non-hyperelliptic curves of genus 3 and their
Jacobian varieties are 3-dimensional principally polarized abelian varieties. As a
higher-dimensional analogue of the quotient space H+/SL(2,Z) in the theory of
elliptic curves, the quotient space H3/Sp6(Z) of the 3-dimensional Siegel upper
half-space H3 by the symplectic group Sp6(Z) is the set of isomorphism classes of 3-
dimensional principally polarized abelian varieties (called the moduli space). Since
the Torelli theorem for curves implies the injectivity of the map that associates to a
curve its Jacobian, and both the moduli space of plane quartic curves and H3/Sp6(Z)

have the same dimension 6, the moduli space of plane quartics and H3/Sp6(Z) are
birational. In this book we associate a K3 surface, instead of the Jacobian, with a
plane quartic. To the defining equation f (x, y, z) = 0 of a plane quartic where f is a
homogeneous polynomial of degree 4, we associate the quartic surface in P3 defined
by t4 = f (x, y, z) where t is a new variable. The main topic in the Chapter 10 is,
by using the Torelli-type theorem for K3 surfaces, to show that the moduli space
of plane quartics is birationally isomorphic to the quotient space of a 6-dimensional
complex ball by a discrete group. Moreover, we will discuss del Pezzo surfaces of
degree 2 and a root system of type E7 which are deeply related to plane quartics.

Lattice theory is necessary to discuss the Torelli-type theorem for K3 surfaces.
First of all, we give preliminaries from lattice theory in Chapter 1. In Chapter 2 we
study reflection groups and their fundamental domains. In Chapter 3 we introduce
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the classification of complex analytic surfaces and also the classification of singular
fibers of elliptic surfaces. We give fundamental properties of K3 surfaces and
examples (such as Kummer surfaces) of K3 surfaces in Chapter 4, and the Torelli
theorem for 2-dimensional complex tori is proved. It will be used to prove the
Torelli-type theorem for Kummer surfaces. Chapter 5 is devoted to introducing
bounded symmetric domains of type IV, a higher-dimensional generalization of the
upper half-plane, and then to introducing deformation theory of compact complex
manifolds. This theory will be necessary for discussing the local isomorphicity of
the period map of K3 surfaces. In Chapter 6 we give an explicit formulation of the
Torelli-type theorem and its proof, and in Chapter 7 we explain the surjectivity of the
period map. In Chapter 8 we give a couple of applications of the Torelli-type theorem
to automorphisms of K3 surfaces. In Chapter 9 we introduce periods of Enriques
surfaces, automorphism groups, and concrete examples. Chapter 10 is devoted to
introducing plane quartic curves and related del Pezzo surfaces, and then giving a
description of the moduli space of plane quartics as a complex ball quotient.

For the Torelli-type theorem for K3 surfaces, in addition to the original papers due
to Piatetskii-Shapiro, Shafarevich [PS] and Burns, Rapoport [BR], we refer mostly
to two books: the seminar note in French edited by Beauville [Be3] and the book
by Barth, Hulek, Peters, Van de Ven [BHPV]. The references for algebraic and
complex analytic surfaces are the articles Shafarevich [Sh], Kodaira [Kod1], [Kod2],
Morrow, Kodaira [MK] and Beauville [Be1], and for the Torelli-type theorem for
Enriques surfaces Namikawa [Na2]. The references are not complete and are kept to
a necessaryminimum. Of course this book does not cover all research on K3 surfaces.
Topics not mentioned in this book include moduli spaces of vector bundles on a K3
surface and the Fourier–Mukai transform, Kähler symplectic manifolds which are
higher-dimensional analogues of K3 surfaces, the case of positive characteristic and
application to complex dynamical systems.

Remark 0.1. We summarize some history concerning the Torelli-type theorem for
K3 surfaces. Weil [We] invented the name K3 surface, and thus K3 resulted from
the initials of the three mathematicians Kummer, mentioned above, E. Kähler, and
K. Kodaira, as well as from the mountain K2 located in Karakoram range, the second-
highest mountain in the world (8611m), which was unclimbed at that time (Weil’s
original is “ainsi nommées en l’honneur de Kummer, Kähler, Kodaira et de la belle
montagne K2 au Cashemire”). Weil, together with A. Andreotti, proposed periods
of K3 surfaces. Kodaira extended the classification of algebraic surfaces due to the
Italian school to the case of complex analytic surfaces, and then established the local
Torelli theorem for K3 surfaces (however, in [Kod2] giving the proof of this theorem,
Kodaira mentioned that the local Torelli theorem is due to Andreotti and Weil).
Moreover, Kodaira showed the density of periods of K3 surfaces with the structure
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of elliptic fibration in the period domain of K3 surfaces, and, as its application, he
proved that any K3 surfaces are deformation equivalent and, in particular, all K3
surfaces are diffeomorphic.

Under the situation above, Piatetskii-Shapiro, Shafarevich [PS] had succeeded in
proving the Torelli-type theorem for projective K3 surfaces. This was around 1970.
Right after that, Burns, Rapoport [BR] succeeded in proving the Torelli-type theorem
for Kähler K3 surfaces, not just projective ones. However, it remained open whether
all K3 surfaces are Kähler or not. On the other hand, the surjectivity of the periodmap
was a big remaining problem. In the middle of 1970, Horikawa [Ho1] and Shah [Sha]
proved independently the surjectivity of the period map for polarized K3 surfaces of
degree 2 by using geometric invariant theory. Right after that, Kulikov [Ku1], [Ku2],
a member of the Shafarevich school, proved the surjectivity of the period map for
projective K3 surfaces by classifying degenerations of K3 surfaces (right after that,
Persson, Pinkham [PP] re-proved Kulikov’s theorem). On the other hand, at that time
Horikawa [Ho2] gave a proof of the Torelli-type theorem for Enriques surfaces. The
proof of the surjectivity of the period map for the general case, not just for projective
K3 surfaces, was given by Todorov [To] around 1980. Thus the Kählerness of K3
surfaces remained open and was finally solved by Siu [Si] in the first half of the
1980s.


