
Preface

Many partial differential equations (PDEs) arising in physics can be seen as infinite-
dimensional Hamiltonian systems

@tz D J.rzH/.z/; z 2 E ; (0.0.1)

where the Hamiltonian function H W E ! R is defined on an infinite-dimensional
Hilbert space E of functions z WD z.x/, and J is a nondegenerate antisymmetric
operator.

Some main examples are the nonlinear wave (NLW) equation

ut t ��uC V.x/uC g.x; u/ D 0 ; (0.0.2)

the nonlinear Schrödinger (NLS) equation, the beam equation, the higher-dimensional
membrane equation, the water-waves equations, i.e., the Euler equations of hydrody-
namics describing the evolution of an incompressible irrotational fluid under the ac-
tion of gravity and surface tension, as well as its approximate models like the Korte-
weg de Vries (KdV), Boussinesq, Benjamin–Ono, and Kadomtsev–Petviashvili (KP)
equations, among many others. We refer to [102] for a general introduction to Hamil-
tonian PDEs.

In this monograph we shall adopt a “dynamical systems” point of view regarding
the NLW equation (0.0.2) equipped with periodic boundary conditions x 2 T

d WD
.R=2�Z/d as an infinite-dimensional Hamiltonian system, and we shall prove the
existence of Cantor families of finite-dimensional invariant tori filled by quasiperiodic
solutions of (0.0.2). The first results in this direction were obtained by Bourgain [42].
The search for invariant sets for the flow is an essential change of paradigm in the
study of hyperbolic equations with respect to the more traditional pursuit of the initial
value problem. This perspective has allowed the discovery of many new results,
inspired by finite-dimensional Hamiltonian systems, for Hamiltonian PDEs.

When the space variable x belongs to a compact manifold, say x 2 Œ0; �� with
Dirichlet boundary conditions or x 2 T

d (periodic boundary conditions), the dy-
namics of a Hamiltonian PDE (0.0.1), like (0.0.2), is expected to have a “recurrent”
behavior in time, with many periodic and quasiperiodic solutions, i.e., solutions (de-
fined for all times) of the form

u.t/ D U.!t/ 2 E where T
� 3 ' 7! U.'/ 2 E (0.0.3)

is continuous, 2�-periodic in the angular variables ' WD .'1; : : : ; '�/ and the fre-
quency vector ! 2 R

� is nonresonant, namely ! �` ¤ 0, 8` 2 Z
� nf0g. When � D 1,

the solution u.t/ is periodic in time, with period 2�=!. If U.!t/ is a quasiperiodic
solution then, since the orbit f!tgt2R is dense on T

� , the torus manifold U.T�/ � E
is invariant under the flow of (0.0.1).
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Note that the linear wave equation (0.0.2) with g D 0,

ut t ��uC V.x/u D 0; x 2 T
d ; (0.0.4)

possesses many quasiperiodic solutions. Indeed the self-adjoint operator ��CV.x/
has a completeL2 orthonormal basis of eigenfunctions‰j .x/, j 2 N, with eigenval-
ues �j ! C1,

.��C V.x// ‰j .x/ D �j ‰j .x/; j 2 N : (0.0.5)

Suppose for simplicity that �� C V.x/ > 0, so that the eigenvalues �j D �2j ,
�j > 0, are positive, and all the solutions of (0.0.4) areX

j2N
˛j cos.�j t C �j /‰j .x/; ˛j ; �j 2 R ; (0.0.6)

which, depending on the resonance properties of the linear frequencies�j D �j .V /,
are periodic, quasiperiodic, or almost-periodic in time (i.e., quasiperiodic with in-
finitely many frequencies).

What happens to these solutions under the effect of the nonlinearity g.x; u/ ?
There exist special nonlinear equations for which all the solutions are still peri-

odic, quasiperiodic, or almost-periodic in time, for example the KdV, Benjamin–Ono,
and 1-dimensional defocusing cubic NLS equations. These are completely integrable
PDEs. However, for generic nonlinearities, one expects, in analogy with the cele-
brated Poincaré nonexistence theorem of prime integrals for nearly integrable Hamil-
tonian systems, that this is not the case.

On the other hand, for sufficiently small Hamiltonian perturbations of a nonde-
generate integrable system in T

n � R
n, the classical Kolmogorov–Arnold–Moser

(KAM) theorem proves the persistence of quasiperiodic solutions with Diophantine
frequency vectors ! 2 R

n, i.e., vectors satisfying for some 	 > 0 and 
 � n � 1, the
nonresonance condition

j! � `j � 	

j`j� ; 8` 2 Z
n n f0g : (0.0.7)

Such frequencies form a Cantor set of Rn of positive measure if 
 > n � 1. These
quasiperiodic solutions (which densely fill invariant Lagrangian tori) were constructed
by Kolmogorov [99] and Arnold [2] for analytic systems using an iterative New-
ton scheme, and by Moser [105–107] for differentiable perturbations by introducing
smoothing operators. This scheme then gave rise to abstract Nash–Moser implicit
function theorems like the ones proved by Zehnder [128, 129] (see also [109] and
Section 2.1).

What happens for infinite-dimensional systems like PDEs?

� The central question of KAM theory for PDEs is: do “most” of the periodic,
quasiperiodic, or almost-periodic solutions of an integrable PDE (linear or
nonlinear) persist, just slightly deformed, under the effect of a nonlinear per-
turbation?



vii

KAM theory for PDEs started a bit more than thirty years ago with the pioneering
works of Kuksin [100] and Wayne [126] on the existence of quasiperiodic solutions
for semilinear perturbations of 1-dimensional linear wave and Schrödinger equations
in the interval Œ0; ��. These results are based on an extension of the KAM perturbative
approach developed for the search for lower-dimensional tori in finite-dimensional
systems (see [56, 107, 111]) and relies on the verification of the so-called second-
order Melnikov nonresonance conditions.

Nowadays KAM theory for 1-dimensional PDEs has reached a satisfactory level
of comprehension concerning quasiperiodic solutions, while questions concerning
almost-periodic solutions remain quite open. The known results include bifurcation
of small-amplitude solutions [17,103,113], perturbations of large finite gap solutions
[29, 34, 97, 101, 102], extension to periodic boundary conditions [36, 48, 54, 71], use
of weak nondegeneracy conditions [12], nonlinearities with derivatives [19, 93, 130]
up to quasilinear ones [6–8,65], including water-waves equations [5,32], applications
to quantum harmonic oscillators [10, 11, 82], and a few examples of almost-periodic
solutions [43, 114]. We describe these developments in more detail in Chapter 2.

Also, KAM theory for multidimensional PDEs still contains few results and a sat-
isfactory picture is under construction. If the space dimension d is two or more, major
difficulties are:

1. The eigenvalues �2j of the Schrödinger operator ��C V.x/ in (0.0.5) appear

in huge clusters of increasing size. For example, if V.x/ D 0, and x 2 T
d ,

they are

jkj2 D k21 C � � � C k2d ; k D .k1; : : : ; kd / 2 Z
d :

2. The eigenfunctions‰j .x/may be “not localized” with respect to the exponen-
tials. Roughly speaking, this means that there is no one-to-one correspondence
h W N ! Z

d such that the entries .‰j ; e
ik�x/L2 of the change-of-basis matrix

(between .‰j /j2N and .eik�x/k2Zd ) decay rapidly to zero as jk � h.j /j ! 1.
The first existence result of time-periodic solutions for the NLW equation

ut t ��uCmu D u3 C h:o:t:; x 2 T
d ; d � 2 ;

was proved by Bourgain in [37], by extending the Craig–Wayne approach [54], origi-
nally developed if x 2 T. Further existence of results of periodic solutions have been
proved by Berti and Bolle [22] for merely differentiable nonlinearities, Berti, Bolle,
and Procesi [26] for Zoll manifolds, Gentile and Procesi [76] using Lindstedt series
techniques, and Delort [55] for NLS equations using paradifferential calculus.

The first breakthrough result about the existence of quasiperiodic solutions for
space multidimensional PDEs was proved by Bourgain [39] for analytic Hamiltonian
NLS equations of the form

iut D �uCM�uC "@ NuH.u; Nu/ (0.0.8)

with x 2 T
2, where M� D Op.�k/ is a Fourier multiplier supported on finitely

many sites E � Z
2, i.e., �k D 0, 8k 2 Z

2 n E. The �k , k 2 E, play the role of
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external parameters used to verify suitable nonresonance conditions. Note that the
eigenfunctions of � C M� are the exponentials eik�x and so the above-mentioned
problem 2 is not present.

Later, using subharmonic analysis tools previously developed for quasiperiodic
Anderson localization theory by Bourgain, Goldstein, and Schlag [44], Bourgain was
able in [41, 42] to extend this result in any space dimension d , and also for NLW
equations of the form

ut t ��uCM�uC "F 0.u/ D 0; x 2 T
d ; (0.0.9)

where F.u/ is a polynomial in u. Here F 0.u/ denotes the derivative of F . We
also mention the existence results of quasiperiodic solutions by Bourgain and Wang
[45, 46] for NLS and NLW equations under a random perturbation. The stochastic
case is a priori easier than the deterministic one because it is simpler to verify the
nonresonance conditions with a random variable.

Quasiperiodic solutions u.t; x/ D U.!t; x/ of (0.0.9) with a frequency vector
! 2 R

� , namely solutions U.'; x/, ' 2 T
� , of

.! � @'/2U ��U CM�U C "F 0.U / D 0 ; (0.0.10)

are constructed by a Newton scheme. The main analysis concerns finite-dimensional
restrictions of the quasiperiodic operators obtained by linearizing (0.0.10) at each step
of the Newton iteration,

˘N
�
.! � @'/2 ��CM� C "b.'; x/

�
jHN

; (0.0.11)

where b.'; x/ D F 00.U.'; x// and ˘N denotes the projection on the finite-
dimensional subspace

HN WD
(
h D

X
j.`;k/j�N

h`;ke
i.`�'Ck�x/; ` 2 Z

�; k 2 Z
d

)
:

The matrix that represents (0.0.11) in the exponential basis is a perturbation of the
diagonal matrix Diag.�.! � `/2 C jkj2 C �k/ with off-diagonal entries ".bb`�`0;k�k0/
that decay exponentially to zero as j.` � `0; k � k0/j ! C1, assuming that b is
analytic (or subexponentially, if b is Gevrey). The goal is to prove that such a ma-
trix is invertible for most values of the external parameters, and that its inverse has
an exponential (or Gevrey) off-diagonal decay. It is not difficult to impose lower
bounds for the eigenvalues of the self-adjoint operator (0.0.11) for most values of the
parameters. These first-order Melnikov nonresonance conditions are essentially the
minimal assumptions for proving the persistence of quasiperiodic solutions of (0.0.9),
and provide estimates of the inverse of the operator (0.0.11) in L2-norm. In order to
prove fast off-diagonal decay estimates for the inverse matrix, Bourgain’s technique is



ix

a “multiscale” inductive analysis based on the repeated use of the “resolvent identity.”
An essential ingredient is that the “singular” sites

.`; k/ 2 Z
� � Z

d such that
ˇ̌�.! � `/2 C jkj2 C �k

ˇ̌ � 1 (0.0.12)

are separated into clusters that are sufficiently distant from one another. However,
the information (0.0.12) about just the linear frequencies of (0.0.9) is not sufficient
(unlike for time-periodic solutions [37]) in order to prove that the inverse matrix has
an exponential (or Gevrey) off-diagonal decay. Also, finer nonresonance conditions
at each scale along the induction need to be verified. We describe the multiscale
approach in Section 2.4 and we prove novel multiscale results in Chapter 5.

These techniques have been extended in the recent work of Wang [125] for the
nonlinear Klein–Gordon equation

ut t ��uC uC upC1 D 0; p 2 N; x 2 T
d ;

that, unlike (0.0.9), is parameter independent. A key step is to verify that suitable
nonresonance conditions are fulfilled for most “initial data.” We refer to [124] for
a corresponding result for the NLS equation.

Another stream of important results for multidimensional PDEs were inaugurated
in the breakthrough paper by Eliasson and Kuksin [61] for the NLS equation (0.0.8).
In this paper the authors are able to block diagonalize, and reduce to constant coeffi-
cients, the quasiperiodic Hamiltonian operator obtained at each step of the iteration.
This KAM reducibility approach extends the perturbative theory developed for 1-
dimensional PDEs, by verifying the so-called second-order Melnikov nonresonance
conditions. It allows one to also prove directly the linear stability of the quasiperi-
odic solutions. Other results in this direction have been proved for the 2-dimensional-
cubic NLS equation by Geng, Xu, and You [75], in any space dimension and arbitrary
polynomial nonlinearities by Procesi and Procesi [117, 118], and for beam equations
by Geng and You [72] and Eliasson, Grébert, and Kuksin [58]. Unfortunately, the
second-order Melnikov conditions are violated for NLW equations for which an anal-
ogous reducibility result does not hold. We describe the KAM reducibility approach
with PDE applications in Sections 2.2 and 2.3.

We now present more in detail the goal of this research monograph. The main re-
sult is the existence of small-amplitude time-quasiperiodic solutions for autonomous
NLW equations of the form

ut t ��uC V.x/uC g.x; u/ D 0 ;

x 2 T
d ; g.x; u/ D a.x/u3 CO.u4/ ; (0.0.13)

in any space dimension d � 1, where V.x/ is a smooth multiplicative potential such
that ��CV.x/ > 0, and the nonlinearity is C1. Given a finite set S � N (tangential
sites), we construct quasiperiodic solutions u.!t; x/ with frequency vector .!j /j2S,
of the form

u.!t; x/ D
X
j2S

˛j cos.!j t/‰j .x/C r.!t; x/; !j D �j CO.j˛j/ ; (0.0.14)
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where the remainder r.'; x/ is o.j˛j/-small in some Sobolev space; here ˛ WD
.˛j /j2S. The solutions (0.0.14) are thus a small deformation of linear solutions
(0.0.6), supported on the “tangential” space spanned by the eigenfunctions
.‰j .x//j2S, with a much smaller component in the normal subspace. These quasiperi-
odic solutions of (0.0.13) exist for generic potentials V.x/, coefficients a.x/, and
“most” small values of the amplitudes .˛j /j2S. The precise statement is given in
Theorems 1.2.1 and 1.2.3.

The proof of this result requires various mathematical methods that this book aims
to present in a systematic and self-contained way. A complete outline of the steps of
the proof is presented in Section 2.5. Here we just mention that we shall use a Nash–
Moser iterative scheme in scales of Sobolev spaces for the search for an invariant
torus embedding supporting quasiperiodic solutions, with a frequency vector ! to be
determined. One key step is to establish the existence of an approximate inverse for
the operators obtained by linearizing the NLW equation at any approximate quasiperi-
odic solution u.!t; x/, and to prove that such an approximate inverse satisfies tame
estimates in Sobolev spaces, with loss of derivatives due to the small divisors. These
linearized operators have the form

h 7! .! � @'/2h��hC V.x/hC .@ug/.x; u.!t; x//h

with coefficients depending on x 2 T
d and ' 2 T

jSj. The construction of an approxi-
mate inverse requires several steps. After writing the wave equation as a Hamiltonian
system in infinite dimensions, the first step is to use a symplectic change of variables
to approximately decouple the tangential and normal components of the linearized op-
erator. This is a rather general procedure for autonomous Hamiltonian PDEs, which
reduces the problem to the search for an approximate inverse for a quasiperiodic
Hamiltonian linear operator acting in the subspace normal to the torus (see Chapter 7
and Appendix C).

In order to avoid the difficulty posed by the violation of the second-order Mel-
nikov nonresonance conditions required by a KAM reducibility scheme, we develop
a multiscale inductive approach à la Bourgain, which is particularly delicate since
the eigenfunctions‰j .x/ of ��C V.x/ defined in (0.0.5) are not localized near the
exponentials. In particular, the matrix elements .‰j ; a.x/‰j 0/L2 representing the
multiplication operator with respect to the basis of the eigenfunctions ‰j .x/ do not
decay, in general, as j � j 0 ! 1. In Chapter 5 we provide the complete proof
of the multiscale proposition (which is fully self-contained together with Appendix
B), which we shall use in Chapters 10 and 11. These results extend the multiscale
analysis developed for forced NLW and NLS equations in [23] and [24].

The presence of a multiplicative potential V.x/ in (0.0.13) also makes it difficult
to control the variations of the tangential and normal frequencies due to the effect
of the nonlinearity a.x/u3 C O.u4/ with respect to parameters. In this monograph,
after a careful bifurcation analysis of the quasiperiodic solutions, we are able to use
just the length j!j of the frequency vector as an internal parameter to verify all the
nonresonance conditions along the iteration. The frequency vector is constrained to
a fixed direction, see (1.2.24) and (1.2.25). The measure estimates rely on positivity
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arguments for the variation of parameter dependent families of self-adjoint matrices,
see Section 5.8. These properties (see (9.1.8)) are verified for the linearized operators
obtained along the iteration.

The genericity of the nonresonance and nondegeneracy conditions that we require
on the potential V.x/ and the coefficient a.x/ in the nonlinearity a.x/u3 C O.u4/,
are finally verified in Chapter 13.

The techniques developed above for the NLW equation (0.0.13) could certainly be
used to prove a corresponding result for NLS equations. However we have decided
to focus on the NLW equation because, as explained above, there are fewer results
available in this case. This context seems to better illustrate the advantages of the
present approach in comparison to that of reducibility.

A feature of the monograph is to present the proofs, techniques, and ideas de-
veloped in a self-contained and expanded manner, with the hope to enhance further
developments. We also aim to describe the connections of this result with previ-
ous works in the literature. The techniques developed in this monograph have deep
connections with those used in Anderson-localization theory and we hope that the
detailed presentation in this manuscript of all technical aspects of the proofs will
allow a deeper interchange between the Anderson-localization and KAM for PDEs
scientific communities.
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