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Preface

In the history of von Neumann algebras, originating with the work of F. J. Murray and
J. von Neumann in a series of papers in the late 1930s, the biggest breakthrough is probably
Tomita–Takesaki theory established around 1970. Following that, many important new
developments in the subject were made throughout the 1970s by H. Araki, A. Connes,
U. Haagerup, M. Takesaki and others, which are nowadays classical parts of von Neumann
algebra theory.

Although a few lengthy treatises on the subject have been published, it still seems
difficult for beginners to actually learn the details of the theory from them. In fact, after
finishing my graduate studies in 1975, I myself tried earnestly to study Connes’ papers –
a quite difficult endeavor, since the speed of appearance of Connes’ new papers was much
faster than my speed of studying them.

This book is based on lectures that I delivered during an intensive course in April 2019
at the Department of Mathematical Analysis of the Budapest University of Technology
and Economics in Hungary. The course was designed as a fast-track study of some
important and classical parts of von Neumann algebra theory, from which one can gain
rigorous background knowledge and can consult the original references and/or suitable,
more advanced books for further details. Thus, I selected and lectured on several topics
of von Neumann algebras starting from the classical developments in the 1970s. These
cover the most fundamental topics in the theory, starting from Tomita–Takesaki theory
and extending in other directions concerned with non-commutative integration, which are
most useful in applications to mathematical/quantum physics, quantum information theory
and so on.

In preparing these lecture notes, I tried to make them as self-contained as possible,
assuming only a basic knowledge of functional analysis and measure theory. Except for
a few cases, all results are given with complete proofs, which are detailed enough to be
understood by a beginner. The references, though, are restricted to what is directly needed
within the text, in accordance with the aim and the character of the presentation.

I thought that many people wishing to study von Neumann algebras would find my
lecture notes useful, so I posted them on the arXiv in April 2020. Then I received a
proposal from EMS Press to publish them in the EMS Series of Lectures in Mathematics.
The present book is a corrected and enlarged version of the arXiv preprint [40].

The book consists of 11 chapters and an appendix, each chapter starting with a short
introduction. Chapter 1 is an overview of von Neumann algebra theory. Chapter 2 covers
Tomita–Takesaki theory. Chapters 3, 6, 7 and 8 are concerned with several fundamental
classics – the standard form, Connes’ cocycle derivatives, operator-valued weights, Take-
saki duality and type III structure theory – based on Tomita–Takesaki theory. Chapters 4,
5 and 9–11 treat several topics more or less concerned with non-commutative integration,
such as � -measurable operators, conditional expectations, relative modular operators and
non-commutative Lp-spaces. While von Neumann algebras consist of bounded operators
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on a Hilbert space, in studying them one needs quite often to deal with unbounded closed
(in particular, positive self-adjoint) operators; for instance, the (relative) modular opera-
tors are unbounded. Thus, basic facts on positive self-adjoint operators are summarized
in Appendix A for the reader’s convenience.

In view of the aim of this book, the classification of type III factors and the classification
of AFD (= injective) factors due to Connes are not included, but only surveyed, in
Sections 1.6 and 1.8 of Chapter 1. Since the 1980s, major advances have been made in
von Neumann algebra theory with strong connections to other branches of mathematics;
the most brilliant ones are Jones’ index theory, Voiculescu’s free probability theory and
Popa’s rigidity theory. While these are beyond the scope of this book, brief surveys on
them are given in the final section of Chapter 1 for the interested reader.

Acknowledgments: I would like to thank Milán Mosonyi for inviting me to the aforemen-
tioned intensive course on von Neumann algebras in April 2019. In preparing for the
lectures, I was able to refresh my knowledge of von Neumann algebras, which I studied
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