
Introduction

The motion of flows of fluids containing fine-grained solid inclusions is of great
interest in a wide range of technical applications, ecology, and medicine. Such flows
occur both in nature (for example, transfer of fine solid particles in rivers and seas,
sandstorms, and dust storms) and in practical human activities (hydro and pneumatic
transport, dust collectors, technological processes associated with the production of
medicines, etc.). The motion of such mixtures of fluid with fine solid particles (we
will call them suspensions) can be described using systems of equations of classical
mechanics: the Navier–Stokes equations for the viscous fluid phase and the equations
of solid dynamics for all particles with the condition of sticking a fluid to the sur-
faces of solid particles. This is in some sense a microscopic, mathematical model of
suspension motion. However, this model is unsuitable in a practical sense for either
numerical calculations or qualitative analysis of suspension behavior, due to the large
number of particles, the smallness of their sizes, and the distances between them.
Therefore, the development of a macroscopic model is required that can describe the
motion of the mixture under consideration as a general continuous medium.

The traditional phenomenological approach of continuum mechanics, based on
conservation laws for the mixture, does not lead to a closed system of equations for
an associated effective continuous medium.

More suitable is the so-called microstructural approach, which consists in com-
bining the phenomenological approach with a detailed study of fluid flow in the
neighborhoods of particles, finding the local energy of fluid in these neighborhoods,
and subsequent spatial homogenization ([1, 16]). This approach goes back to A. Ein-
stein, who obtained, for the first time, a formula for the effective viscosity of a
critically diluted suspension of solid spherical particles in a viscous incompressible
fluid (see [48]). The approach was further developed in subsequent works in hydro-
mechanics ([6,10–13,27–29,32–34,52,58,61,65,104,107]). The main achievements
were related to diluted (i.e., weakly concentrated) suspensions, where the sizes of par-
ticles are much less than the distances between nearest particles. On the other hand,
there are almost no results for concentrated mixtures that describe their motion. This,
according to the renowned specialist in fluid mechanics J. Batchelor, presents a true
challenge to researchers ([12]).

Concerning the available works proposing various mathematical models of sus-
pension motion with applications to the calculation of specific flows, we notice that
these models were obtained at a physical level of rigor, often without sufficient justi-
fication and indication of areas of applicability. Moreover, these models often contra-
dict each other. Therefore, the problem of constructing macroscopic models of motion
of mixtures of fluids and fine solid particles is still very real now. A natural approach
to this problem, which corresponds to a certain mathematical level of rigor, is to
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study the asymptotic behavior of suspension and to describe the possible asymptotic
mode of its motion as the diameters of the particles and the distances between nearest
particles tend to zero. Such modes can be described using homogenized (averaged)
differential equations, which can then be considered as macroscopic models of sus-
pension motion. This approach is very typical in the homogenization theory of partial
differential equations – a branch of mathematics that has been intensively developed
over the last 50 years ([15, 37, 66, 93–95, 106, 110]).

This monograph is devoted to the rigorous mathematical analysis of problems
that arise in the study of microscopic models of the motion of suspensions from the
standpoint of homogenization theory. The original model of motion is a system of
equations consisting of the Navier–Stokes equations for a viscous incompressible
fluid and the equations of rigid body dynamics, describing the collision-free motion
of solid particles in a fluid with a stick boundary condition. Our main goal is to derive
closed homogenized equations, describing the asymptotic behavior of solutions of
this system when the diameters of the particles and the distances between neighboring
particles tend to zero.

The problems of the homogenization of the Navier–Stokes equations have been
considered in many mathematical works ([3–5, 23, 42, 51, 63, 67, 86, 87, 92, 98, 111,
116]). In particular, the asymptotic behavior of the solution of the Dirichlet problem,
which describes the flow of a viscous incompressible fluid through a fixed porous
medium, has been studied in detail. Homogenized equations obtained in this way
model the Darcy or Brinkman laws for fluid flow in porous media, depending on the
degree of porosity of the medium ([5,30,31,62]). The homogenization of the Navier–
Stokes equations in random perforated domains was described in [14, 43–46, 56].
However, it is impossible to directly apply these results to the homogenization of the
original microscopic model of suspension dynamics since the positions of the parti-
cles, and consequently the perforated domain occupied by the fluid, change over time
and are not known in advance. To cope with this problem, we use a natural approach
consisting in dividing the problem into two simpler parts. This technique can be called
a method of fixing particles: it is assumed that at any moment in time, the positions
of the particles are known, and a special boundary-value problem for the stationary
part of the Navier–Stokes equations (the model problem) is to be considered in the
complementary domain.

It turns out that two qualitatively different asymptotic modes of suspension mo-
tion can be realized, depending on the parameters of the suspension: frozen particles
mode and filtering particles mode. They correspond to two different types of the
model problem. As the first part of the method of fixing particles, the asymptotic
behavior of the solution of the corresponding model problem is studied. As a result,
the homogenized system is derived, which actually describes the perturbation of
the fluid by particles. Note that this system is not closed because it includes some
unknown characteristics of the set of perturbing particles, namely the density of the
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mesoscopic viscosity tensor and the homogenized particle density for the frozen par-
ticles mode, and the distribution function of particles over coordinates, velocities, and
sizes for the filtering particles mode.

The problem of the closure of this system in the case of concentrated suspen-
sions remains open. This has been done only for weakly concentrated suspensions,
for which an asymptotic expression for the mesoscopic viscosity tensor was obtained
in terms of the distribution function of particles over coordinates, sizes, and orienta-
tions, and formulas for the forces and moments of forces acting on the particles from
the fluid were found. Taking this into account, the closure is carried out using kinetic
equations of Liouville type (or Fokker–Planck) for the distribution functions of par-
ticles ([54, 117]). It is clear that this natural method of deriving closed homogenized
equations of suspension motion cannot be considered to be completely justified from
the mathematical point of view. Consequently, closed systems of equations obtained
by this method require an analysis of their consistency, i.e., compatibility and solv-
ability. Such an analysis is partially done in the present monograph.

The monograph consists of eight chapters. In Chapter 1 we consider the origi-
nal system of equations describing the motion of a suspension of solid small bodies
(particles) in a viscous incompressible fluid. We introduce the notion of generalized
solutions of initial–boundary-value problems for this system and discuss the question
of existence of such solutions. A priori estimates for the solutions are derived, with
the help of which the asymptotic behavior of the suspension is studied as the particle
diameters and mean distances between nearest neighbors tend to zero. It is established
that, depending on the relationship between these parameters, two qualitatively dif-
ferent modes of suspension motion can be realized: frozen particles mode, when the
velocities of the particles coincide (asymptotically) with the mean velocity of the sur-
rounding fluid, and filtering particles mode, when their velocities differ significantly
from the mean velocity of the fluid. Two model problems, A and B , corresponding
to these modes of motion are given. These problems are used in subsequent chapters
for the derivation of closed homogenized equations, which describe the asymptotic
modes and thus can be viewed as macroscopic models of suspension motion. We also
introduce model problem C , which corresponds to the flow of a suspension of polar-
ized (or magnetized) particles in frozen particles mode, in very strong electric (or
magnetic) fields.

Chapter 2 deals with concentrated and weakly concentrated suspensions such that
the mean distance between nearest neighboring particles isO."/, whereas the particle
diameters are O."˛/, with 1 � ˛ < 3. In this case, suspension motion corresponds to
frozen particles mode. To derive the homogenized equations describing this mode,
we have to study the asymptotic behavior of the solution of model problem A. For
this we introduce the notion of a mesoscopic viscosity tensor, which allows us to
formulate the main result (Theorems 2.1.1 and 2.2.1). We obtain uniform with respect
to " estimates of derivatives of solutions of the original problem, which, together with
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Theorems 2.1.1 and 2.2.1, allows us to derive the main homogenized equation (still
nonclosed), describing the perturbation of the velocity vector of the fluid in frozen
particles mode.

Chapter 3 is devoted to the calculation of the limiting density of the mesoscopic
viscosity tensor, which is involved in the homogenized equations in frozen particles
mode. We present the viscosity tensor of a concentrated suspension in terms of the
solution of cell problems (Theorem 3.1.1). An asymptotic formula is also obtained
for the mean value of the mesoscopic tensor of weakly concentrated suspension
(1 < ˛ < 3) of axisymmetric particles with random distribution of their diameters
and orientations. In the case of spherical particles, the well-known Einstein formula
for the viscosity of diluted suspensions follows from this asymptotic formula.

In Chapter 4 we present formulas for the forces and moments of forces acting on
an axisymmetric particle from the flow around it and derive the equations of motion of
its center of mass and the evolution of the orientation vector. We introduce the notion
of the mean vector of particle orientation and derive an equation for its evolution.
Taking into account the results of Chapters 2 and 3, this allows us to write out a
closed system of equations of motion of a suspension of axisymmetric particles in
frozen particles mode. In particular, in the case of spherical particles this system has
the form
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which is a generalization of the well-known model of an inhomogeneous fluid ([9,
72]). The existence of global weak solutions of initial–boundary-value problems for
such systems is proved.

Chapter 5 deals with concentrated (˛ D 1) and weakly concentrated (1 < ˛ < 3)
suspensions of polarized (magnetized) particles in an external electric (magnetic)
field. When the suspension is in motion, the moments of forces act on the parti-
cles from both the fluid and the external field, and taking account of these moments
leads to more complicated homogenized equations, compared with those obtained in
Chapters 2–4. The derivation of these equations is based on the study of the asymp-
totic behavior (as "! 0) of the solution of model problem C (Theorem 5.1.1). Of
particular interest is the case when the particles are strongly elongated (flattened) and
are affected by a strong external field forcing them, being in motion, to be strictly ori-
ented along the field (perpendicular to the field). Then the homogenized equations of
motion of the suspension acquire a qualitatively new form: they represent a nonstan-
dard hydrodynamic model in which the stress tensor depends not only on the strain
tensor (as in classical continuum mechanics), but also on the fluid vorticity tensor
(Theorem 5.3.1).
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In Chapter 6, critically diluted suspensions are considered, when the diameters
of solid particles are of order "˛ , where " is the mean distance between neighboring
particles and ˛ D 3. This is a critical relation between sizes of particles and distances
between them, at which particles can move with velocities different from the velocity
of the surrounding fluid, but significantly disturbing its motion. For smaller particles
(˛ > 3), the perturbation is weak and vanishes as "! 0. If the specific density of
the solid phase is much greater than the density of the fluid, then under this condi-
tion (˛ D 3) the suspension moves in filtering particles mode. The derivation of the
homogenized equations in this case is based on the study of the asymptotic behavior
of the solution of model problem B (Theorem 6.1.1). As a result, we obtain a homog-
enized equation depending on the distribution function of particles over coordinates,
velocities, and sizes. Complementing this equation with the kinetic Liouville equa-
tion for the distribution function, we arrive at a closed system of equations describing
the motion of the suspension in filtering particles mode. If the particles are affected
by the Brownian motion of molecules of the carrier fluid, then the equation closure
is performed using the Fokker–Planck equation. In the case of spherical particles, the
closed system has the form
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where u.x; t/ is the velocity of the carrier fluid; f .x;v;r; t/ is the distribution function
of particles with coordinates x, velocities v, and reduced radii r ; � is the kinematic
viscosity of the carrier fluid; �r D �r�5; ˇ,  , � are constants; and
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The solvability of such systems is studied in Theorems 6.5.1 and 6.5.2.
The homogenization methods developed in Chapters 2–5, and based on the notion

of a mesoscopic viscosity tensor, are then applied in Chapters 7 and 8 to the study
of small oscillations of mixtures of a viscous incompressible fluid and fine solid par-
ticles interacting through elastic forces. Such mixtures are the simplest models of
complex fluids with a microstructure, both occurring in nature and having an artifi-
cial origin. These are, for example, colloidal suspensions, rubber, and polymer fluids
([24, 26, 77–79, 108]). Such complex media have a specific microstructure, a char-
acteristic feature of which is the presence of the primary fluid with small inclusions
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distributed in it in the form of atoms, molecules, or small particles of an alien sub-
stance. The inclusions interact both with the main fluid and directly with each other
via forces of different natures (electrostatic, elastic, van der Waals), thus forming
flexible elastic grids, chains, etc. It is practically impossible to investigate the prop-
erties of such media within the framework of the original microscopic models due
to their strong micro-inhomogeneity. Therefore, a primary problem is to construct
macroscopic (homogenized) models that would adequately describe the properties of
such media.

In Chapter 7, a homogenized system of equations is derived describing small
oscillations of the mixture of a Newtonian fluid with solid particles whose diameters
are O."˛/ (1 � ˛ < 3) and the interaction forces between them are O."/, where " is
the mean distance between nearest neighboring particles. We prove that in this case
the asymptotic (as "! 0) oscillations of the mixture are of the frozen particles mode,
and the homogenized system of equations has the form
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where u.x; t/ is the displacement vector of the mixture, ¹e1; e2; e3º is the orthonormal
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density of the mixture. The tensors ¹anpqrº, ¹bnpqrº, ¹Cnpqrº are expressed in terms
of the limiting density of the mesoscopic mixture tensor. This system is a typical
representative of incompressible viscoelastic medium models (see, for example, [22,
78]).

In Chapter 8 we consider a mixture in which the sizes of solid particles have a
critical order, O."3/, and the distances between neighboring particles and the elastic
forces of interaction between them are O."/. The asymptotic mode of oscillations of
such a mixture corresponds to the filtering particles mode. In this case, the homog-
enized system of equations turns out to be a two-phase model (Theorem 8.2.1). For
spherical particles, it has the form
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where v.x; t/ is the velocity of the fluid, w.x; t/ is the velocity of the solid phase,
C.x/ D 6��r.x/, r.x/ is the limiting density of distribution of the radii of the
particles, and ¹anpqr.x/º is the limiting density of the mesoscopic elastic tensor cor-
responding to the equilibrium state of the solid phase of the mixture.

This system can be interpreted as a generalization of the Brinkman law in the case
of the flow of a viscous incompressible fluid through an array of particles of critical
size elastically interacting with each other.

Summing up, it should be noted that in this book we attempt to rigorously derive
macroscopic models of the motion of complex fluids with a microstructure of sus-
pension type, using the methods of homogenization theory. It must be said that the
problem of homogenization of the original system of equations, which is a micro-
scopic model of the motion of a fluid with small solid particles, turned out to be
rather complicated (and, perhaps, poorly posed). Indeed, the solvability of the orig-
inal system is proved only for a small time interval .0; T"/, which decreases with
decreasing parameter ". Consequently, the initial object of homogenization seems to
vanish in the limit as "! 0. For this reason, we make the following a priori assump-
tion in the book: the solution u".x; t/ of the initial–boundary-value problem of the
original system of equations for any " > 0 exists on a fixed time interval Œ0; T �, inde-
pendent of " > 0, and the distances between nearest particles at any moment of time
t 2 Œ0;T � have the same order of smallnessO."/ as at the initial moment. Under these
conditions, the asymptotic behavior of u".x; t/ as "! 0 is studied in order to derive
the homogenized equations, which are a macroscopic model of suspension motion.

Another difficulty arising in the homogenization of such a microscopic model is
that, due to particle motions, the region �".t/ occupied by the fluid phase changes in
time and, in advance, is unknown, in contrast to the standard homogenization theory
for elliptic and parabolic equations. Therefore, the homogenized problem posed in
the book is divided into two subproblems. In the first, it is assumed that at any time
t the domain �".t/ is known, and in it we consider the boundary-value problem
for the stationary linear part of the Navier–Stokes equation, with certain boundary
conditions on the surfaces of particles depending on the parameters of the mixture
(model boundary-value problems A, B , and C ). We study the asymptotic behavior
of model problems as "! 0. In this case, we use the methods of homogenization
that were developed in the monograph [95] for domains of arbitrary form, which are
domains �".t/ (i.e., not periodic). As a result, we derive the homogenized equations
that describe the perturbation of the fluid phase of the suspension by particles (see
Sections 2.1, 2.4, 5.3, 6.1–6.3). But the obtained equations are not closed, and in order
to close them it is necessary to derive the homogenized equation of motion of the
solid phase of the suspension also. This is the second subproblem of homogenization
of the initial equations of suspension motion. In the book, this problem has been
solved only for dilute suspensions, when the particle diameters are much less than
the distances between nearest neighbors. We obtain formulas for forces and moments
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of forces acting on a particle, moving in a linear fluid flow (see Sections 4.1, 4.2).
Taking these formulas into account, we derive the evolution equation for the mean
orientation vector of axisymmetric particles (Section 4.3) moving in frozen particles
mode, and the homogenized motion of an ensemble of spherical particles in filtration
mode is described using kinetic equations of Liouville type. Note that in the book the
reasoning in the derivation of homogenized equations of motion of the solid phase of
the suspension is carried out not quite rigorously from a mathematical point of view,
but it corresponds to the level of rigor adopted in theoretical hydrodynamics.

The combination of homogenized equations of the solid and fluid phases leads
to a closed system of equations, which is a macroscopic model of the dynamics of
suspensions (see Sections 4.4, 5.3, 6.4). In Sections 4.5 and 6.5 the questions of com-
patibility and solvability of the obtained closed systems are studied.

Thus, the results concerning the homogenization of the fluid phase of the sus-
pension have been obtained and presented in this book at a rigorous mathematical
level (these are Chapters 1, 2, 3, 5, 6, 7, 8 and Section 4.5). The results concerning
the homogenization of the solid phase correspond to the level of rigor adopted in
theoretical hydrodynamics (these are Sections 4.1–4.4 and 6.4).

Most of the results presented in this book were published in [17–22, 80–90].
I am grateful to Maria Goncharenko for preparing the text for publication and

translating the book into English.
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