Contents

1	The main asymptotic modes of suspension motion and associated model boundary-value problems				
	1.1	Microscopic model of suspension motion	1		
	1.2	A priori estimates for solution of the problem and main asymptotic	•		
		modes of suspension motion	7		
	1.3	Method of particle fixation: Three main model problems	13		
2	Homogenized equations of suspension motion in frozen particles mode . 19				
	2.1	Asymptotic behavior of the solution of model problem $A \dots \dots$	19		
	2.2	The resolvent convergence of model problem A	45		
	2.3	Uniform estimates of derivatives of the solution of the initial problem	50		
	2.4	Homogenized equations of perturbation of the carrier fluid by small			
		solid particles moving in frozen particles mode	58		
3	Suspension viscosity tensor				
	3.1	Calculation of viscosity tensors for structures close to periodic	69		
	3.2	Equivalent definition of the viscosity tensor	80		
	3.3	Asymptotics of viscosity tensors at weak concentrations	86		
	3.4	Mean value of the viscosity tensor with random distribution of			
		diameters and orientations of particles	97		
4	Closure of the homogenized system of equations for suspension				
	mot	ion in frozen particles mode	03		
	4.1	On the effect of viscous incompressible fluid flow on a particle 1	03		
	4.2	On the motion of a single particle in viscous incompressible fluid flow 1			
	4.3	Evolution equation of the mean orientation vector	11		
	4.4	Closed system of equations for suspension motion in frozen			
		particles mode	16		
	4.5	On existence of generalized solutions of the initial–boundary-value			
		problem for closed systems of homogenized equations of			
		suspension motion of axisymmetric particles	19		
5	Hydrodynamics of suspensions in strong external fields				
	5.1	Asymptotic behavior of the solution of model problem $C \dots 1$	35		

	5.2	Asymptotic behavior of the solution of model problem A with external moments
	5.3	Nonstandard model of hydrodynamics of suspension of oriented
	3.3	particles
6	Hon	nogenized equations of suspension motion in filtering particles mode 16
	6.1	Asymptotic behavior of the solution of model problem $B \dots 16$
	6.2	Probabilistic distribution of particles
	6.3	Perturbation of viscous incompressible fluid by small solid
		particles moving in filtration mode
	6.4	Closed system of equations of suspension motion in filtering
		particles mode
	6.5	On existence of global generalized solutions of the
		initial-boundary-value problem for closed systems of equations of
		suspension motion in filtration mode
7	Hon	nogenized model of a complex fluid with microstructure 197
	7.1	Formulation of the problem
	7.2	Mesoscopic characteristics of microstructure and statement of the
		main result
	7.3	Variational statement of the problem and its homogenization 205
	7.4	Analytical properties of the limiting tensor $\{a_{npqr}(x, \lambda)\}$ 212
	7.5	Analytical properties of solutions of boundary-value problems
		(7.3.1)– $(7.3.5)$ and $(7.3.18)$ – $(7.3.19)$
	7.6	End of proof of Theorem 7.2.1
	7.7	Periodic structure
8	Two	-phase homogenized model of motion of a complex fluid with
	mic	rostructure
	8.1	Formulation of the problem
	8.2	Local quantitative characteristics of the system of interacting
		particles and statement of the main result
	8.3	Discrete analogue of the Korn inequality
	8.4	Variational statement of the problem
	8.5	Proof of the main theorem in the variational formulation 245
	8.6	Analytical properties of solutions of boundary-value problems
		(8.4.1)– $(8.4.5)$ and $(8.4.10)$ – $(8.4.12)$. End of proof of main theorem 26
	8.7	Periodic structure
Re	eferen	nces
	dex	27'