Conventions and frequently used notations

Unless specified otherwise, the Borel measures we consider on \mathbb{R}^n are assumed to be Radon measures, that is, are finite on compact sets.

$\mathbb{R}_{\geq 0}$	$[0, +\infty)$
$\mathbb{R}^{n \times p}$	set of $n \times p$ matrices
^{c}A or A^{c}	complement of the set A
[<i>x</i>]	integer part of x
$x \wedge y$	minimum between x and y
$\Gamma(x)$	$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$
$\mathcal{A}(A,B)$	set of functions $A \to B$
$\mathcal{C}(A, B)$	set of continuous functions $A \rightarrow B$
$\mathcal{C}^k(A,B)$	functions $A \rightarrow B$, k-times continuously differentiable
$\mathcal{C}_c(A,B)$	functions $A \rightarrow B$, smooth and compactly supported inside A
$\mathcal{C}_0(A,B)$	continuous functions $A \to B$ whose limit at ∞ is 0
$\mathcal{C}^{k,l}(A\times B,C)$	functions $A \times B \to C$ which are k-times continuously
	differentiable in the first variable and l times in the second
$\mathcal{T}(A, B)$	σ -field on $\mathcal{A}(A, B)$ generated by cylinders
$\mathcal{B}(A,B)$	σ -field on $\mathcal{C}(A, B)$ generated by cylinders
$\mathcal{B}(A)$	Borel σ -field on A
$L^p_\mu(A,B)$	L^p space of functions $A \to B$ for the measure μ
$L^p(\mathcal{F},\mathbb{P})$	real L^p space of \mathcal{F} measurable random variables
$\Delta_n[0,t]$	$\left\{0 = t_0^n \le t_1^n \le \dots \le t_n^n = t\right\}$
$\int H_s dM_s$	Itô integral
$\int H_s \circ dM_s$	Stratonovitch integral
$\mathcal{H}_{s}(\mathbb{R}^{n})$	Sobolev space of order <i>s</i>
$\mathcal{H}^0_s(\Omega)$	closure of $\mathcal{C}_c(\Omega, \mathbb{C})$ in $\mathcal{H}_s(\mathbb{R}^n)$
D	Malliavin derivative
δ	divergence operator
$\mathbb{D}^{k,p}$	domain of \boldsymbol{D}^k in $L^p(\mathcal{F},\mathbb{P})$
$\ \cdot\ _{p-\operatorname{var},[s,t]}$	p-variation norm on $[s, t]$
$\ \cdot\ _{\infty,[s,t]}$	supremum norm on $[s, t]$
$C^{p-\operatorname{var}}([s,t],\mathbb{R}^d)$	continuous paths $[s, t] \rightarrow \mathbb{R}^d$ with bounded <i>p</i> -variation
$\int_{\Delta^k[s,t]} dx^I$	$\int_{s \le t_1 \le t_2 \le \dots \le t_k \le t} dx^{i_1}(t_1) \dots dx^{i_k}(t_k)$
$\Omega^p([0,T], \mathbb{R}^d)$	space of <i>p</i> -rough paths