
Chapter 1

Introduction

In [T13] we dealt with the Navier-Stokes equations

@tuC .u;r/u��uC rP D 0 in R
n � .0;1/, (1.1)

divu D 0 in R
n � .0;1/; (1.2)

u.�; 0/ D u0 in R
n; (1.3)

where u.x; t/ D �
u1.x; t/; : : : ; un.x; t/

�
is the unknown velocity and P.x; t/ the

unknown (scalar) pressure, 2 � n 2 N. Recall @t D @=@t , @j D @=@xj if j D
1; : : : ; n, and that the vector-function .u;r/u has the components

�
.u;r/u�k D

nX
jD1

uj @ju
k; k D 1; : : : ; n; (1.4)

whereas, as usual,

divu D
nX
jD1

@ju
j ; rP D .@1P; : : : ; @nP /: (1.5)

By (1.2) one has

.u;r/u D div .u˝ u/; div .u˝ u/k D
nX
jD1

@j .u
juk/: (1.6)

This reduces (1.1)–(1.3), now in the strip Rn � .0; T / with T > 0, to

@tu ��uC P div .u˝ u/ D 0 in R
n � .0; T /, (1.7)

u.�; 0/ D u0 in R
n: (1.8)

Here P is the Leray projector,

.Pf /k D f k CRk

nX
jD1

Rj f
j ; k D 1; : : : ; n; (1.9)

based on the (scalar) Riesz transforms Rk ,

Rkg.x/ D i
� �k

j�jbg
�_
.x/ D cn lim

"#0

Z
jyj�"

yk

jyjnC1 g.x � y/ dy; x 2 R
n: (1.10)
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In (1.7), (1.8) there is no need to care about (1.2) any longer. But if in addition
divu0 D 0 then divu D 0 in our context (mild solutions based on fixed point argu-
ments). This well-known reduction of (1.1)–(1.3) to (1.7), (1.8) may also be found in
[T13, Section 6.1.3, pp. 196-198]. The vector equation (1.7), (1.8) can be reduced to
the nonlinear scalar heat equation

@tu.x; t/�Du2.x; t/��u.x; t/ D 0; x 2 R
n; 0 < t < T; (1.11)

u.x; 0/ D u0.x/; x 2 R
n; (1.12)

on the one hand and the mapping properties of Rj and P in the considered function
spaces on the other hand. Here

Df D
nX
jD1

@jf: (1.13)

We dealt with the Cauchy problem (1.11), (1.12) in the context of local spaces
LrAsp;q.Rn/, [T13, Theorem 5.24, p. 183], and of global spacesAsp;q.R

n/, [T13, The-
orem 5.36, p. 189], under the crucial assumption that the underlying spaces
LrAsp;q.Rn/ and Asp;q.R

n/ are multiplication algebras. This is ensured if s C r > 0
for local spaces and s > n=p (and some limiting spaces with s D n=p) for global
spaces. The reduction of (1.7), (1.8) to (1.11), (1.12) requires in addition that the
Riesz transforms Rj are linear and bounded maps in the underlying spaces. This
applies to the global spaces

Asp;q.R
n/; 1 < p < 1; 0 < q � 1; s 2 R; (1.14)

[T13, Theorem 1.25, p. 17] where the additional restriction 1 < q < 1 for F -spaces
mentioned there is not necessary (as a consequence of Theorem 3.52 below). Then
one obtains satisfactory solutions for (1.7), (1.8) in the global spaces

Asp;q.R
n/; 1 < p < 1; 1 � q � 1; s > n=p; (1.15)

(and some limiting cases with s D n=p). We refer the reader to [T13, Theorem 6.7,
p. 203] (where 1 < q < 1 for F -spaces can be replaced by 1 � q � 1 as cov-
ered by Corollary 5.4 below). We could not find a counterpart in terms of the local
spaces LrAsp;q.Rn/ and replaced as a substitute the Leray projector P in (1.7) by the
truncated Leray projector P 2 based on the truncated Riesz transforms

R ;kf D i
�
 
�k

j�j
bf �_

; k D 1; : : : ; n; (1.16)

where

 2 C1.Rn/;  .x/ D 0 if jxj � 1=2 and  .y/ D 1 if jyj � 1; (1.17)

[T13, pp. 199/200, Theorem 6.10, p. 205]. Hence, one removes the infrared (or low
frequency) part of solutions of (1.7), (1.8). This point has also been discussed in
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[T13, p. 193, 199-201]. At that time we tried to find a way to deal with Navier-Stokes
equations or with (1.7), (1.8) also in the context of the local spaces LrAsp;q.Rn/. But
it came out quite recently that the Riesz transform (1.10) cannot be extended from
D.Rn/ or S.Rn/ to a linear and bounded operator acting in the local Morrey spaces
Lrp.Rn/ D LrLp.Rn/, 1 < p < 1, �n=p � r < 0, [RoT13, Theorem 1.1(i)]. We
refer the reader also to Theorem 2.22 and Remark 2.23 below. On the one hand one
can take this observation as a justification of the above truncation. But on the other
hand one knows now that Rk are linear and bounded maps,

Rk W VLrp.Rn/ ,! VLrp.Rn/ and Lrp.R
n/ ,! Lrp.R

n/; (1.18)

1 < p < 1, �n=p � r < 0, in the global Morrey spaces Lrp.R
n/ D LrLp.R

n/ and

in the completion of S.Rn/ in Lrp.R
n/, denoted as VLrp.Rn/, [RoT13, Theorem 1.1],

Theorem 2.22 and Remark 2.23 below. We refer the reader also to [RoT14]. It is
crucial for us and the main motivation of this book that (1.18) can be extended to
some hybrid spaces LrAsp;q.R

n/ (being smaller than the local spaces LrAsp;q.Rn/).
As far as properties are concerned these spaces are between local and global spaces.
This may justify calling them hybrid spaces. In particular if

1 < p < 1; 0 < q � 1; s 2 R and � n=p � r < 0; (1.19)

then one has by Theorem 3.52 below

Rk W LrAsp;q.R
n/ ,! LrAsp;q.R

n/; k D 1; : : : ; n; (1.20)

whereas the local spaces LrAsp;q.Rn/ do not have this property. In addition
LrAsp;q.R

n/ are multiplication algebras if s C r > 0 (as their local counterparts
LrAsp;q.Rn/). Then one can extend a corresponding theory for the nonlinear heat
equations (1.11), (1.12), now in terms of the hybrid spacesLrAsp;q.R

n/, to the Navier-
Stokes equations. We tried to find in [T13] related assertions in the context of the
local spaces LrAsp;q.Rn/. Now it is clear that this is impossible, but it is also clear
that one has a satisfactory theory with hybrid spaces LrAsp;q.R

n/ in place of the lo-
cal spaces LrAsp;q.Rn/. This extends corresponding assertions from Asp;q.R

n/ D
L�n=pAsp;q.Rn/ to LrAsp;q.R

n/.

Chapter 2 deals mainly with local and global Morrey spaces Lrp.Rn/, VLrp.Rn/,
Lrp.R

n/, VLrp.Rn/ and their (pre)duals. We follow closely [RoT13, RoT14] comple-
mented by

Lrp.R
n/ ,! Lp.R

n; �˛/; �˛ D w˛�L; 1 < p < 1; �n=p < r < 0;
(1.21)

where �L is the Lebesgue measure and w˛.x/ D .1 C jxj2/˛=2 with �n < ˛ <
�n � rp is a Muckenhoupt weight w˛ 2 Ap.R

n/. Then Rkg.x/ according to (1.10)
is well-defined for x 2 Rn a.e., also in its integral version. Finally we characterize
some of these spaces in terms of Haar wavelets. In Chapter 3 we introduce the hybrid
spaces LrAsp;q.R

n/ and collect some basic properties needed later on. This can be
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done largely in the same way as in [T13] for the local spaces LrAsp;q.Rn/ mostly
without additional efforts. Only occasionally we add a further argument. We observe
that

LrAsp;q.R
n/ D As;�p;q.R

n/ with � D 1

p
C r

n
(1.22)

for all admitted parameters s; p; q and �n=p � r < 1. The spaces As;�p;q.Rn/
have been studied in great detail in the book [YSY10], the survey [Sic12] and the
underlying papers. There one finds many other properties which will not be repeated
here. One may also consult [T13, pp. 38/39, Section 2.7.3, pp. 101-107]. There is one
crucial exception needed to prove (1.20). Then we rely on

kf jLrAsp;q.Rn/k � kf jLr PAsp;q.Rn/k C kf jLrp.Rn/k (1.23)

if
1 < p < 1; 0 < q � 1; s > 0; �n=p � r < 0: (1.24)

Here Lr PAsp;q.Rn/ are homogeneous hybrid spaces (we do not need the homogeneous
spaces themselves but only their homogeneous norms in the context of the inhomoge-
neous spaces LrAsp;q.R

n/). For these homogeneous spaces (or their norms) one has
the Fourier multiplier assertion

k.hbf /_jLr PAsp;q.Rn/k � c
�

sup
j˛j�k;x2Rn

jxjj˛j ˇ̌D˛h.x/
ˇ̌�kf jLr PAsp;q.Rn/k (1.25)

of Michlin type with k 2 N sufficiently large (specified later on). This is essentially
covered by [YaY10, Theorem 4.1, p. 3819]. We refer also to [YYZ12, Theorem 1.5,
p. 6] and the recent survey [YaY13a]. This can be applied to Rk with h D �k=j�j.
Then (1.20) with (1.19) follows essentially from (1.23) and (1.18), (1.25). This may
be considered as the basic observation of what follows. Afterwards we return in
Chapter 4 to the nonlinear heat equations (1.11), (1.12) and transfer assertions avail-
able so far in the context of the local spaces LrAsp;q.Rn/ to their hybrid counter-
parts LrAsp;q.R

n/ (again essentially without any additional efforts) complemented by
some new observations. In Chapter 5 we deal with the Navier-Stokes equations (1.7),
(1.8) in hybrid spaces LrAsp;q.R

n/ extending a corresponding theory in [T13] for
the spaces Asp;q.R

n/ D L�n=pAsp;q.Rn/ to LrAsp;q.R
n/. This extension applies not

only to the obtained assertions, but also to the underlying technicalities. In particular
(1.23) is the Morreyfied version of

kf jAsp;q.Rn/k � kf j PAsp;q.Rn/k C kf jLp.Rn/k (1.26)

if
0 < p < 1; 0 < q � 1; s > �p D n

�
1
p

� 1�C; (1.27)

[T92, Theorem 2.3.3, p. 98]. Furthermore, (1.25) with

PAsp;q.Rn/ D L�n=p PAsp;q.Rn/ (1.28)
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is covered by [T83, Theorem 5.2.2, p. 241]. We refer the reader also to [T13, Theo-
rem 1.25, p. 17]. The final Chapter 6 is to some extent independent of the main bulk of
this book. It deals with Haar wavelets, Faber bases and sampling in the context of the
hyperbolic cross and spaces with dominating mixed smoothness and their relations to
solutions of Navier-Stokes equations, global in time, for large initial data.


