
Chapter 1

Introduction to Spectral Geometry

From P.-S. Laplace to E. Beltrami

The Laplace operator was first introduced by P.-S. Laplace (1749–1827) for de-
scribing celestial mechanics (the notation � is due to G. Lamé). For example, in
our three-dimensional (Euclidean) space the Laplace operator (or just Laplacian)
is the linear differential operator:
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where U is an open set of R3. This operator can be generalized to a Riemannian
manifold .M; g/: this generalization is called the Laplace–Beltrami operator and
is denoted by the symbol �g . The study of this operator and in particular the
study of its spectrum is called spectral geometry. The Laplace–Beltrami operator
is very useful in many fields of physics, in particular in all diffusion processes:

� Fluid mechanics: the Navier–Stokes equations8<
:
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� potential theory and gravity theory (with Newton potential): the Laplace
equation and the Poisson equation
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� heat diffusion process: the heat equation
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� wave physics: the wave equation
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� quantum physics: the Schrödinger equation
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� etc. . . .

Let us mention that this operator appears also in:

� computer science: in particular, in computer vision (blob detection)

� economy: financial models, Black–Scholes equations

� etc. . . .

Moreover, spectral geometry is an inter-disciplinary field of mathematics; it in-
volves

� analysis of ODE and PDE

� dynamical systems: classical and quantum completely integrable systems,
quantum chaos, geodesic flows and Anosov flows on (negatively curved)
manifolds (for example, Ruelle resonances are related to the spectrum of
the Laplacian, see the recent articles [Fa-Ts1], [Fa-Ts2]).

� geometry and topology (the main purpose of these notes is to explain this)

� geometric flow: the parabolic behaviour of scalar curvature
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the Ricci flow (see also Sections 7.8.3 and 7.8.4)
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� probability: the Brownian motion on a Riemannian manifold .M; g/ is de-
fined to be a diffusion on M (generator operator is given by 1

2
�g).

� etc. . . .

Meaning of the Laplacian operator

To get a better feeling about the Laplacian operator, consider for example a one-
dimensional C3 function uWR ! R. The mean value of u on the compact set
Œ�h; h� is given by

u WD 1
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Now, using the Taylor expansion of u around the origin we get: for all x 2 Œ�h; h�,

u.x/ D u.0/C u0.0/x C u00.0/
x2
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Therefore,
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i.e., u D u.0/C u00.0/
12

h2 C o.h4/, hence u � u.0/ D u00.0/
12

h2 C o.h4/. In other
words,

�u.0/ D u00.0/ D 12

h2
.u � u.0//C o.h2/;

thus the Laplacian of u measures the difference between the function u at 0 and
the mean value of u on the neighbourhood Œ�h; h�.

Another way to understand this interpretation is to use the finite difference
method: for example, on the domain I D Œ0; 1� and for an integerN > 0 consider
the discretization grid of I given by fti WD ih; i 2 f0 : : :N gg with h WD 1

N
. Thus

using the Taylor expansion of u around the point ti we have
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whence

�u.ti / D u00.ti/ D ui�1 � 2ui C uiC1
h2
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where uk WD u.tk/. The principal term ui�1�2uiCuiC1 represents the difference
between the value of the function u at the point ti and the values of u on the grid-
neighborhood of ti . In particular, the discretization of the problem �u00 D f on
I with the boundary conditions u.0/ D u.1/ D 0 is the linear equation AX D B
with
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More generally: the Laplace–Beltrami operator at a point x measures the differ-
ence of the mean value of f on a neighbourhood of x and the value of the function
at the point x.

Main Topics in Spectral Geometry

Given a (compact) Riemannian manifold .M; g/, we can associate to it the (lin-
ear) unbounded operator ��g . This operator is self-adjoint and its spectrum is
discrete (see Chapter 4): namely, the spectrum consists of an increasing sequence
.�k.M//k of real eigenvalues of finite multiplicity such that �k.M/ as k ! C1.
We denote this spectrum by

Spec.M; g/ WD .�k.M//k :

In others words, for any integer k � 0 there exists a non trivial function uk on M
(eigenfunction) such that

��guk D �k.M/uk:

The spectral theory of the Laplacian on a compact Riemannian manifold .M; g/
is in particular interested in the connection between the spectrum Spec.M; g/ and
the geometry of the manifold .M; g/. Indeed there are many deep connections
between spectrum and geometry. Therefore spectral geometry studies such con-
nections. The main topics in spectral geometry can be split into two types.

Direct problems

The main questions in direct problems are (see Chapter 5):

Question. Can we compute .exactly or not/ the spectrum Spec.M; g/? And .or/:
can we find properties on the spectrum Spec.M; g/?

Then the principle of direct problems is to compute or find some properties
on the spectrum of a compact Riemannian manifold .M; g/. Obviously the ques-
tion to compute the spectrum of Laplacian (or for other operators) arises in a lot
of problems: analysis of PDE, dynamical systems, mathematical physics, differ-
ential geometry, probability, etc. See, for example, Section 4.1.3 for a concrete
application in quantum dynamics.
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For example, the first non-null eigenvalue �?.M/ plays a very important role
in Riemannian geometry, and one of the main questions is to find a lower bound
for �?.M/ depending on the geometric properties of the manifold, e.g. the di-
mension n, the volume Vol.M; g/, the curvatureR, etc. (see Section 5.2.1):

�?.M/ � a.n;Vol.M; g/; R; � � � /:
Another example of (asymptotic) computation (based on the Weyl formula, see
Section 7.6) is
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here n is the dimension of the compact manifold .M; g/ and Bn WD �
n
2

�.n
2 C1/ .

Inverse problems

The data of a metric on a Riemannian manifold determine completely the Lapla-
cian�g and therefore its spectrum Spec.M; g/. Hence the spectrum is a Rieman-
nian invariant: if two Riemannian manifolds .M; g/ and .M 0; g0/ are isometric,
then they are isospectral, i.e., Spec.M; g/ D Spec.M 0; g0/. Conversely the main
question is

Question. Does the data of the spectrum Spec.M; g/ determine the “shape” of
the manifold .M; g/?

In other words: which geometric information can we deduce from the spec-
trum? For example, we have the classical heat invariants; indeed the spectrum of
the manifold .M; g/ determines

� the dimension of .M; g/

� the volume of .M; g/

� the integral of the scalar curvature Scalg over .M; g/.

Another main topic in inverse problems is

Question. What sequences of real numbers can be spectra of a compact mani-
fold?

A simpler version of this question is: LetM be a fixed manifold, given a finite
increasing sequence of real numbers 0 < a1 � a2 � � � � � aN does, there exists a
metric g such that the kth first eigenvalues of .M; g/ are equal to 0 < a1 � a2 �
� � � � aN ? Y. Colin de Verdière proved in 1987 that the answer is positive (see
Section 7.4).

The next important example of inverse problem concerns the length spectrum
(see Section 7.2). The length spectrum of a compact Riemannian manifold .M; g/
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is the set of lengths of closed geodesics on .M; g/ counted with multiplicities. As
it turns out, the spectrum of the manifold determines the length spectrum. Spectral
theory is also an important tool for understanding the relationships between the
formalism of classical mechanics and that of quantum mechanics:

� The formalism of classical mechanics on a Riemannian manifold is ex-
pressed in terms of geodesics.

� The formalism of quantum mechanics on a Riemannian manifold is ex-
pressed in terms of the Laplace–Beltrami operator.

The question of isospectrality in Riemannian geometry may be traced back to H.
Weyl in 1911–1912 and became popularized thanks to M. Kac’s article of 1966
[Kac1]. The famous sentence of Kac “Can one hear the shape of a drum?” refers
to this type of isospectral problem. The exact formulation of the isospectrality
question is

Question. If two Riemannian manifolds .M; g/ and .M 0; g0/ are isospectral, are
they isometric?

The answer is negative and was given first by J. Milnor in 1964 (see Section
7.3). In 1984 and 1985, respectively C. Gordon, E.N. Wilson [Go-Wi] and T.
Sunada [Sun] gave a systematic construction of counter-examples. In 1992, C.
Gordon, D. Webb, and S. Wolpert [GWW1] gave the first planar counter-example.

The main classical references on spectral geometry are the book of M. Berger,
P. Gauduchon and E. Mazet [BGM], the book of P. Bérard [Bér8][Bér], of I.
Chavel [Cha1] and the book of S. Rosenberg [ROS].

Organization of the book

The present book is a basic introduction to spectral geometry. The reader is as-
sumed to have a good grounding in functional analysis and differential calcu-
lus. Chapter 2 discusses the fundamental notions of spectral theory for compact
and unbounded operators. Chapter 3 is a review of differentiable manifolds and
Riemannian geometry, including the definition of Laplace–Beltrami operator. In
Chapter 4 we define the spectrum of the Laplace–Beltrami operator on a Rieman-
nian manifold and then we present the minimax principle and some geometrical
consequences. Chapter 5 discusses principles underlying the treatment of direct
problems of spectral geometry, including some exact computations of spectrum.
In Chapter 6 we present a topological perturbation result for eigenvalues of a man-
ifold. Chapter 7 is devoted to inverse problems in spectral geometry; in particular,
at the end of the chapter we introduce briefly some results of conformal geometry
in dimension 2 and 3.


