Overview

In this treatise we consider the defocusing nonlinear Schrodinger equation on the real
line,
idsu =—8§u—|—2|u|2u, x eR.

This equation appears as a cubic perturbation of the Schrodinger equation for the
wave function of a free one-dimensional particle — whence the name. However, its
physical meaning goes far beyond one-particle quantum mechanics.

Among others, the NLS equation describes slowly varying wave envelopes in
dispersive media and arises in various physical systems such as water waves, plasma
physics, solid-state physics and nonlinear optics. One of the most successful applica-
tions of the NLS equation is the description of the propagation of optical solitons in
fibers — see for example [2] and the references therein.

After the KdV equation, the cubic NLS equation was the second equation which
was discovered to be integrable by the inverse scattering method [48]. It turned out
that it has the same degree of universality as the KdV equation, both from a mathe-
matical and a physical point of view. Even more, in many technical aspects the NLS
equation is simpler. For instance, its Hamiltonian formalism is the standard one,
while the formalism for KdV involves a partial derivative. Moreover, the NLS equa-
tion is also considered in higher dimensions and plays an important role in quantum
mechanics.

These remarks also apply to the focusing nonlinear Schrodinger equation,

i0,u = —9%u —2 lu)*u.

Typically, both these equations are studied either on the real line or on the circle, that
is, with periodic boundary conditions

ulx +1,t) = u(x,1), t e R.

These four cases are actually quite different from each other and need to be studied
separately.

In the following we consider the defocusing nonlinear Schrodinger equation on
the circle. Our aim is to provide a complete and self-contained study of this evolution
equation as a Hamiltonian system. In particular, we will construct a global coordinate
system, in which the NLS equation appears as a classical integrable Hamiltonian
system with infinitely many degrees of freedom.

Hamiltonian formalism The NLS equation is a Hamiltonian PDE. More precisely,
it can be written in a Hamiltonian form, which encompasses both the focusing and
defocusing case. Let

H" := H™(T,C), m=1,
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denote the Hilbert space of all complex valued functions on the circle T = R/Z with
m distributional derivatives in L2. Let

H!" :=H" x H"

denote the phase space with elements ¢ = (¢1, ¢2). The associated Poisson bracket
is given by

{F.G} := —i/ (0g, F 045, G — 09, F 0y, G) dx,
T
where d,, F and 9, F denote the components of the gradient d, F of a C !-functional

F with respect to the standard L?-product.
The NLS Hamiltonian

Hyis = /(3x§01 Ixp2 + ¢793) dx
T

then gives rise to the Hamiltonian equations of motion

10,01 = 04, HaLs = —0xx@1 + 20207,

. ) (*)
10;02 = =0y, AHNLs = 0xx®2 — 20195

The defocusing NLS equation is obtained by restricting this system to the invariant
subspace
H" ={pec H 92 = ¢1}

of states ¢ of real type. Taking ¢ = (u, u), we get
Hyns = [ (B + ul) dx
T

for the restricted Hamiltonian, and the equations of motion reduce to
idju=1{u,H} = 0; H

for H = Hys, familiar from classical mechanics.
The focusing NLS equation, on the other hand, is obtained as the restriction of
the general equation to the invariant subspace

H" ={p e H": 02 = —¢1}

of states ¢ of imaginary type.
The above Hamiltonians are well defined on H}” only when m = 1. On the other
hand, the initial value problem for the NLS equation on the circle is well posed on

L%:= LX(T,C) x L%(T,C) = H?

as well — see [9]. This will also be the setting of the global coordinates to be con-
structed in the sequel.
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Lax pair formalism Based on the seminal work of Gardner et al. [16] and Lax [34]
for the KdV equation, Zakharov and Shabat [48] discovered a Lax pair for the NLS
equation and showed in this way that it admits infinitely many integrals in involution
—see also [1, 13, 35] and the references therein.

More precisely, consider for ¢ = (g1, ¢2) in L? the Zakharov-Shabat or ZS-

operator
i 0\d 0 ¢1
L = ] — .
@) (0 —1) ax (wz 0 )
We call ¢ the potential of the operator L(¢p).

Suppose ¢ also depends differentiably on time ¢, giving rise to a family of opera-
tors

L(t) := L(p(t.)).

Then, by a tedious but elementary calculation, ¢ is a solution of the NLS equation ()
if and only if
0L =[B,L],

where [B, L] = BL — LB denotes the commutator of L with the operator

B (Ziai —ig1g2 @) + 20105 )
@y + 2020 —2i0% +ipip2 )

On the subspaces H/" of potentials of real type, B is formally skew-adjoint, that
is, B* = —B. In this case the flow of

0;V =BV, Vo)=1
generates, at least formally, a one-parameter-family of unitary operators V(¢), since
(V*V)= (0, V*V +V*3,V =V*(B*+ B)V =0.
Moreover, by an analogous calculation one finds that
o (V*LV)=V*,L—[B,L)V =0,

whence
V¥ L@)V(t) = L(0), t e R

The spectrum of L(¢) is thus independent of ¢. Put differently, the flow of the defo-
cusing NLS equation defines an isospectral deformation on the space of all potentials
of real type. The whole space L? decomposes into isospectral sets

Iso(p) = {¢ € L} : spec(¥) = spec(p)}. ¢ €L},

which are invariant under the defocusing NLS flow.
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Spectrum When ¢ is of real type — as in the defocusing case — then L(¢p) is formally
self-adjoint. As is well known — and will be proven in detail in section II — the spec-
trum of L(¢) considered on the interval [0, 2] with periodic boundary conditions is
pure point and consists of an unbounded bi-infinite sequence of periodic eigenvalues

- + - + - +
e <AL SAL <A SAT <A S AT <

The — possibly empty — intervals (A,,, A}}) are called the spectral gaps of the potential
¢, and
Yn=x, =4, =20, nel,

the corresponding gap lengths.

By the way, the complementary intervals [A;, A, , ;] are called the spectral bands
of ¢, but we will not make use of them.

By the Lax pair formalism, each periodic eigenvalue is an integral of motion.
From an analytical point of view, however, these integrals are not satisfactory, as A5
is not a smooth function of ¢ whenever the correponding gap collapses. The squared
gap lengths

Va=05-2)% nek,

however, are analytic functions on all of L2 and thus form a usable set of integrals.
Moreover, they determine the periodic spectrum, so that

Iso(p) = {¥ € L2:spec(y) = spec(y)
— (¥ € L2: 1 ())nez = (r(@)nez ) -

These sets are compact connected tori whose dimension equals the number of positive
gap lengths and is infinite generically. They are called Lagrangian with respect to the
Poisson structure defined above when all spectral gaps are open.

A Hamiltonian PDE with the property that its invariant sets are generically La-
grangian tori is often referred to as an integrable PDE.

Normal form 1In classical mechanics the existence of a foliation of the phase space
into Lagrangian invariant tori is tantamount, at least locally, to the existence of action-
angle coordinates. This is the content of the Liouville-Mineur-Arnold-Jost theorem.
In an infinite-dimensional setting, the existence of such coordinates is far less clear,
as the dimension of the foliation is nowhere locally constant. Invariant tori of infinite
and finite dimension each form dense subsets. Nevertheless, action-angle coordinates
can be introduced for the NLS equation, as we describe now.
To state the result, we introduce the spaces of real sequences

\V
=

R = {(x,y) = ns Ynez: 1 XN + 1Y < 00}, m

where
Ixl7 = 3 + D n*"x7.

nez
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When m = 0 we also write

2 :=no.
The space A" is equipped with the Poisson structure induced by the canonical sym-
plectic structure

w = de,, Ady,.

nez

Theorem. There exists a bi-analytic diffeomorphism Q: L2 — {2 with the following
properties:

1. Q is canonical, that is, preserves Poisson brackets.

2. The restriction of Q to H" withm = 1 gives rise to amap Q: H" — h"* that
is again onto and bi-analytic.

3. Q introduces global Birkhoff coordinates for NLS on Hrl. That is, on h} the
transformed NLS Hamiltonian Hyys o Q7 is a real-analytic function of the
actions I, = (x2 + y2) /2 withn € Z.

4. doSQ is the Fourier transform.

Actually, we prove a more general version of this theorem, where we consider the
restrictions of €2 to various weighted Sobolev spaces. Moreover, the map €2 intro-
duces Birkhoff coordinates for every Hamiltonian in the Poisson algebra consisting
of Hamiltonians commuting with all actions /. This applies, in particular, to all
Hamiltonians in the NLS hierarchy.

The construction of Birkhoff coordinates for a potential ¢ € L? actually starts out
with the definition of candidates for the actions /,, and angles 6,,. Those are defined
in terms of certain path integrals on the two-sheeted complex curve associated with
the periodic spectrum of L(¢). No reference to the NLS equation is required for this
construction. The I, are defined on Lf, while each 6, is defined on the dense open
subset of potentials where y, # 0. The details are explained in Section 11.

Denoting the transformed NLS Hamiltonian by the same symbol, we thus obtain
a real analytic Hamiltonian

Hwis = Hwis( .o, I-1, Do, 11, . )
on hl. Its equations of motion are the classical ones,
Xn = on(I)yn, In = —on(I)xy,

where w, (/) = 09y, Hxus(1) are the NLS frequencies, determined by the initial
values.
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Historical comments We conclude this overview with a few of historical comments
concerning the construction of action-angle variables.

The angle variables 6, for integrable PDEs such as KdV and NLS were intro-
duced for finite-gap potentials (introduced at the end of Section 9) in the early 1970s
by Dubrovin, Kri¢ever, and Novikov [12] and McKean and van Moerbecke [38],
and further investigated, among others, by McKean and Trubowitz [39, 40], Its and
Matveev [22], and Belokolos et al. [8]. These authors used elements of Riemann sur-
face theory to show that the 6, linearize PDEs such as KdV and NLS. In this way
they obtained quasi-periodic solutions of these equations. For later work along these
lines see for instance [14, 43, 45].

The formulas for the action variables I, were first presented in the case of KdV
and the Toda lattice by Flaschka and McLaughlin [15]. They were obtained by fol-
lowing Arnold’s approach of defining actions and based on a system of canonical
coordinates involving the Dirichlet eigenvalues. Their construction was later gener-
alized by Veselov and Novikov [46].

In the early 1990s Birkhoff coordinates were constructed for the periodic KdV
equation [23, 4] as well as the defocusing NLS equation [4, 5] and the Toda lat-
tice [6, 20, 21]. The approach was inspired by Vey [47], who proved the existence of
such coordinates for a finite-dimensional, integrable Hamiltonian system in a neigh-
bourhood of an elliptic fixed point.

In the late 1990s McKean and Vaninsky [41, 42] showed that in the case of the
defocusing NLS equation the actions and angles mentioned above actually Poisson
commute. Subsequently we used their approach to provide a conceptually rather
simple proof of the existence of Birkhoff coordinates for the KdV equation [25, 26],
using concepts of Hamiltonian systems theory to prove that these variables lead to
canonical coordinates defined on the entire phase space.



