
Preface

The subject of this monograph is the appearance of irreversibility in gas dynamics.
At a molecular level, the dynamics is Newtonian. In particular, it is reversible, in

contrast with observations at a macroscopic level.
In 1872, Boltzmann introduced the equation
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where x 2 Rd represents position and v 2 Rd velocity, for the probability den-
sity f .t; x; v/ known as the distribution function of the gas. The bilinear collision
operator Q is related to a jump process in the velocity variable. The dynamics of
the Boltzmann equation locally preserves mass, momentum and energy, as does the
Newtonian microscopic dynamics. In addition, the Boltzmann equation admits a Lya-
punov functional, known as the entropy, which is nondecreasing along trajectories.
This is a feature of an irreversible dynamics.

The specific question that we address in this monograph is the relationship be-
tween the Newton dynamics for a system of particles and the Boltzmann dynamics.

A partial answer is given in Oscar Lanford’s 1975 theorem [35], which accounts
for some important intuitions of Boltzmann [9]:

� equation (B) should be obtained as a limit when the number of particles be-
comes large. In Boltzmann’s words: The velocity distribution of the molecules
is not mathematically exact as long as the number of molecules is not assumed
to be mathematically infinitely large.

� equation (B) predicts only the most probable behavior. In particular, it does
not account for trajectories along the Newtonian flow which have decreasing
entropy: In nature, the tendency is to pass from the least likely state to the
more likely. [. . . ] The second principle in Thermodynamics appears therefore
as a probability theorem.

� a central question in the derivation of equation (B) is the independence of ele-
mentary particles : From now on we shall specifically assume that the motion
is totally disorganized, either as an ensemble or at a molecular level, and that
it remains so indefinitely.

Lanford’s theorem states that the distribution function of a system of N particles,
which are interacting with one another by elastic collisions and are initially indepen-
dent and smoothly distributed, converges to the solution of the Boltzmann equation
(B) in the limit N ! 1; if the characteristic length of interaction " simultaneously
goes to 0 in the Boltzmann-Grad scaling limit N"d�1 D O.1/.

A striking point in Lanford’s theorem is that it partially invalidates the third intu-
ition of Boltzmann: the independence is rigorously established in the limit, under the
mere assumption that it holds initially.
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The main limitation in the theorem is that the convergence is proved to hold only
on small time intervals, in which typically only a small number of collisions per
particle take place.

As we shall see, trajectories that are not accounted for in the Boltzmann dynamics
involve recollisions, meaning interactions between particles which have previously
interacted in the past (directly or indirectly). Such trajectories violate independence.
The strategy of Lanford was then to decompose the dynamics in terms of collision
trees and prove that

� with probability converging to 1, collisions trees are finite, and

� with probability converging to 1, recollisions do not happen in finite trees.

It seems however that the arguments used in the literature to establish the second
point were not entirely correct, so that at some point the proof should be completed.

The aim of this monograph is to provide such a completion of the proof of Lan-
ford’s theorem, in a self-contained manner. In addition, building on the important
contribution of King [31], the convergence result is extended to systems of parti-
cles interacting pairwise via compactly supported potentials satisfying a convexity
assumption. We also discuss in depth the notion of independence. In the hard-sphere
case, precise bounds in all steps of the proof enable us to obtain a rate of convergence.

We insist on the fact that the strategy of the proof is by no means new. The main
novelty here is the detailed study of trajectories involving recollisions. This is the
key point that allows to prove the term-by-term convergence result in the correlation
series expansion.

Part I gives some context: we discuss low-density limits, recall some of the main
landmarks in the vast literature concerning the Boltzmann equation, and state the
main theorems proved in this monograph.

In Part II we focus on the hard-sphere case. We first derive the BBGKY hierarchy
associated with the Liouville equation, and prove that it is well-posed on a short time
interval, uniformly in the number of particles. Then we turn to the notion of indepen-
dence, which is central in Lanford’s theorem. Finally we give a precise convergence
statement of the BBGKY hierarchy to the Boltzmann hierarchy. The convergence to
the Boltzmann equation then appears as the particular case of tensor products. We
finally present the salient features of the proof.

Part III is devoted to the case of particle interactions produced by a compactly sup-
ported potential. We first study the scattering operator associated with two-particle
interactions, and then derive the associated BBGKY hierarchy. This derivation is
rendered delicate by the fact that simultaneous interactions of large numbers of par-
ticles may occur. Only pairwise interactions contribute to the dynamics in the limit,
however, and bounds similar to the ones in the hard-sphere case are derived. A pre-
cise statement of convergence towards the limiting Boltzmann hierarchy is given, and
a strategy of proof is presented.

Part IV presents the proofs of both convergence results (hard spheres and short-
range potential). The fact that potential interactions are non-local produces only mi-
nor differences between the proofs. The study of trajectories involving recollisions,
which deviate substantially from the Boltzmann trajectories, is performed in detail.
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In particular, we provide explicit (semi-explicit, in the case of a potential) bounds on
their size. As a consequence, in the hard-sphere case a rate of convergence can be
obtained. A list of open problems concludes the text.
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