
Introduction

There is no universal agreement on what constitutes a “good” mathematical problem.

One possible measurement could be the amount of interesting mathematics that it

leads to. From that point of view, the search for (closed) geodesics, originating with

the works of Hadamard [38] and Poincaré [53] and with substantial early contribu-

tions by Birkhoff [8], Morse [52], and Lyusternik and Schnirel’man [48] certainly

qualifies. The general problem is to find geodesics connecting two given points of

a Riemannian manifold or to find periodic geodesics, and to give a meaning to their

count. The most important offspring of this problem is the development of topo-

logical methods in variational calculus, generally referred to as Morse theory (or, as

Bott puts it, “Morse theory indomitable” [9]). One of its most recent incarnations is

Floer theory, a central tool in modern symplectic topology. The geodesic problem

also led to the development of computational tools in algebraic topology (spectral

sequences), and is connected to the theory of minimal models and to Hochschild and

cyclic homology.

In attempts to solve the geodesic problem one is quickly led to the study of spaces

of paths and loops on manifolds. These spaces have been the object of much interest

in recent years, both for topologists and symplectic geometers. The main purpose

of this book is to facilitate communication between these two communities by de-

veloping a common basis. From a topological point of view, a lot is known about

path and loop spaces, but the results are often scattered throughout the literature. In

particular, it can be difficult for a newcomer to the subject to extract the main lines

of thought. Hopefully, this book will serve as a guide to these topological techniques

and results. At the same time, the symplectic point of view emphasizes certain fea-

tures and algebraic structures that have been little or not studied at all. This relates in

particular to the modern development known as string topology. It seems reasonable

to expect that questions from symplectic topology will motivate new developments in

the topological study of free loop spaces, and conversely.

Genesis of this book

This book grew out of a learning seminar on “Free loop spaces” held at Strasbourg

University in 2008–2009. The seminar attracted a much bigger audience than initially

expected, and many of the speakers agreed to expand their talks into chapters for this

book. The guiding rule that we tried to follow was to keep the level of exposition

accessible to a graduate student. Our goal in this book is not to present the latest

developments, but rather to build from the basics up to some level from which the

interested reader could continue on her or his own. Some of the chapters also contain

new research material, most notably the one by Hossein Abbaspour.
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The contribution that stands out particularly is Mohammed Abouzaid’s “Sym-

plectic cohomology and Viterbo’s theorem”, which constitutes Part II of this book.

Though initially intended as one of the chapters, it grew into a fully fledged research

monograph. It does start gently by discussing some foundational facts from symplec-

tic geometry, and also from the Morse theory of finite-dimensional approximations of

free loop spaces. But rather than sketching one of the published proofs of Viterbo’s

result, it then proceeds to give a new proof, building on ideas of previous approaches

but developing an original point of view.

Unfolding the story

Let us now proceed with a more detailed description of the story that is told in this

book. Our aim here is not so much to offer a strictly historical perspective – though

we do provide some historical background – but rather to introduce the mathematical

subjects and objects discussed in the book.

We denote S1 D R=Z and, for a manifoldM , we denote its free loop space by

LM W D f WS1!M W  continuousg :

In the subsequent discussions one sometimes has to consider subspaces of LM con-

sisting of loops that satisfy additional regularity properties, but in this introduction

we will use the uniform notation LM .

Riemannian geometry. Given a Riemannian manifold .M; g/ the closed geode-

sics parametrized by S1 are the critical points of the energy functional

EWLM ! R; E./W D 1

2

Z

S1

k P.t/k2 dt :

Here the most convenient setup is that of loops of Sobolev classH 1. With this choice,

the energy functional is well-behaved in several respects: (i) it is bounded from be-

low, (ii) it satisfies the Palais–Smale condition (any sequence k such that E.k/ is

bounded and krkk ! 0 has a convergent subsequence), (iii) for a generic metric the

critical set is a disjoint union of submanifolds (one copy ofM that corresponds to the

constant loops and a countable union of disjoint circles given by nontrivial geodesics

and their shift reparametrizations), and (iv) the Hessian d2E is non-degenerate and

has finite index in the normal direction to any critical submanifold (we say that E is

Morse–Bott). Morse theory is designed to handle precisely this kind of functionals.

The outcome is a description of the loop space LM by successive attachments of

bundles over the critical submanifolds with rank given by the index of d2E. This

allows a grip on the topology of LM provided one has enough information on these

indices and on the attaching maps. Conversely, knowledge of the topology of LM
implies existence results for critical points of E.
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One significant difficulty in converting existence results for critical points of E
into existence results for geometrically distinct closed geodesics is that every noncon-

stant closed geodesic can be iterated and hence gives rise to countably many distinct

critical submanifolds. Still, in many cases this problem can be overcome. The most

powerful result in this direction is the following theorem due to Gromoll–Meyer.

Theorem (Gromoll–Meyer [35]). LetM be a simply connected closed manifold such

that the sequence fbk.LM/g, k � 0 of Betti numbers of LM with coefficients in some

field is unbounded. Then for any Riemannian metric on M there exist infinitely many

geometrically distinct closed geodesics.

The difficult content of the theorem is that the conclusion holds for any metric, not

only for a generic one. Thus the critical set of E is not assumed to be well-behaved,

and so the proof needs ideas beyond the Morse theory picture sketched above. This

theorem and related ideas from the calculus of variations are discussed in Chapter 2 of

this book. To make effective use of this result, one needs to know when its topological

assumptions hold, and this brings us to the discussion in the next section.

Minimal models. The starting point for the topological study of the free loop

space LM is the loop-loop fibration (see Chapter 1)

�M // LM

ev

��
M

Here ev is the evaluation at the origin of a loop, and �M is the based loop space,

consisting of loops starting and ending at a fixed basepoint in M . This fibration can

be used to determine the homotopy groups of LM , namely �k.LM/ ' �k.M/ ˚
�k.�M/: indeed, the section given by the inclusion of constant loops determines

a splitting of the homotopy long exact sequence (Chapter 1). However, the situation

is very different as far as homology groups are concerned. It turns out that the Leray–

Serre spectral sequence is effective in simple cases (spheres [50, 21]) but of very

limited use in general, unless one has additional geometric information about the

differentials. Indeed, the path-loop fibration with the same fiber �M and the same

base M has contractible total space, so any successful reasoning must use specific

features of the loop-loop fibration.

A general solution for the computation ofH �.LM IQ/ (and hence ofH�.LM IQ/)
for simply connected spaces M was made available by Sullivan’s theory of minimal

models ([57], see also [56]). It turns out that this theory is powerful enough to clarify

exactly when the assumptions of the Gromoll–Meyer theorem hold.

Theorem (Sullivan–Vigué-Poirrier [58]). Let M be a simply connected closed man-

ifold. The sequence of Betti numbers of LM with coefficients in Q is unbounded if

and only if H �.M IQ/ requires at least two generators as a ring.



4 Introduction

This theorem and the theory of minimal models are explained in Luc Menichi’s

Chapter 3.

A minimal model for a commutative differential graded algebra (cdga) A� over

a field k is a cdga .M�; d/ with a quasi-isomorphism M� ! A� such that M� is

free (i.e. M� D ƒV � with V � a graded vector space) and its differential satisfies

d.M�/ �MC �MC, with MC D ˚k�1M
k . We call M� a “model” because it is

quasi-isomorphic to A� and it is free as an algebra (thus, the complexity of the algebra

structure of A� has been moved into the differential for M�). We call M� “minimal”

because it contains no unnecessary generators, which is expressed by the condition

d.M�/ �MC �MC. There always exists a minimal model providedH 0 D k; when

a minimal model exists, it is unique up to isomorphism [23, Thm. 14.12].

The construction of a (real) minimal model M for a simply connected mani-

fold M proceeds inductively, starting from the de Rham algebra of differential forms

.��.M/;^; d/ and building a sequence

Q DM1
//

f1 ++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

M2
//

f2

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘ : : : // Mr

//

fr

��

MrC1
//

frC1zzttt
tt
tt
tt

: : :

��.M/

where Mr is built from Mr�1 by adjoining generators of degree r in such a way that

the map fr induces an isomorphism on cohomology in degrees � r and is injective

in degree r C 1, and the horizontal maps are inclusions. One of Sullivan’s insights

was that over Q one can still build a cdga .A�; d/ of rational differential forms, so

that the same construction applies and builds a rational minimal model for M . The

existence of Steenrod operations shows that there is no hope of extending this discus-

sion to integer coefficients, since their construction is directly based on the failure of

commutativity of the cup product on the chain level over Z (see e.g. [55, ÷5.9] or [40,

÷4.L] for the construction of Steenrod squares).

The construction of minimal models is an algebraic analogue (in a way which is

discribed e.g. by Félix, Oprea and Tanré in [24, ÷2.5.4], see also Bott–Tu [10] or

Sullivan [56] for intuitive discussions) of the Postnikov tower of the manifold M ,

which is a sequence

Y1 Y2oo : : :oo Yroo YrC1
oo : : :oo

M

i1

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

i2

hhPPPPPPPPPPPPPPP
ir

OO

irC1

<<②②②②②②②②

where the maps ir WM ! Yr are inclusions that induce isomorphisms of homotopy

groups up to degree r , and all homotopy groups of Yr in dimensions larger than r
vanish. Moreover, each map Yr ! Yr�1 is a fibration whose fiber is an Eilenberg–

MacLane space K.�r.M/; r/.
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Exploiting this point of view, one finds that the minimal model M� D ƒV � of

a simply connected manifoldM satisfies the isomorphism (see Chapter 3, ÷3)

V q ' Hom.�q.M/˝Z Q;Q/ ; (1)

hence the role played by minimal models in rational homotopy theory [23, 24].

Returning to our story, the point is that, given a (rational) minimal model for

a manifold M , there is an easy and explicit formula to obtain a (rational) minimal

model for its free loop space [58]. The algebraic construction is described in section

4 of Luc Menichi’s Chapter 3, while the intuition is derived from considering the

adjunction

Map.K;LM/ Š Map.K � S1;M/

for compact spacesK [56, 58]. Thus cohomological properties of the manifold trans-

late into cohomological properties of its free loop space, and this circle of ideas leads

to the proof of the Sullivan–Vigué-Poirrier theorem.

Hochschild and cyclic homology. The problem of computing the homology

groups H�.LM IQ/ for a closed simply connected manifold M is solved via Sulli-

van’s theory of minimal models. We now introduce a completely different point of

view which relates to Hochschild and cyclic homology.

Hochschild homology initially appeared in the study of deformation theory of as-

sociative algebras [42, 29], whereas cyclic homology is a more recent theory that

was discovered by Connes in relation with non-commutative geometry [17]. A stan-

dard reference is Loday’s book [46]. We use below the notation HH�.A;A/ and

HH �.A;A/ for the Hochschild homology/cohomology of a differential graded alge-

bra (dga) A, and HC�.A;A/, HC
�.A;A/ for their cyclic counterparts. These alge-

braic objects are described and studied from various points of view in the chapters by

Abbaspour, Menichi, Loday, and Félix.

There are two relevant theorems for our purpose of understanding free loop spaces.

Theorem (Burghelea–Fiedorowicz, Goodwillie [11, 33]). Given a manifold M de-

note S�.�M/ the strictly associative algebra of singular chains on the Moore loop

space with the Pontryagin product. We have canonical isomorphisms

HH�.S�.�X// Š H�.LX/

and

HC�.S�.�X// Š HS1

� .LX/ :

HereHS1

� .LX/ denotes the S1-equivariant homology of the free loop space LX ,

viewed as an S1-space where the action rotates the domain circle. By definition

HS1

� .LX/ is the homology of the homotopy quotient LX �S1 ES1, where ES1 is

the universal principal S1-bundle (see Chapters 1 and 2). The Moore loop space is

by definition the space of based loops parametrized by closed intervals of arbitrary

length.
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Theorem (Jones [43]). LetM be a simply connected manifold and denote by S �.M/
the cdga of singular cochains on M . We have canonical isomorphisms

HH �.S �.M/; S �.M// Š H�CdimM .LM/ ;

and

HC �.S �.M/; S �.M// Š HS1

�CdimM .LM/ :

Jones’ theorem is discussed at length in the chapter by Loday, and an explicit ex-

ample is worked out in the appendix by Latschev. As for the Burghelea–Fiedorowicz–

Goodwillie isomorphisms, besides the original papers the reader can also consult [46,

÷7.3], as well as the sketch of proof in [45].

The importance of these constructions is that Hochschild cohomology of any al-

gebra has the structure of a Gerstenhaber algebra [29]. In some relevant cases (e.g.

cochains on a smooth closed oriented manifold with coefficients in a field of charac-

teristic zero), this Gerstenhaber algebra structure lifts to a Batalin–Vilkovisky (BV)

algebra structure [60, 25], and BV structures are relevant because they are algebraic

incarnations of S1-actions. These algebraic structures and their interplay are studied

at length from the broad perspective of Calabi–Yau algebras in Chapter 6 by Hos-

sein Abbaspour. Some relations to (rational) string topology are also described in

Chapter 7 by Yves Félix, which brings us to our next topic.

String topology. In 1999 Chas and Sullivan [14] discovered a new and funda-

mental piece of structure on the homology H�.LM/, namely an associative product,

called loop product or Chas–Sullivan product. This product is discussed in the book

from various perspectives by Chataur and Oancea, Félix, Abbaspour, and Abouzaid.

Recall the loop-loop fibration �M ,! LM ! M . The based loop space �M
has a natural H -space structure from concatenating loops, and so its homology in-

herits the so called Pontryagin product. Intuitively, the loop product on H�.LM/ ties

together the Pontryagin product onH�.�M/ and the intersection product on the base

manifold M : given two cycles ˛; ˇ 2 C�.LM/ intersecting transversely one forms

another cycle ˛�ˇ of degree j˛jCjˇj�dim M by concatenating the elements of ˛ with

the elements of ˇ whenever their corresponding basepoints coincide. In other words,

one forms a fiber product of ˛ and ˇ over the evaluation maps, and then concatenates.

This product interacts well with the degree 1 operation �WH�.LM/ ! H�C1.LM/
constructed from the S1-action, called BV (for Batalin–Vilkovisky) operator. The

resulting structure is summarized as follows.

Theorem (Chas–Sullivan [14]). Let M be a closed oriented manifold. The (shifted)

homology of its free loop space

H�.LM/W D H�Cdim M .LM/

carries a natural BV-algebra structure, meaning the following : a graded commuta-

tive ring structure (loop product) and a degree 1 operator�WH�.LM/! H�C1.LM/
(action of the fundamental class of S1), whose defect from being a graded derivation

is a graded Lie bracket.
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The precise definitions and statement can be found in ÷4 of Chapter 7 by Yves

Félix. A Morse-theoretic model which also extends (with appropriate modifications)

to nonorientable manifolds M is discussed in Chapter 3 of Mohammed Abouzaid’s

monograph.

Operations of a similar nature can also be defined on the S1-equivariant homology

groupsHS1

� .LM/, and also on the cohomology groupsH �.LM/ andH �
S1.LM/. In

the original paper [14] Chas and Sullivan construct a Lie bracket, the so-called string

bracket on HS1

� .LM/, see also ÷5 of Chapter 7. Later [15] they upgraded this to the

structure of an involutive Lie bialgebra on HS1

� .LM;M/.
In the special case of surfaces these structures on the S1-equivariant homology

of the loop space existed before the work of Chas and Sullivan, and in fact this spe-

cial case was an important source of inspiration for the inception of string topology.

Goldman [32, ÷5] defined a bracket on the linear span of free homotopy classes of

closed oriented curves on a closed surface (the interesting case being that of genus

g � 2/. Intuitively, given two immersed and transverse representatives of such free

homotopy classes, one concatenates them at each intersection point and considers

the formal sum of the resulting free homotopy classes (which are in general dis-

tinct!). Goldman’s construction underlies his Hamiltonian viewpoint on regular func-

tions on character varieties. Turaev [61, ÷8.1] defined a cobracket on the quotient

space of the same linear span of free homotopy classes of oriented curves by the

1-dimensional span of the trivial homotopy class and proved compatibility with the

Goldman bracket, i.e. the bialgebra property. Turaev’s construction underlies the fact

that skein algebras of links in the cylinder lying over an oriented surface quantize the

Lie algebra structure defined by Goldman.

Both these developments were specifically related to Teichmüller theory on the

one hand and to the theory of knot and link invariants on the other hand. From this

point of view, one can only wonder at Chas and Sullivan’s marvelous discovery that

the same kind of structure exists in higher dimensions.

String topology can be viewed as a topologist’s interpretation of string theory:

the fundamental constituents of the theory are not points, but rather loops, and these

interact by merging together and forming other loops. From this point of view it is

not surprising that in a more abstract language the resulting structure is governed by

the framed little 2-discs operad and its generalizations. The importance of operads

in the context of S1-spaces was first observed by Getzler [30, 31]. Looking back, it

seems surprising that it took so long until this kind of structure was discovered in the

context of free loop spaces.

In some sense, the full mathematical implications of the ideas underlying string

topology are far from understood. The original definition of the basic operations given

by Chas and Sullivan involves various transversality considerations, and initially there

was hope that string topology could be sensitive to the underlying smooth structure

of the manifold. However, it was proved by [16, 19, 37] that the loop product and the

string bracket are homotopy invariant. It is still conceivable that more refined versions

of string topology are able to distinguish smooth structures. This is certainly one of

the central questions in the field, and first steps in that direction have been taken by
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Basu in his Ph.D. dissertation [5]. Also, the algebraic operations of string topology

have only just started to find applications regarding the geodesic problem [41].

Free loop spaces and symplectic topology. A manifold is called symplectic

if it is endowed with a smooth 2-form that is closed and non-degenerate. A classical

theorem of Darboux states that symplectic manifolds are locally isomorphic to a ball

in R2n endowed with the standard symplectic form !std D
Pn
iD1 dxi ^ dyi . In

particular, they all have even dimension, and their local behavior is completely deter-

mined by the properties of .R2n; !std /. The global topological study of symplectic

manifolds is referred to as symplectic topology. One particularly important class of

objects are the Lagrangian submanifolds, which are submanifolds of half-dimension

on which the symplectic form vanishes.

The notion of a symplectic form has its roots in the geometric structure underly-

ing classical mechanics (cf. the classical book of Arnol’d [4]). Indeed, in the mod-

ern Hamiltonian formulation of a conservative system, the phase space associated

to a given configuration space Q is nothing else than its cotangent bundle T �Q,

endowed with the canonical symplectic form, given in local coordinates by the ex-

pression
P
i dpi ^ dqi .

One of the central examples in Hamiltonian dynamics has always been the N -

body problem of celestial mechanics. Ever since Poincaré’s pioneering work (dis-

cussed at length in [12], see in particular Chapters 6–8 there), special emphasis has

been put on understanding periodic motions and their stability, because they form one

of the keys with which it is sometimes possible to make inroads into the otherwise

seemingly impenetrable complexity of these systems. In fact, Poincaré originally

suggested to study the problem of closed geodesics as a “toy model” for the study

of more general Hamiltonian systems. As with geodesics, periodic orbits generally

can be seen as critical points of a functional, namely the symplectic action functional,

which is defined on (a suitable version of) the free loop space.

At this point it may be useful to discuss analogies and differences between Rie-

mannian geometry and symplectic geometry. We have gathered a few relevant notions

from the two fields for comparison:

Riemannian metric Symplectic form

Length Area

Curve Surface

Points Curves

Energy Energy

Geodesics Harmonic maps

Minimizing geodesics Holomorphic curves

Let us discuss the first half of the list. A Riemannian metric’s main purpose is to

measure the length of curves. A symplectic form’s main purpose is to measure the
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area of surfaces. A popular viewpoint is to see curves as evolution lines of points:

by analogy, surfaces can be seen as evolution lines of loops, or strings. From this

perspective, loops or strings are to symplectic topology what points are to Riemannian

geometry, and the free loop space, seen as the “moduli space of loops on a symplectic

manifold”, plays the role of the Riemannian manifold, which is the “moduli space of

its own points”.

As for the second half of the list, we already repeatedly mentioned that geodesics

are singled out as critical points of the energy functional (see also Chapter 2). On

the symplectic side, defining an energy functional on the space of maps with

exi 2-dimensional source requires some additional data besides the symplectic form

!, which by itself is an object of too topological a nature. This piece of additional

data is the choice of a (suitably compatible) almost complex structure J that makes

the symplectic manifold M into an almost Kähler manifold, and the choice of a con-

formal structure j at the source †. Compatibility of ! and J can be formulated as

the requirement that gJ W D !. : ; J : / should be a Riemannian metric onM . Now the

energy functional on the space of maps uW†! M is the associated L2-energy with

respect to this metric. The minimizers of the resulting energy functional are so-called

J -holomorphic curves, i.e. maps uW .†; j / ! .M; J / such that du ı j D J ı du
(see the monograph by Abouzaid). They are characterized by the fact that the en-

ergy

E.u/ D
Z

†

u�!

is a purely topological quantity.

J -holomorphic curves were introduced into symplectic geometry by Gromov in

1985 [36], and have been one of the central tools ever since. A few years later,

Floer [26] invented his eponymous homology theory and in this way applied a vari-

ant of these curves in the study of the symplectic action functional of Hamiltonian

dynamics. His theory exposes the close relation between the symplectic properties of

the underlying manifold and the topology of the free loop space.

In this volume the reader can have a glimpse of two instances in which free loops

and symplectic topology mutually illuminate each other. The first instance relates to

the above point of view which sees loops as boundaries of J -holomorphic curves.

Chapter 5 explains a general argument of Fukaya [28] that proves substantial restric-

tions on Lagrangian embeddings in R2n with the standard symplectic form. First

note that each moduli space of J -holomorphic discs with boundary on a Lagrangian

submanifold L � R2n determines a chain on the free loop space LL, essentially by

considering the restriction of each map uW .D; @D/ ! .R2n; L/ to its boundary cir-

cle. These moduli spaces are indexed by relative homotopy classes in �2.R
2n; L/.

Fukaya’s important insight was that while these spaces are not compact, their com-

pactification can be described in terms of the loop bracket of string topology. The

core technical result can be stated in somewhat loose form as follows.
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Theorem (Fukaya [28]). Let L be a closed oriented spin Lagrangian submanifold of

.R2n; !st/.

(i) There is a suitable chain level model of the loop bracket such that the moduli

spaces of J -holomorphic discs with boundary on L give rise to chains in this

model, which together form a Maurer–Cartan element.

(ii) The twisted differential associated to this Maurer–Cartan element is such that

the cycle of constant loops becomes a boundary.

When combined with additional topological arguments, this theorem for example

allows one to completely classify all irreducible closed oriented 3-manifolds which

can be embedded as Lagrangian submanifolds in R6: they must be of the form†�S1
for some surface†.

The second instance relates to Hamiltonian dynamics on the phase space. It is

well known that, given a Riemannian metric on a manifold Q, the Hamiltonian flow

of the kinetic energy on T �Q is equivalent to the geodesic flow on TQ, this being an

instance of the Legendre transform. Viterbo proved [62] that the Floer cohomology

of the kinetic energy, also called symplectic cohomology of T �Q, is isomorphic over

Z=2 to H�.LQ/ in case Q is closed. Viterbo’s theorem can be loosely rephrased as

follows: up to compact perturbation, the variational theory of the Hamiltonian action

functional of a Hamiltonian on phase space that is quadratic outside a compact set is

equivalent to the variational theory of the Riemannian energy functional. This result

has numerous dynamical applications and has been reproved in various forms by sev-

eral authors [1, 3, 2, 54]. Abouzaid presents in Part II of this book yet another proof,

which works over Z, does not assume Q to be orientable, and takes into account the

BV-algebra structure carried by LQ.

Theorem (Abouzaid). Let Q be a closed manifold. There is an isomorphism of BV-

algebras with integer coefficients

SH �.T �Q/ ' H�.LQI �Q/

between the symplectic homology of T �Q, and the homology of LQ with coefficients

in an explicit local system �Q which is trivial if Q is orientable and spin.

Abouzaid’s proof is inspired by ideas from family Floer homology and makes

use of the canonical Lagrangian fibration structure of T �Q, a perspective that relates

to mirror symmetry. At this point the book definitely crosses the boundary between

classical material and new research.

We cannot resist to point out a purely topological view of this result. The cotan-

gent bundle T �Q with its canonical symplectic form is a symplectic manifold nat-

urally associated to every smooth manifold Q. Therefore one may wonder to what

extend the symplectic invariants of this symplectic manifold see the algebraic and

differential topology of Q. The theorem clarifies one aspect of this fairly general

question, but there is ample room for further research here.
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Structure of the book

After this panoramic overview of the context and content of the book, we now present

short summaries of each of the chapters, and of the research monograph. This will

hopefully help the reader who already knows what she or he is looking for to quickly

find his or her way.

Chapter 1 titled “Basics on free loop spaces” by David Chataur and Alexandru

Oancea, is an introduction to loop spaces, based or free. Its goal is to explain el-

ementary facts about their homotopy theory, topology, and geometry. The authors

first discuss homotopical properties (path-loop and loop-loop fibrations, homotopy

groups, connected components, homotopy pull-backs). The discussion subsequently

focuses on loop spaces as infinite dimensional manifolds, and as an application the

authors give a construction of the Chas–Sullivan loop product based on the Thom iso-

morphism for tubular neighborhoods of Hilbert submanifolds of finite codimension.

The diffeology point of view on loop spaces is briefly mentioned. A whole section is

dedicated to the Leray–Serre spectral sequence, which is used to perform some ex-

plicit homological computations in the case of the path-loop and loop-loop fibrations.

The final section discusses orientability of free loop spaces.

Chapter 2 titled “Morse theory, closed geodesics, and the homology of free loop

spaces” by Alexandru Oancea gives a survey of the existence problem for closed

geodesics. The central theme here is the study of the energy functional through vari-

ational methods, particularly via Morse theory. The topics that are discussed include:

Riemannian background, the Lyusternik–Fet theorem, the Lyusternik–Schnirelmann

principle of subordinated classes, the Gromoll–Meyer theorem, Bott’s iteration of the

index formulas, homological computations using Morse theory, SO.2/- vs. O.2/-
symmetries, Katok’s examples and Finsler metrics, and relations to symplectic geom-

etry. The Appendix on “The problem of existence of infinitely many closed geodesics

on the 2-sphere” by Umberto Hryniewicz gives an account of the proof of the exis-

tence of infinitely many closed geodesics on the 2-sphere.

Chapter 3 titled “Rational homotopy – Sullivan models” by Luc Menichi is an

introduction to Sullivan models from the perspective of rational homotopy theory.

Menichi carefully introduces all the algebraic constructions needed to build the Sul-

livan model of the free loop space of a simply connected manifold. The various

building blocks are illustrated in specific examples. These are both of a geometric

nature (spheres, H -spaces, projective spaces) and of a conceptual nature (products,

fiber products, multiplication, pull-backs). As an application, the author gives the

proof of the Vigué-Poirrier–Sullivan theorem, stating that the sequence of rational

Betti numbers of the free loop space of a simply connected manifold is unbounded

provided the cohomology ring of the manifold is not monogenic.

Chapter 4 titled “Free loop space and homology” by Jean-Louis Loday explains

the relationship between the (co)homology of the free loop space and the Hochschild

homology of its singular cochain algebra. All the relevant technical tools are in-

troduced from scratch, in particular simplicial and cyclic objects, and the chapter

sketches the various steps of the proofs, which are otherwise scattered around in the

literature. This chapter can be seen as a reading companion to the paper “Cyclic ho-



12 Introduction

mology and equivariant homology” by J.D.S. Jones [43], which deals with the cyclic

case.

Jean-Louis Loday died in tragic circumstances on June 6, 2012. He had given

two talks in the 2008–2009 seminar in Strasbourg, enthusiastically embracing the

idea that symplectic topologists may get interested in Hochschild and cyclic homol-

ogy theories. His chapter was submitted in May 2011 and posted on his homepage

and on the arXiv in October 2011, indicating that he thought of it as close to final. We

have left his work essentially unchanged, except for a few corrections, most of which

concern typos or language, and we have addressed the referee’s suggestion to include

more historical references by inserting several footnotes throughout the text. An ap-

pendix, written by Janko Latschev, complements Chapter 4 by a sample computation

of Hochschild and cyclic homology groups for the spheres S r , r � 2.

Chapter 6 titled “On algebraic structures of the Hochschild complex” by Hossein

Abbaspour is a study of the algebraic structures carried by the Hochschild (co)homo-

logy of a differential graded algebra (dga) under the assumption that it satisfies weak

Poincaré duality. Examples of such dga’s are Calabi–Yau algebras, derived Poincaré

duality algebras and closed Frobenius algebras. The algebraic structures that are dis-

cussed include Batalin–Vilkovisky BV-algebra structures on HH�.A;A_/ or

HH�.A;A/. The author infers a BV-structure on the homology of the free loop

spaces via the theorem of Burghelea–Fiedorowicz–Goodwillie mentioned above. He

studies for the first time these BV/coBV structures on Hochschild homology for the

case of symmetric open/commutative Frobenius dga’s, an inquiry that is motivated

by results of Chas–Sullivan [14] and Goresky–Hingston [34] for free loop spaces.

The chapter closes with an explanation of the action of Sullivan diagrams on the

Hochschild (co)chain complex of a closed Frobenius dga, recovering a result by

Tradler–Zeinalian [59] for closed Frobenius algebras.

Chapter 7 titled “Basic rational string topology” by Yves Félix gives an intro-

duction to the first string operations, the loop product and the Lie bracket. Much of

the material presented in earlier chapters is tied together here. The loop product is

presented from three different perspectives: that of the intersection product on a man-

ifold – the original one, that of normal bundles – which connects with the perspective

of Chapter 1, and that of shriek maps – which is more algebraic. The author dis-

cusses the isomorphism of BV-algebra structures over Q between the homology of

the free loop space and the Hochschild cohomology of the dga of cochains, and this

discussion connects to the chapters by Menichi, Loday, and Abbaspour.

Chapter 8 titled “Fukaya’s work on Lagrangian embeddings” by Janko Latschev

discusses some applications of string topology to the study of Lagrangian embeddings

into symplectic manifolds, as discovered by Kenji Fukaya [28]. This chapter marks

the transition from topology to symplectic geometry, and from strict algebra to ho-

motopical algebra. Fukaya’s important observation was that the compactification of

the moduli spaces of holomorphic disks with boundary on a Lagrangian submanifold

L � Cn can be expressed in terms of string topology operations, specifically the loop

bracket (and, depending on the precise implementation, possibly also its higher ana-

logues at the chain level). To derive explicit consequences, the induced Lie algebra

up to homotopy on H�.LL/ plays a key role.
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The research monograph titled “Symplectic cohomology and Viterbo’s theorem”

by Mohammed Abouzaid discusses a foundational result in symplectic topology, orig-

inally due to Viterbo, which connects Floer theory of the cotangent bundle to string

topology. The first chapter, numbered as Chapter 9, is a survey which reviews and

puts into perspective Floer homology theory. The theory is defined over Z and the

author puts particular emphasis on coherent orientations of moduli spaces and on

signs, which play a prominent role in the sequel. The setup chosen by the author is

specifically that of the cotangent bundle, but this is only for exposition purposes. The

discussion is in fact entirely general and would apply to any Liouville domain. Chap-

ter 10 discusses operations in Floer theory, and proves that Floer homology groups

carry the structure of a BV-algebra. Chapter 11 discusses string topology operations

from the perspective of finite dimensional approximation, using piecewise geodesics.

Finally, the author proves in Chapters 12, 13, and 14 Viterbo’s theorem in a new,

rather sophisticated version: the symplectic cohomology of the cotangent bundle of

a closed manifold M is isomorphic as a BV-algebra over Z to the homology of its

free loop space, the latter being twisted by some specific local system that takes into

account the failure of M to be orientable or spin.

Topics that are not discussed in this book

There are many topics related to free loop spaces which are barely discussed, if at all,

within this book. We list a few of them here since they do bear strong connections

with the topics which are covered this book, and leave it to the curious reader to

discover the relevant literature. The references we mention are just meant as first

hints here, and are by no means exhaustive.

� Loops on surfaces [32, 61, 13].

� Moduli spaces of curves [39, 51, 22].

� Operads [30, 49, 47, 27].

� Field theories. String theory [18, 20].

� Loop schemes and (derived) algebraic geometry [44, 6, 7].
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