
Introduction

In [31, 32, 33], Floer associated to a non-degenerate time-dependent Hamiltonian

H W R=Z �M ! R

on a symplectic manifold M (satisfying some technical hypotheses), a cohomology

group now called (Hamiltonian) Floer cohomology, which he showed to be indepen-

dent of H if M is closed.

In these notes, we shall be concerned with a situation where M is not closed.

Since general open symplectic manifolds are too wild to allow for an interesting de-

velopment of Floer theory, one usually restricts attention to those with controlled

behaviour outside a compact set; a natural condition to impose is that a neighbour-

hood of infinity be modelled after the cone on a contact manifold. A key insight of

Floer and Hofer [36] is that there are, on such symplectic manifolds, natural classes

of Hamiltonians whose Floer cohomology is related to the dynamics of the Reeb flow

on the contact manifold at infinity. One such class, which admits a natural order with

respect to the “rate of growth” at infinity, was introduced by Viterbo in [81, 82], and

the symplectic cohomology of such a manifold can be defined as a direct limit of Floer

cohomology groups over this class of Hamiltonians. This is the cohomology group

appearing in the title. These groups are extremely difficult to compute, except when

they vanish, but they are known to satisfy good formal properties, including a version

of the Künneth theorem [64].

Instead of considering such a general setting, we restrict ourselves to the first class

of examples for which this invariant is both non-trivial and expressible in terms of

classical topological invariants: the symplectic manifold M which we shall consider

will be the cotangent bundle T �Q of a closed differentiable manifold. In this case,

one naturally obtains a manifold equipped with a contact form by considering the

unit sphere bundle with respect to a Riemannian metric onQ, and it has been known

for quite a long time that the Reeb flow on this contact manifold is related to the

geodesic flow on the tangent bundle. Since the closed orbits of the geodesic flow are

the generators of a Morse complex which computes the homology of the free loop

space, a connection between the loop homology ofQ and the symplectic cohomology

of T �Q is therefore to be expected.

In his ICM address [79], Viterbo explained a strategy for showing that, for cotan-

gent bundles of oriented manifolds, symplectic cohomology is isomorphic to the ho-

mology of the free loop space: the idea was to relate both to an intermediate invariant

called generating function homology. This strategy was implemented in [81], and

different approaches were later considered in [3, 71]. Surprisingly, the result stated

by Viterbo turns out to be true only if the base is Spin; the key observation here is

due to Kragh [50], who showed that, for oriented manifolds, generating function ho-

mology cannot be isomorphic to symplectic cohomology because it is not functorial

under exact embeddings. Instead, Kragh proved the functoriality of a twisted version
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of generating function homology, which is isomorphic to the homology of a local

system of rank 1 on the free loop space that is trivial if and only the second Stiefel–

Whitney class of Q vanishes on all tori. A corrected version of Viterbo’s theorem for

orientable base was, as a consequence, relatively easy to state and prove [9].

These notes present a complete proof of Viterbo’s theorem relating the (twisted)

homology of the free loop space of a closed differentiable manifold to the symplectic

cohomology of its cotangent bundle. In addition, they include the verification that

the primary operadic operations coming on one side from the count of holomorphic

curves, and on the other from string topology agree. We pay particular attention to

issues of signs and gradings, both because it turns out in the end that the answer is

unexpected and because even some experts still consider them to be too mysterious

to address.

The original intent was that the account given would be complete as well as ac-

cessible to a reader familiar with basic concepts in symplectic topology, but not nec-

essarily an expert. We do not quite succeed in this goal in three respects:

1. The model for the homology of the free loop space that we use is the direct

limit of the Morse homology of spaces of piecewise geodesics. This model

introduces even more sign conventions that one has to choose and verify are

compatible. The choice was made in order to avoid having to reference or prove

the fact, well-known to all experts, but with no accessible proof available in the

literature, that higher dimensional moduli space of Floer trajectories and their

generalisations form manifolds with corners. With such a result at hand, and the

additional knowledge that the evaluation map at a fixed point defines a smooth

map from such moduli spaces to the ambient symplectic manifold, one would

be able to avoid using Morse homology, and rely instead on a more classical

theory.

2. While a complete account is given for the construction of a chain map im-

plementing Viterbo’s isomorphism, including a verification of the signs in the

proof that it is a chain map (see Lemma 3.8 in Chapter 12), the reader who

wants to see every detail of the proof that the structure maps coming from

Floer theory and string topology are intertwined by this isomorphism will have

to do quite a bit of sign checking beyond what is included. Natural orientations

are constructed on all moduli spaces that are used to show that the isomorphism

preserves operations, but beyond that, one needs to perform some symbol push-

ing to check that the relations hold as stated, rather than up to an overall sign

depending only on discrete invariants (the dimension of Q, the degree of the

inputs, . . . ).

3. The construction of a map from Floer theory to loop homology is given in

Chapter 12 and one can reasonably hope enough background has been pro-

vided that the diligent reader can follow the argument up to that point without

being necessarily equipped with expertise in these matters. However, Chapters

13 and 14, in which this map is proved to be an isomorphism, will likely prove

to be more challenging because they rely on an essentially new technique us-

ing parametrised moduli spaces of pseudoholomorphic curves with Lagrangian

boundary conditions.
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Beyond the results on the connection between symplectic cohomology and loop

homology that have already appeared in the literature (see in particular [82, 5]), sev-

eral new results are proved. First, statements and proofs are systematically generalised

from the orientable to the non-orientable case, including the construction of a natural

Z grading on symplectic cohomology, the definition of string topology operations,

and the construction of the isomorphism between (twisted) loop homology and sym-

plectic cohomology.

However, the most important new results are contained in Chapters 13 and 14,

which introduce two new mutually inverse maps between loop homology and sym-

plectic cohomology. These maps in a sense explain that Viterbo’s theorem holds be-

cause

the family of cotangent fibres fT �
q Qgq2Q defines a Lagrangian foliation of T �Q:

The motivation for introducing these maps comes from Fukaya’s ideas on family

Floer homology. Moreover, the verification that the maps are mutually inverse uses

degenerations of moduli spaces of discs with multiple punctures, which are related

to recent work in Floer theory that uses moduli spaces of annuli [41, 17, 8] (see, in

particular Figures 13.8 and 14.5). The key point is to

verify that maps in Floer theory are isomorphisms by considering degen-

erations of Riemann surfaces, rather than degenerations of Floer equa-

tions on a fixed surface.

The idea of degenerating the Floer equation goes back to Floer who used it to prove

that certain Floer cohomology groups are isomorphic to ordinary cohomology [33].

Such degenerations usually give rise to isomorphisms of chain complexes, but at the

cost of requiring very delicate analytic estimates. The method we adopt usually gives

a weaker result (only a chain homotopy equivalence), but tends to be more flexible,

and requires arguments of a more topological nature.

These notes are organised as follows: symplectic cohomology, with coefficients in

a local system over the free loop space, is defined for cotangent bundles in Chapter 9,

and three operations on it are constructed in Chapter 10 under the assumption that

the local system is transgressive. These operations give rise to a (twisted) Batalin–

Vilkovisky structure. Chapter 11 is independent of the first two, and provides a con-

struction of a Batalin–Vilkovisky structure on the twisted homology of the loop space

of a closed manifold. This structure is constructed from the Morse homology of finite

dimensional approximations. A map from symplectic cohomology to loop homology

is constructed in Chapter 12, which also includes the verification that this map in-

tertwines the operations on the two sides. A left inverse to this map is constructed in

Chapter 13, and Chapter 14 provides the proof that this left inverse is an isomorphism.
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