
Introduction

A natural, but slowly emerging program. In his PhD thesis prepared under the supervi-

sion of Graham Higman and defended in 1965 [124], and in the article that followed [125],

F.A. Garside (1915–1988) solved the Conjugacy Problem for Artin’s braid group Bn by

introducing a submonoidB+
n of Bn and a distinguished element ∆n of B+

n that he called

fundamental, and showing that every element of Bn can be expressed as a fraction of

the form ∆m
n g, with m an integer and g an element of B+

n . Moreover, he proved that

any two elements of the monoid B+
n admit a least common multiple, thus extending to

the non-abelian groups Bn some of the standard tools available in a torsion-free abelian

group Zn.

In the beginning of the 1970’s, it was soon realized by E. Brieskorn and K. Saito [36]

using an algebraic approach, and by P. Deligne [101] using a more geometric approach,

that Garside’s results extend to all generalized braid groups associated with finite Coxeter

groups, that is, all Artin (or, better, Artin–Tits) groups of spherical type.

The next step forward was the possibility of defining, for every element of the braid

monoid B+
n (and, more generally, of every spherical Artin–Tits monoid) a distinguished

decomposition involving the divisors of the fundamental element ∆n. The point is that,

if g is an element of B+
n , then there exists a (unique) greatest common divisor g1 for g

and ∆n and, moreover g 6= 1 implies g1 6= 1. Then g1 is a distinguished fragment of g
(the “head” of g); repeating the operation with g′ determined by g = g1g

′, we extract the

head g2 of g′ and, iterating, we end up with an expression g1 ···gp of g in terms of divisors

of ∆n. Although F. Garside was very close to such a decomposition when he proved that

greatest common divisors exist inB+
n , the result does not appear in his work explicitly, and

it seems that the first instances of such distinguished decompositions, or normal forms, go

back to the 1980’s in independent work by S. Adyan [2], M. El-Rifai and H. Morton [117],

and W. Thurston (circulated notes [226], later appearing as Chapter IX in the book [119]

by D. Epstein et al.). The normal form was soon used to improve Garside’s solution of

the Conjugacy Problem [117] and, extended from the monoid to the group, to serve as

a paradigmatic example in the then emerging theory of automatic groups of J. Cannon,

W. Thurston, and others. Sometimes called the greedy normal form—or Garside normal

form, or Thurston normal form—it became a standard tool in the investigation of braids

and Artin–Tits monoids and groups from a viewpoint of geometric group theory and of

theory of representations, essential in particular in D. Krammer’s algebraic proof of the

linearity of braid groups [162, 163].

In the beginning of the 1990’s, it was realized by one of us that some ideas from

F. Garside’s approach to braid monoids can be applied in a different context to ana-

lyze a certain “geometry monoid” MLD that appears in the study of the so-called left-

selfdistributivity law x(yz) = (xy)(xz). In particular, the criterion used by F. Garside to

establish that the braid monoid B+
n is left-cancellative (that is, gh = gh′ implies h = h′)

can be adapted toMLD and a normal form reminiscent of the greedy normal form exists—

with the main difference that the pieces of the normal decompositions are not the divisors

of some unique element similar to the Garside braid ∆n, but they are divisors of ele-
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ments ∆T that depend on some object T (actually a tree) attached to the element one

wishes to decompose. The approach led to results about the exotic left-selfdistributivity

law [73] and, more unexpectedly, about braids and their orderability when it turned out

that the monoid MLD naturally projects to the (infinite) braid monoidB+
∞ [72, 75, 77].

At the end of the 1990’s, following a suggestion by L. Paris, the idea arose of list-

ing the abstract properties of the monoid B+
n and the fundamental braid ∆n that make

the algebraic theory of Bn possible. This resulted in the notions of a Garside monoid

and a Garside element [99]. In a sense, this is just reverse engineering, and establish-

ing the existence of derived normal decompositions with the expected properties essen-

tially means checking that nothing has been forgotten in the definition. However, it

soon appeared that a number of new examples are eligible, and, specially after some

cleaning of the definitions was completed [80], that the new framework is really more

general than the original braid framework. One benefit of the approach is that extend-

ing the results often resulted in discovering new improved arguments no longer rely-

ing on superfluous assumptions or specific properties. This program turned out to be

rather successful and it led to many developments by a number of different authors

[7, 10, 12, 18, 19, 20, 57, 56, 68, 122, 129, 138, 139, 171, 170, 180, 198, 211, ...]. Today

the study of Garside monoids is still far from complete, and many questions remain open.

However, in the meanwhile, it soon became clear that, although efficient, the frame-

work of Garside monoids, as stabilized in the 1990s, is far from optimal. Essentially,

several assumptions, in particular Noetherianity conditions, are superfluous and they just

discard further natural examples. Also, excluding nontrivial invertible elements appears

as an artificial limiting assumption. More importantly, one of us (DK) in a 2005 preprint

subsequently published as [165] and two of us (FD, JM) [109], as well as David Bessis

in an independent research [9], realized that normal forms similar to those involved in

Garside monoids can be developed and usefully applied in a context of categories, lead-

ing to what they naturally called Garside categories. By the way, similar structures are

already implicit in the 1976 paper [103] by P. Deligne and G. Lusztig, as well as in the

above mentioned monoidMLD [75, 77], and in EG’s PhD thesis [134].

It was therefore time around 2007 for the development of a new, unifying framework

that would include all the previously defined notions, remove all unneeded assumptions,

and allow for optimized arguments. This program was developed in particular during a

series of workshops and meetings between 2007 and 2012, and it resulted in the current

text. As the above description suggests, the emphasis is put on the normal form and its

mechanism, and the framework is that of a general category with only one assumption,

namely left-cancellativity. Then the central notion is that of a Garside family, defined

to be any family that gives rise to a normal form of the expected type. Then, of course,

every Garside element ∆ in a Garside monoid provides an example of a Garside family,

namely the set of all divisors of ∆, but many more Garside families may exist—and

they do, as we shall see in the text. Note that, in a sense, our current generalization

is the ultimate one since, by definition, no further extension may preserve the existence

of a greedy normal form. However, different approaches might be developed, either by

relaxing the definition of a greedy decomposition (see the Notes at the end of Chapter III)

or, more radically, by placing the emphasis on other aspects of Garside groups rather than

on normal forms. Typically, several authors, including J. Crisp, J. McCammond and one
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of us (DK) proposed to view a Garside group mainly as a group acting on a lattice in

which certain intervals of the form [1,∆] play a distinguished role, thus paving the way

for other types of extensions.

Our hope—and our claim—is that the new framework so constructed is quite sat-

isfactory. By this, we mean that most of the properties previously established in more

particular contexts can be extended to larger contexts. It is not true that all properties

of, say, Garside monoids extend to arbitrary categories equipped with a Garside family

but, in most cases, addressing the question in an extended framework helps improving

the arguments and really capturing the essential features. Typically, almost all known

properties of Garside monoids do extend to categories that admit what we call a bounded

Garside family, and the proofs cover for free all previously considered notions of Garside

categories.

It is clear that a number of future developments will continue to involve particular

types of monoids or categories only: we do not claim that our approach is universal...

However, we would be happy if the new framework—and the associated terminology—

could become a useful reference for further works.

About this text. The aim of the current text is to give a state-of-the-art presentation of

this approach. Finding a proper name turned out to be not so obvious. On the one hand,

“Garside calculus” would be a natural title, as the greedy normal form and its variations

are central in this text: although algorithmic questions are not emphasized, most construc-

tions are effective and the mechanism of the normal form is indeed a sort of calculus. On

the other hand, many results, in particular those of structural nature, exploit the normal

form but are not reducible to it, making a title like “Garside structures” or “Garside the-

ory” more appropriate. But such a title is certainly too ambitious for what we can offer:

no genuine structure theory or no exhaustive classification of, say, Garside families, is

to be expected at the moment. What we do here is develop a framework that, we think

and hope, can become a good base for a still-to-come theory. Another option could have

been “Garside categories”, but it will be soon observed that no notion with that name is

introduced here: in view of the subsequent developments, a reasonable meaning could be

“a cancellative category that admits a Garside map”, but a number of variations are still

possible, and any particular choice could become quickly obsolete—as is, in some sense,

the notion of a Garside group. Finally, we hope that our current title, “Foundations of Gar-

side Theory”, reflects the current content in a proper way: the current text is an invitation

to further research, and does not aim at being exhaustive—reporting about all previous

results involving Garside structures would already be very difficult—but concentrates on

what seems to be the core of the subject.

The text in divided into two parts. Part A is devoted to general results and offers a

careful treatment of the bases. Here complete proofs are given, and the results are illus-

trated with a few basic examples. By contrast, Part B consists of essentially independent

chapters explaining further examples, or families of examples, that are in general more

elaborate. Here some proofs are omitted, and the discussion is centered around what can

be called the Garside aspects in the considered structures.

Our general scheme will be to start from an analysis of normal decompositions and

then introduce Garside families as the framework guaranteeing the existence of normal
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decompositions. Then the three main questions we shall address and a chart of the corre-

sponding chapters looks as follows:

• How do Garside structures work? (mechanism of normal decomposition)

Chapter III (domino rules, geometric aspects)

Chapter VII (compatibility with subcategories)

Chapter VIII (connection with conjugacy)

• When do Garside structures exist? (existence of normal decomposition)

Chapter IV (recognizing Garside families)

Chapter VI (recognizing Garside germs)

Chapter V (recognizing Garside maps)

• Why consider Garside structures? (examples and applications)

Chapter I (basic examples)

Chapter IX (braid groups)

Chapter X (Deligne–Lusztig varieties)

Chapter XI (selfdistributivity)

Chapter XII (ordered groups)

Chapter XIII (Yang–Baxter equation)

Chapter XIV (four more examples)

Above, and in various places, we use “Garside structure” as a generic and informal way to

refer to the various objects occurring with the name “Garside”: Garside families, Garside

groups, Garside maps, etc.

The chapters. To make further reference easy, each chapter in Part A begins with a sum-

mary of the main results. At the end of each chapter, exercises are proposed, and a Notes

section provides historical references, comments, and questions for further research.

Chapter I is introductory and lists a few examples. The chapter starts with classical

examples of Garside monoids, such as free abelian monoids or classical and dual braid

monoids, and it continues with some examples of structures that are not Garside monoids,

but nevertheless possess a normal form similar to that of Garside monoids, thus providing

a motivation for the construction of a new, extended framework.

Chapter II is another introductory chapter in which we fix some terminology and ba-

sic results about categories and derived notions, in particular connected with divisibility

relations that play an important rôle in the sequel. A few general results about Noethe-

rian categories and groupoids of fractions are established. The final section describes an

general method, called reversing, for investigating a presented category. As the ques-

tion is not central in our current approach (and although it owes much to F.A. Garside’s

methods), some proofs of this section are deferred to the Appendix at the end of the book.

Chapter III is the one where the theory really starts. Here the notion of a normal de-

composition is introduced, as well as the notion of a Garside family, abstractly introduced

as a family that guarantees the existence of an associated normal form. The mechanism

of the normal form is analyzed, both in the case of a category (“positive case”) and in the
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case of its enveloping groupoid (“signed case”): some simple diagrammatic patterns, the

domino rules, are crucial, and their local character directly implies various geometric con-

sequences, in particular a form of automaticity and the Grid Property, a strong convexity

statement.

Chapter IV is devoted to obtaining concrete characterizations of Garside families,

in other words, conditions that guarantee the existence of normal decompositions. In this

chapter, one establishes external characterizations, meaning that we start with a category C
and look for conditions ensuring that a given subfamily S of C is a Garside family. Various

answers are given, in a general context first, and then in particular contexts where some

conditions come for free: typically, if the ambient category C is Noetherian and admits

unique least common right-multiples, then a subfamily S of C is a Garside family if and

only if it generates C and is closed under least common right-multiple and right-divisor.

In Chapter V, we investigate particular Garside families that are called bounded. Es-

sentially, a Garside family S is bounded is there exists a map ∆ (an element in the case

of a monoid) such that S consists of the divisors of ∆ (in some convenient sense). Not all

Garside families are bounded, and, contrary to the existence of a Garside family, the exis-

tence of a bounded Garside family is not guaranteed in every category. Here we show that

a bounded Garside family is sufficient to prove most of the results previously established

for a Garside monoid, including the construction of ∆-normal decompositions, a variant

of the symmetric normal decompositions used in groupoids of fractions.

Chapter VI provides what can be called internal (or intrinsic) characterizations of

Garside families: here we start with a family S equipped with a partial product, and we

wonder whether there exists a category C in which S embeds as a Garside family. The

good news is that such characterizations do exist, meaning that, when the conditions are

satisfied, all properties of the generated category can be read inside the initial family S.

This local approach turns to be useful for constructing examples and, in particular, it

can be used to construct a sort of unfolded, torsion-free version of convenient groups,

typically braid groups starting from Coxeter groups.

Chapter VII is devoted to subcategories. Here one investigates natural questions such

as the following: if S is a Garside family in a category C and C1 is a subcategory of C, then

is S ∩ C1 a Garside family in C1 and, if so, what is the connection between the associated

normal decompositions? Of particular interest are the results involving subgerms, which

provide a possibility of reading inside a given Garside family S the potential properties

of the subcategories generated by the subfamilies of S.

In Chapter VIII, we address conjugacy, first in the case of a category equipped with

an arbitrary Garside family, and then, mainly, in the case of a category equipped with a

bounded Garside family. Here again, most of the results previously established for Gar-

side monoids can be extended, including the cycling, decycling, and sliding transforma-

tions which provide a decidability result for the Conjugacy Problem whenever convenient

finiteness assumptions are satisfied. We also extend the geometric methods of Bestvina to

describe periodic elements in this context.

Part B begins with Chapter IX, devoted to (generalized) braid groups. Here we show

how both the reversing approach of Chapter II and the germ approach of Chapter VI can

be applied to construct and analyze the classical and dual Artin–Tits monoids. We also

mention the braid groups associated with complex reflection groups, as well as several
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exotic Garside structures on Bn. The applications of Garside structures in the context of

braid groups are too many to be described exhaustively, and we just list some of them in

the Notes section.

Chapter X is a direct continuation of Chapter IX. It reports about the use of Garside-

type methods in the study of Deligne–Lusztig varieties, an ongoing program that aims at

establishing by a direct proof some of the consequences of the Broué Conjectures about

finite reductive groups. Several questions in this approach directly involve conjugacy in

generalized braid groups, and the results of Chapter VIII are then crucial.

Chapter XI is an introduction to the Garside structure hidden in the above mentioned

algebraic law x(yz) = (xy)(xz), a typical example where a categorical framework is

needed (or, at the least, the framework of Garside monoids is not sufficient). Here a

promising contribution of the Garside approach is a natural program possibly leading to

the so-called Embedding Conjecture, a deep structural result so far resisting all attempts.

In Chapter XII, we develop an approach to ordered groups based on divisibility prop-

erties and Garside elements, resulting in the construction of groups with the property that

the associated space of orderings contains isolated points, which answers one of the natu-

ral questions of the area. Braid groups are typical examples, but considering what we call

triangular presentations leads to a number of different examples.

Chapter XIII is a self-contained introduction to set-theoretic solutions of the Yang–

Baxter equation and the associated structure groups, an important family of Garside

groups. The exposition is centered on the connection between the RC-law (xy)(xz) =
(yx)(yz) and the right-complement operation on the one hand, and what is called the geo-

metric I-structure on the other hand. Here the Garside approach both provides a specially

efficient framework and leads to new results.

In Chapter XIV, we present four unrelated topics involving interesting Garside fam-

ilies: divided categories and decompositions categories with two applications, then an

extension of the framework of Chapter XIII to more general RC-systems, then what is

called the braid group of Zn, a sort of analog of Artin’s braid group in which permuta-

tions of {1, ... , n} are replaced with linear orderings of Zn, and, finally, an introduction

to groupoids of cell decompositions that arise when the mapping class group approach to

braid groups is extended by introducing sort of roots of the generators σi.
The final Appendix contains the postponed proofs of some technical statements from

Chapter II for which no complete reference exists in literature.

Exercises are proposed at the end of most chapters. Solutions to some of them, as

well as a few proofs from the main text that are skipped in the book, can be found at the

address

www.math.unicaen.fr/∼garside/Addenda.pdf

as well as in arXiv:1412.5299.
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Broué, Matthieu Calvez, Ruth Corran, Pierre-Louis Curien, Matthew Dyer, Jean Fro-

mentin, Volker Gebhardt, Tomas Gobet, Juan González-Meneses, Yves Guiraud, Tatiana
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About notation

We use

• N : set of all nonnegative integers

• Z : set of all integers

• Q : set of all rational numbers

• R : set of all real numbers

• C : set of all complex numbers

As much as possible, different letters are used for different types of objects, according to

the following list:

• C : category

• S,X : generic subfamily of a category

• A : atom family in a category

• x, y, z: generic object of a category

• f, g, h: generic element (morphism) in a category, a monoid, or a group

• a, b, c, d, e: special element in a category (atom, endomorphism, etc.)

• ǫ: invertible element in a category

• r, s, t: element of a distinguished subfamily (generating, Garside, ...)

• i, j, k : integer variable (indices of sequences)

• ℓ,m, n, p, q: integer parameter (fixed, for instance, length of a sequence)

• a, b, c : constant element of a category or a monoid for concrete examples (a special

notation to distinguish from variables)

• u, v, w : path (or word)

• α, β, γ : binary address (in terms and binary trees)

• φ, ψ, π : functor


