In the study of the spectrum of the Dirac operator, it is natural and useful to consider examples, and the archetypal examples in Riemannian Geometry are the *symmetric spaces*. For a symmetric space, the spectrum of the Dirac operator can be (theoret-ically) computed by classical harmonic analysis methods.

The aim of this part is to present a method for the determination of the spectrum of the Dirac operator on a spin, compact, simply connected and irreducible symmetric space, and to give the explicit computation of the spectrum in those three cases:

- (1) spheres (\mathbb{S}^n , can), $n \ge 2$;
- (2) complex projective spaces ($\mathbb{C}P^m$, can), $m = 2q + 1, q \ge 0$;
- (3) quaternionic projective spaces ($\mathbb{H}P^m$, can), $m \ge 1$.

Note that the holonomy of those manifolds is, respectively, SO_n , U_{2q+1} and $Sp_1 \cdot Sp_m$, so they are standard examples of, respectively, Riemannian, Kähler and quaternion-Kähler manifolds.