
Introduction

A quasi-Banach space A(Rn), with A(Rn) ↪→ S′(Rn) (continuous embedding), is
called homogeneous if for some σ ∈ R,

‖ f (λ ·) |A(Rn)‖= λ
σ‖ f |A(Rn)‖, λ > 0, f ∈ A(Rn). (0.1)

The defining quasi-norm ‖ · |A(Rn)‖ is said to be admissible if it makes sense to test
any f ∈ S′(Rn) for whether it belongs to this space or not. A typical example is

‖ f |
∗
Bs

p,q(Rn)‖=
(∫ ∞

0
t−sq/2∥∥Wt f |Lp(Rn)

∥∥q dt
t

)1/q
(0.2)

with 0 < p,q≤ ∞, s < 0, based on the Gauss–Weierstrass semi-group
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, f ∈ S′(Rn), (0.3)

x ∈ Rn, t > 0. If it only makes sense to test some f ∈ S′(Rn) for whether they
belong to A(Rn), then we speak about regional quasi-norms. A typical example is
the Lebesgue space Lp(Rn), 1≤ p≤ ∞, normed by
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(based on the usual identification of locally integrable functions with the equivalence
classes generated by them). A less obvious example is given by
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f ∈ S′(Rn)reg, where
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and s/2<m∈N. Equivalent quasi-norms in a fixed space A(Rn) are called domestic.
A typical example is the famous Littlewood–Paley assertion for Lp(Rn), 1 < p < ∞,
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where χ j,m is the characteristic function of the cube Q j,m = 2− jm+2− j(0,1)n, j ∈Z,
m ∈ Zn, whereas h j

G,m stands for the related homogeneous Haar functions (orthonor-
mal basis in L2(Rn)). Quite obviously, the norm on the right-hand side of (0.7) is
neither admissible in S′(Rn) nor regional with S′(Rn)reg as the underlying region.
On the other hand, domestic norms based on homogeneous Haar bases {h j

G,m} can
be extended to further homogeneous spaces, for example,
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Next we speak about community quasi-norms. In other words, within a fixed com-

munity (or family) of spaces
∗
As

p,q(Rn) one has equivalent quasi-norms based on the
same building blocks (for example, the homogeneous Haar functions h j

G,m). Further
examples of domestic and (with some care) community quasi-norms are given by
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where {ϕ j} j∈Z is the usual homogeneous dyadic resolution of unity in Rn \{0}.
We deal mainly with tempered homogeneous quasi-Banach spaces A(Rn) in the

framework of the dual pairing
(
S(Rn),S′(Rn)

)
. These spaces are requested to satisfy

S(Rn) ↪→ A(Rn) ↪→ S′(Rn), (0.10)

and for some σ ∈ R,

‖ f (λ ·) |A(Rn)‖= λ
σ‖ f |A(Rn)‖, λ > 0, f ∈ A(Rn) (0.11)

(also admitting equivalences). It is the main aim of these notes to develop a related
theory for the spaces
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A ∈ {B,F}. This will be done in Chapter 3, step by step, first for spaces with s < 0,
then for some spaces with s > 0 and finally for all spaces according to (0.12). The
respective Theorems 3.3, 3.5 for s < 0, 3.11, 3.20 for s > 0, and, in particular, 3.24
may be considered our main results. In particular, all these spaces can be introduced
in terms of admissible quasi-norms, for example,
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with p,q,s as in (0.12), s/2 < m ∈ N0 and − n
r = s− n

p . Then one can switch to do-
mestic and community quasi-norms with (0.9) as a prototype. Within a fixed commu-
nity one can argue quite often as in the case of the inhomogeneous spaces As

p,q(Rn).

Afterwards one returns to the tempered homogeneous spaces
∗
As

p,q(Rn) in terms of
admissible quasi-norms. This gives the possibility of transferring assertions for the

inhomogeneous spaces As
p,q(Rn) to spaces

∗
As

p,q(Rn) with (0.12). However, we do not
explore this ground comprehensively, leaving room for future research. But we touch
briefly upon some relevant topics which may be worth studying in greater detail.
There is even feedback where inhomogeneous spaces As

p,q(Rn) benefit from homo-

geneous spaces
∗
As

p,q(Rn) with 0< p<∞, 0< q≤∞, n
(

max(1/p,1)−1
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Then one has
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which means that these inhomogeneous spaces As
p,q(Rn) and their homogeneous

counterparts
∗
As

p,q(Rn) coincide locally. This can be used to improve already known
local homogeneity assertions for Fs

p,q(Rn) essentially (Corollary 3.55).
The preceding Chapters 1 and 2 are of an auxiliary nature. The restrictions for

s in (0.12) may be disturbing from the point of view of a comprehensive theory of
function spaces. But (0.12) covers in particular the tempered homogeneous spaces
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n
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n
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n ≥ 2, which play a significant role in the recent theory of the Navier–Stokes equa-
tions ( n

p −1 = s critical spaces, n
p −1 < s < n

p supercritical spaces). This may serve
as motivation to deal with tempered homogeneous spaces as indicated above. We
very briefly insert some comments about distinguished spaces and the role of homo-
geneity for Navier–Stokes equations in Chapter 1. Nothing will be used later on and
it can simply be skipped (in the belief that there are good reasons for dealing with
the spaces in (0.12)). Usually one studies homogeneous spaces

Ȧs
p,q(Rn), 0 < p,q≤ ∞, s ∈ R, (0.16)

A ∈ {B,F}, in the framework of
(
Ṡ(Rn), Ṡ′(Rn)

)
. In Chapter 2 we give a very brief

introduction to some relevant aspects. But again, nothing will play a role later on.
In addition we collect in Chapters 1 and 2 some basic notation and clarify what is
meant by heat kernels, Gauss–Weierstrass semi-groups, and how they are related to
function spaces, supported mainly by relevant references. In other words, the reader
may concentrate on Chapter 3, occasionally consulting, as necessary, the preceding
chapters for notation and references.



xii Introduction

We fix our use of ∼ (equivalence) as follows. Let I be an arbitrary index set.
Then

ai ∼ bi for i ∈ I (equivalence), (0.17)

for two sets of positive numbers {ai : i ∈ I} and {bi : i ∈ I}, means that there are
two positive numbers c1 and c2 such that

c1 ai ≤ bi ≤ c2ai for all i ∈ I. (0.18)


