
Introduction

In this book, we study Gromov’s metric geometric theory [22, §3 1
2 ] on the space of

metric measure spaces, which is based on the idea of the concentration of measure
phenomenon due to Lévy and Milman. Although most of the details are omitted
in the original article [22, §3 1

2 ], we present complete and detailed proofs for some
main parts, in which we prove several claims that are not mentioned in any literature.
We also discuss concentration with a lower bound of curvature, which is originally
studied in [20].

The concentration of measure phenomenon was first discovered by P. Lévy [30]
and further put forward by V. Milman [37, 38]. It has many applications in various
areas of mathematics, such as geometry, analysis, probability theory, and discrete
mathematics (see [28, 41] and the references therein). The phenomenon states that
any 1-Lipschitz continuous function is close to a constant on a domain with almost
full measure, which is often observed for high-dimensional spaces. As a most fun-
damental example, we observe it in the high-dimensional unit spheres Sn(1)⊂Rn+1,
i.e., any 1-Lipschitz continuous function on Sn(1) is close to a constant on a domain
with almost full measure if n is large enough. In general, it is described for a se-
quence of metric measure spaces. In this book, we assume a metric measure space,
an mm-space for short, to be a triple (X ,dX ,µX ), where (X ,dX ) is a complete sep-
arable metric space and µX is a Borel probability1 measure on X . A sequence of
mm-spaces Xn, n = 1,2, . . . is called a Lévy family if

lim
n→∞

inf
c∈R

µXn(| fn− c|> ε) = 0

for any sequence of 1-Lipschitz continuous functions fn : Xn→ R, n = 1,2, . . . , and
for any ε > 0. The sequence of the unit spheres Sn(1), n = 1,2, . . . is a Lévy family,
where the measure on Sn(1) is taken to be the Riemannian volume measure normal-
ized as the total measure to be 1.

One of central themes in this book is the study of the observable distance. The
observable distance dconc(X ,Y ) between two mm-spaces X and Y is, roughly speak-
ing, the difference between 1-Lipschitz functions on X and those on Y (see Defi-
nition 5.3 for the precise definition). A sequence of mm-spaces is a Lévy family
if and only if it dconc-converges to a one-point mm-space, where we note that any
1-Lipschitz function on a one-point mm-space is constant. Thus, dconc-convergence
of mm-spaces can be considered as a generalization of the Lévy property. We call
dconc-convergence of mm-spaces concentration of mm-spaces. A typical example of

1In [22, §3 1
2 ], the measures of mm-spaces are not necessarily probability measures. However, all our proofs

easily extend to the case of nonprobability mm-spaces with finite total measure.
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a concentration Xn→ Y is obtained by a fibration

Fn→ Xn→ Y

such that {Fn}∞
n=1 is a Lévy family, which example makes us notice that concentra-

tion of mm-spaces is an analogue of collapsing of Riemannian manifolds. Concen-
tration is strictly weaker than measured-Gromov–Hausdorff convergence and is more
suitable for the study of a sequence of manifolds whose dimensions are unbounded.

Although dconc is not easy to investigate, we have a more elementary distance,
called the box distance, between mm-spaces. The box distance function is closely
related to the well-known measured-Gromov–Hausdorff convergence of mm-spaces
(see Remark 4.34). Concentration of mm-spaces is equivalent to convergence of
associated pyramids using the box distance function, where a pyramid is a family
of mm-spaces that forms a directed set with respect to some natural order relation
between mm-spaces, called the Lipschitz order (see Definitions 2.10 and 6.3). We
have a metric ρ on the set of pyramids, say Π, induced from the box distance function
(see Definition 6.21 and [54]). Each mm-space X is associated with the pyramid, say
PX , consisting of all descendants of the mm-space (i.e., smaller mm-spaces with
respect to the Lipschitz order). Denote the set of mm-spaces by X . We prove that
the map

ι : X 3 X 7−→ PX ∈Π

is a 1-Lipschitz continuous topological embedding map with respect to dconc and ρ .
This means that concentration of mm-spaces is expressed only by the box distance
function, since ρ is induced from the box distance function. We also prove that Π

is a compactification of X with dconc. Such a concrete compactification is far more
valuable than just an abstract one.

It is also interesting to study a sequence of mm-spaces that dconc-diverges but
have proper asymptotic behavior. A sequence of mm-spaces Xn, n= 1,2, . . . is said to
be asymptotic if the associated pyramid PXn converges in Π. We say that a sequence
of mm-spaces asymptotically concentrates if it is a dconc-Cauchy sequence. Any
asymptotically concentrating sequence of mm-spaces is asymptotic. For example,
the sequence of the Riemannian product spaces

S1(1)×S2(1)×·· ·×Sn(1), n = 1,2, . . .

dconc-diverges and asymptotically concentrates (see Example 7.36). The sequence
of the spheres Sn(

√
n) of radius

√
n, n = 1,2, . . . does not even asymptotically con-

centrate but is asymptotic (see Theorem 7.40, Corollary 7.42, and [54]). One of
main theorems in this book states that the map ι : X → Π extends to the dconc-
completion of X , so that the space Π of pyramids is also a compactification of the
dconc-completion of the space X of mm-spaces (see Theorem 7.27). Let γn denote
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the standard Gaussian measure on Rn. Then, the associated pyramids PSn(
√

n) and
P(Rn,γn) both converge to a common pyramid as n→∞ (see Theorem 7.40 and [54]),
which can be thought as a generalization of the Maxwell–Boltzmann distribution law
(or the Poincaré limit theorem).

The spectral property is deeply related with the asymptotic behavior of a se-
quence of mm-spaces. The spectral compactness of a family of mm-spaces is defined
by the Gromov–Hausdorff compactness of the energy sublevel sets of L2 functions
(see Definition 7.44) and is closely related with the notion of asymptotic compact-
ness of Dirichlet energy forms (see [26, 27]). For a family of compact Riemannian
manifolds, it is equivalent to the discreteness of the limit set of the spectrums of the
Laplacians of the manifolds (see Proposition 7.50). We prove that any spectrally
compact and asymptotic sequence of mm-spaces asymptotically concentrates if the
observable diameter is bounded from above (see Theorem 7.52). We say that a se-
quence of mm-spaces spectrally concentrates if it is spectrally compact and asymp-
totically concentrates. For example, let

Xn := F1×F2×·· ·×Fn

be the Riemannian product of compact Riemannian manifolds Fn, n = 1,2, . . . . If
λ1(Fn) diverges to infinity as n→∞, then {Xn} spectrally concentrates (see Corollary
7.54).

There is a notion of dissipation for a sequence of mm-spaces, which is opposite
to concentration and means that the mm-spaces disperse into many small pieces far
apart each other. A sequence of mm-spaces δ -dissipates, δ > 0, if and only if any
limit of the associated pyramids contains all mm-spaces with diameter ≤ δ . The
sequence infinitely dissipates if and only if the associated pyramid converges to the
space of mm-spaces (see Proposition 8.5). On the one hand, for a disconnected
mm-space F , the sequence of the nth power product spaces Fn, n = 1,2, . . . , with
l∞ metric, δ -dissipates for some δ > 0 (see Proposition 8.6). On the other hand,
the nondissipation theorem (Theorem 8.8) states that the sequence {Fn} does not
δ -dissipate for any δ > 0 if F is connected and locally connected. The proof of
the nondissipation theorem relies on the study of the obstruction condition for dis-
sipation. For example, a sequence of compact Riemannian manifolds Xn does not
dissipate if λ1(Xn) is bounded away from 0 (see Corollary 8.14), which is one of the
essential statements in the proof of the nondissipation theorem.

It is interesting to study the relation between curvature and concentration. The
concept of Ricci curvature bounded below is generalized to the curvature-dimension
condition for an mm-space by Lott–Villani–Sturm [34, 56, 57] via the optimal mass-
transport theory. We prove that if a sequence of mm-spaces satisfying the curvature-
dimension condition concentrates to an mm-space, then the limit also satisfies the
curvature-dimension condition (see [20]). This stability result of the curvature-
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dimension condition has an application to the eigenvalues of the Laplacian on Rie-
mannian manifolds. In fact, under the nonnegativity of Ricci curvature, the kth eigen-
value of the Laplacian of a closed Riemannian manifold is dominated by a constant
multiple of the first eigenvalue, where the constant depends only on k and is inde-
pendent of the dimension of the manifold. This dimension-free estimate cannot be
obtained by the ordinary technique. Combining this estimate with Gromov–V. Mil-
man’s and E. Milman’s results [21, 35, 36], we have the following equivalence:

{Xn} is a Lévy family ⇐⇒ λ1(Xn)→+∞ ⇐⇒ λk(Xn)→+∞ for some k

for a sequence of closed Riemannian manifolds Xn, n = 1,2, . . . , with nonnegative
Ricci curvature.

The organization of this book is as follows.
In Chapter 1, we define weak and vague convergence of measures, the Prohorov

distance, transport plan, the Ky Fan metric, convergence in measure of maps, and
present those basic facts.

Chapter 2 is devoted to a minimal introduction to the Lévy–Milman concentra-
tion phenomenon. We define the observable diameter, the separation distance, and
the Lipschitz order. We prove the normal law á la Lévy for Sn(

√
n) stating that

any limit of the push-forward of the normalized volume measure on Sn(
√

n) by a
1-Lipschitz continuous function on Sn(

√
n) as n→∞ is the push-forward of the one-

dimensional standard Gaussian measure by some 1-Lipschitz continuous function on
R. From this we derive the asymptotic estimate of the observable diameter of Sn(1)
and CPn. We also prove the relation between the kth eigenvalue of the Laplacian
and the separation distance for a compact Riemannian manifold, which yields some
examples of Lévy families.

Chapter 3 presents some basic facts on metric geometry, such as, the Hausdorff
distance and the Gromov–Hausdorff distance. We also prove the equivalence be-
tween Gromov–Hausdorff convergence and convergence of the distance matrices of
compact metric spaces.

Chapter 4 deals with the box distance between mm-spaces, which is one of fun-
damental tools in this book. We prove that the Lipschitz order is stable under box
convergence, and that any mm-space can be approximated by a monotone nonde-
creasing sequence of finite-dimensional mm-spaces. We investigate the convergence
of finite product spaces to the infinite product.

Chapter 5 discusses the observable distance and the measurements, where the N-
measurement of an mm-space is defined to be the set of push-forwards of the measure
of the mm-space by 1-Lipschitz maps to RN with l∞ norm. The measurements have
the complete information of the mm-space and can be treated more easily than the
mm-space itself. We prove that the concentration of mm-spaces is equivalent to the
convergence of the corresponding measurements, which is one of the essential points
for the investigation of convergence of pyramids.
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Chapter 6 is devoted to the space of pyramids. We define a metric on the space
of pyramids and prove its compactness. The metric is first introduced in this book
and [54] simultaneously.

In Chapter 7, we finally complete the proof of the theorem that the dconc-comple-
tion of the space of mm-spaces is embedded into the space of pyramids, which is
one of main theorems in this book. We study the asymptotic concentration of finite
product spaces and the asymptotic property of the pyramidsPSn(

√
n) andP(Rn,γn) (see

[54]). We also study spectral compactness and prove that any spectrally compact and
asymptotic sequence of mm-spaces asymptotically concentrates if the observable
diameter is bounded from above.

Chapter 8 discusses dissipation. After the basics of dissipation, we present some
examples of dissipation. One of the interesting examples is the sequence of the
spheres Sn(rn) of radius rn. It infinitely dissipates if and only if rn/

√
n→ +∞ as

n→ ∞ (see [54]). We also study some conditions for nondissipation and prove the
nondissipation property of product spaces.

The final Chapter 9 is an exposition of [20]. We prove the stability theorem of
the curvature-dimension condition for concentration, and apply it to the study of the
eigenvalues of the Laplacian on closed Riemannian manifolds. We also prove the
stability of a lower bound of Alexandrov curvature.
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