
323

The last part of this book is devoted to describing the path that, from 1882
to 1907, led from the uniformization of algebraic Riemann surfaces by the
method of continuity to the general uniformization theorem as we know it to-
day. Gray has written a very detailed study [Gra1994] devoted to the Riemann
Mapping Theorem [Gra1994] to which we may refer the reader. We recom-
mend also earlier entries in the Encyklopädie der mathematischen Wissenschaften:
[OsgW1901, Bie1921].

In 1882, Klein and Poincaré became convinced that every algebraic Riemann
surface could be uniformized by the sphere, the plane, or the unit disc. Although
some of the details of the proof of this marvellous result remained to be filled
in, Poincaré, never lacking in mathematical audacity, was already launched on
the conquest of much wider territory, attempting to uniformize Riemann surfaces
associated with arbitrary, so not necessarily algebraic, germs of analytic functions.

The memoir [Poin1883b] Poincaré published in 1883 begins with a statement
of the theorem of uniformization of functions that he proposes to prove:

Let y be any analytic function of x, not single-valued. One can always find
a variable z such that x and y are single-valued functions of z.

What is the missing link between this statement and what we call today the uni-
formization theorem for Riemann surfaces? In his memoir, Poincaré recalls how
to construct from a “non-single-valued analytic function y of the variable x” an
abstract Riemann surface extended over the plane of the variable x, on which y

is naturally defined as a single-valued analytic function. In modern terminology,
given a germ of an analytic function y of a variable x, one constructs the maximal
Riemann surface on which one can extend the germ y to a (single-valued) analytic
function (see Box II.1): this is the Riemann surface associated with the germ y.
Finding a variable z such that x and y are single-valued functions of z comes
down to uniformizing the Riemann surface associated with the germ y, that is, to
parametrizing this surface with a single complex variable z. In 1883, Poincaré
did not succeed in obtaining a parametrization that is a local biholomorphism at
every point, and was forced to allow for branch points. His precise result was as
follows:

Theorem. — Let S a Riemann surface admitting a non-constant meromorphic
function. Then there exists a branched covering map π : U → S, where U is a
bounded open subset of C.

The uniformization theorem for functions announced by Poincaré follows im-
mediately from this result: if S is the Riemann surface associated with a germ of
an analytic function y of a complex variable x, and if U is the open set in C given
by the above theorem, then x and y may be viewed as single-valued functions on
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the surface S, and therefore as single-valued functions of the coordinate z of the
complex plane containing U .

The concept of the universal cover of a Riemann surface plays an important
role in Poincaré’s memoir. As far as we know, it is in this memoir that there ap-
pears for the very first time a definition of the universal cover of the Riemann
surface associated with a germ of a function (or with a finite family of germs of
functions; see Box XI.2 below). In 1898, Osgood reckoned this definition a cru-
cial feature (and perhaps the most important contribution) of Poincaré’s memoir
( [OsgW1898]). To establish the above theorem, Poincaré shows the existence of
a Riemann surface Σ that is a branched covering space of S and is such that its
universal covering space Σ̃ is biholomorphic to a bounded open subset of C. To
achieve this, it suffices — as Riemann had observed — to find a Riemann sur-
face Σ that is a branched covering of S such that Σ̃ admits a positive harmonic
function with a logarithmic pole.

The basic tool in Poincaré’s proof is the following result, which he attributes
to Schwarz, and which does indeed follow immediately from techniques invented
by the latter in [Schw1870a] (even if it would seem that Schwarz himself was
unaware in 1870 of having effectively established such a general result):

Theorem. — Let Ω be a region of compact closure, with analytic or polygonal
boundary, of a Riemann surface. Then Ω admits a Green’s function13. It follows
that if Ω is simply connected, then it is biholomorphic to the unit disc in C.

Poincaré considers an exhaustion of a simply connected Riemann surface Σ̃
by means of simply connected regions with compact closure (however without
justifying its existence); he applies Schwarz’s theorem to each of these regions,
obtaining thereby a sequence of Green’s functions; if this sequence converges,
then the limit will automatically be a positive harmonic function defined on Σ̃
with a logarithmic pole, and Σ̃ will therefore be biholomorphic to an open subset
of the unit disc. However, in general one does not obtain a convergent sequence of
Green’s functions, and this is why, instead of considering the universal cover S̃ of
the Riemann surface S of interest, Poincaré has to resort to the universal cover Σ̃
of a branched covering space Σ of S.

The result Poincaré obtained in 1883 represents an exceptional advance from
the point of view of analytic functions, but is much less satisfactory if one is
interested in Riemann surfaces for their own sake, and not merely as a simple tool
to be used to investigate analytic functions.

Recall that Klein and Poincaré had shown (or at least believed they had shown)
that the universal cover S̃ of an algebraic Riemann surface S is always biholo-

13Recall that a Green’s function on Ω is a positive, harmonic function with a logarithmic pole,
that tends to zero in the neighborhood of the boundary of Ω.
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morphic to the sphere, complex plane, or unit disc, and that therefore S can be
identified with the quotient of one of these surfaces by the action of a group of
automorphisms. In the case where S is not algebraic, Poincaré managed “only” to
prove in 1883 that S has a branched covering space Σ̃ biholomorphic to a bounded
simply connected region U of C. The primary drawback in this result consists
in the fact that one has no control over the region U, which a priori depends on
the surface S. (Note that at that time the Riemann Mapping Theorem had been
proved rigorously only in special cases.) And even if one knew how to identify the
region U , the presence of branch points makes for a considerably weaker result:
indeed, for a fixed Riemann surface S and region U of C, there exist in general
infinitely many branched coverings π : U → S not obtained from one another
by composing with biholomorphisms of U . And lastly, one is hard put to content
oneself with Poincaré’s result when one reflects that it yields a “uniformization”
of the complex plane by means of an open subset of the unit disc!14

In his address to the International Congress of Mathematicians in 1900
[Hil1900b], Hilbert praises Poincaré’s work on algebraic Riemann surfaces and
also his uniformization theorem for analytic functions, but also emphasizes the
imperfections of the latter result. In view of the importance of the question, he
reckons it essential to try to obtain a result for general Riemann surfaces as satisfy-
ing as that obtained by Klein and Poincaré for algebraic surfaces. This constitutes
his 22nd problem.

An initial advance was made on the problem in 1900 by W. Osgood, in proving
the following result:
Theorem. — Every simply connected region of the complex plane that admits a
positive harmonic function with a logarithmic pole (for example, every bounded
simply connected region) is biholomorphic to the unit disc.

Thus at this stage it was known that every Riemann surface has a branched
covering biholomorphic to the unit disc in C. It took another seven years before
the uniformization theorem as we know it today was proved . . .

Over the first several years of the 20th century there were various unsuccessful
attempts to solve Hilbert’s 22nd problem. We mention, in particular, Johansson
( [Joh1906a, Joh1906b]). Then at the meeting of May 11, 1907 of the Göttingen
Scientific Society, Klein presented a note by P. Koebe [Koe1907b] announcing
that he had proved the general uniformization theorem:
Theorem. — Every simply connected Riemann surface (supporting a non-
constant meromorphic function15) is biholomorphic to the Riemann sphere, the
complex plane, or the unit disc.

14It is interesting to read Osgood’s presentation of Poincaré’s result and its inadequacies in a
series of talks given in Cambridge in 1898 [OsgW1898].

15At that time Riemann surfaces were always conceived as extended over the plane. However,
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The case of compact simply connected Riemann surfaces (homeomorphic to
the sphere S2) had been dealt with already in papers by Schwarz and Neumann:
they are all biholomorphic to the Riemann sphere. Thus there remained only the
case of non-compact simply connected Riemann surfaces. Given such a Riemann
surface S, Koebe considers an exhaustion of it by means of an increasing sequence
(Dn )n≥0 of simply connected regions with compact closure and with polygonal
boundaries, and chooses a fixed point p0 ∈ D0. Schwarz had shown the existence,
for each n, of a biholomorphism ϕn from Dn onto the unit disc of C, sending
the prescribed point p0 to the origin. If the sequence of moduli of the derivatives
of the ϕn at p0 could be shown to be bounded, then from work of Harnack and
Osgood it would follow that the surface S is uniformized by the unit disc. Thus the
whole of Koebe’s paper is devoted to showing that, if the sequence of derivatives
of the ϕn at p0 should diverge, one can nonetheless construct from the sequence
(ϕn )n≥0 a different sequence (ψn )n≥0 of biholomorphisms that converges to a
biholomorphism between S and the complex plane. The key argument involved
in constructing the sequence (ψn )n≥0 is very subtle, and contains in embryo a
version of the so-called Koebe’s Quarter Lemma. But even if it is difficult to
grasp16, Koebe’s proof is nevertheless perfectly rigorous.

Six months later, an article by Poincaré [Poin1907] appeared in Acta Mathe-
matica in which he also proposed a proof of the general uniformization theorem,
one very different from Koebe’s17. For a given non-compact, simply connected
Riemann surface S, Poincaré considers the region A obtained by removing a small
disc. He notes that the surface S will be biholomorphic to the complex plane or
the unit disc provided A admits a Green’s majorant, that is, a positive harmonic
function with at least one logarithmic pole. It then remains to construct such a
function. To this end, Poincaré again generalizes the alternating procedure in-
vented by Schwarz, and gives a physical interpretation of the procedure he de-
fines, which he calls the “sweeping method”.18 Suppose one wishes to construct
on a surface A a function u with a logarithmic pole at a point p0, harmonic on
A \ {p0}, and tending to zero at infinity. Such a function may be thought of as
given by the electric potential associated with a negative point charge situated at

Koebe’s proof works for abstract Riemann surfaces.
16It is appropriate to mention that the article [Koe1907a] was in the form of a communication

to the Göttingen Scientific Society, and that the details suppressed in such communications were
often intended for publication in a “real” mathematics journal. In fact Koebe continued for the
rest of his life to reprise different proofs of the theorem in order to make it more accessible and
more general, and improve its presentation. See, for instance, [Koe1907a, Koe1907b, Koe1908a,
Koe1909a, Koe1909b, Koe1909c, Koe1909d, Koe1910b, Koe1911].

17Poincaré did not know of Koebe’s proof when he was preparing his article, submitted in March
1907.

18Usually translated into English as the “scanning method”. Trans
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the point p0. To construct it, Poincaré imagines the following:

— starting with an arbitrary function u0 : A→ R with a logarithmic pole at p0
and tending to zero at infinity, visualized as the potential associated with a
distribution of charge ρ0 := ∆u0;

— letting each small region of the surface gradually become more and more
“conducting” in order to be able to “sweep” the charges (except for that at
p0, which is to be maintained artificially in place) towards the boundary of
each of these regions. One hopes that at the end of this process, all charges
(save that at p0) will have been “swept to infinity”; the associated potential
will then give the desired function. In mathematical terms, one covers A
by holomorphic discs, and constructs a sequence (un )n≥0 of continuous
functions, with the property that un+1 is the same as un everywhere except
on one of the discs, on which it is harmonic.

Of course, the bulk of the work is involved in showing that the sequence (un )n≥0
converges. As so often, Poincaré’s proof, although not a model of rigor, contains
luminous intuitions. In particular, he uses a physical argument (the conservation
of the total electric charge when a disc in the Riemann surface is “made conduct-
ing”) difficult to justify mathematically without using the theory of distributions.

Poincaré’s memoir appeared at the beginning of November 1907. At the end
of that same month, Koebe, who had read Poincaré’s memoir avidly, submitted a
new note to the Göttingen Scientific Society [Koe1907b], containing a proof of
the general uniformization theorem largely inspired by Poincaré’s proof. In fact
Koebe reprises the global strategy of Poincaré’s proof, but with the “sweeping
method” replaced by a much more direct construction based on an exhaustion
of A by regions of compact closure, thus gaining in simplicity (and rigor) what
had been lost in physical intuition.

In the introduction to Part B, we explained how in 1881 Klein was an es-
tablished professor who soon found himself outmatched by the young Poincaré.
In 1907 it was Poincaré who was the established one and who must have felt a
little hustled by the young Koebe, only 25 years old. The following anecdote
shows clearly the difference in status between the two rivals: at the International
Congress in Rome in 1908, both Koebe and Poincaré gave addresses. Koebe’s
was entitled “On the uniformization problem. . . ”, while Poincaré’s was “On the
future of mathematics”!

In sum, in 1883 Poincaré shows that every Riemann surface (on which a mero-
morphic function can be defined) admits a branched covering space biholomor-
phic to a bounded simply connected open subset of the plane. His proof depends
on ideas of Schwarz allowing the uniformization of every relatively compact, sim-
ply connected region with polygonal boundary of a Riemann surface, and uses an
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exhaustion of his arbitrary non-compact simply connected Riemann surface by
means of such regions, that is, by a sequence of relatively compact, simply con-
nected regions with polygonal boundaries. The existence of such an exhaustion
— which Poincaré does not prove — is not difficult to establish in the case of a
Riemann surface extended over the plane19 (see §XI.2). Then in 1900, Osgood
shows that every bounded simply connected open subset of the plane is biholo-
morphic to the disc. Thus then it becomes known that every Riemann surface
has a branched covering space biholomorphic to the disc. In his address to the
International Congress of Mathematicians of that year, Hilbert emphasizes the
inadequacy of this result, and urges mathematicians to try to prove a “true” uni-
formization theorem for non-algebraic Riemann surfaces. In May 1907, Koebe
publishes the first proof of the general uniformization theorem, also based on work
of Schwarz and on the existence of exhaustions by means of relatively compact,
simply connected regions with polygonal boundary. (This proof seems to us to be
perfectly correct and rigorous.) Just prior to the publication of Koebe’s memoir,
Poincaré also completes and prepares for publication a proof of the general uni-
formization theorem, which appears in early November 1907. (This proof, based
on physical intuition, seems a very natural one to us; however, it cannot be made
rigorous without recourse to the theory of distributions.) At the end of Novem-
ber 1907, Koebe publishes a “simplified” version of Poincaré’s proof, with the
“sweeping method” replaced by an appeal to work of Schwarz and the use of an
exhaustion of a simply connected Riemann surface with a small disc removed, by
means of relatively compact annuli. This “cleaned up” version of Poincaré’s proof
is, although certainly less intuitive than its original, especially brief, and seems to
us rigorous as it stands.

Thus by the close of the year 1907, the uniformization theorem was firmly
established. Of course, the process of assimilation of the result was far from com-
plete, and it would take another fifteen years before the proofs began to appear
that one finds in today’s books (in this connection, see our annotated bibliogra-
phy). Early on, mathematicians switched predominantly to the search for results
beyond the uniformization theorem: Koebe was already beginning to think about
uniformizing non-simply-connected Riemann surfaces [Koe1910b], and Hilbert
was already inviting mathematicians to investigate the uniformizability of com-
plex manifolds of higher dimensions. . . but our book stops in 1907.

Chapter XI is devoted to Schwarz’s theorem on the uniformization of sim-
ply connected regions with compact closure, Poincaré’s results of 1883 on the
uniformization of functions, and Osgood’s theorem. Then, in Chapter XII, we
expound the first of Koebe’s proofs of the general uniformization theorem from

19Prior to the work of Weyl in the 1910s, a Riemann surface was by definition extended over the
plane.
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his note [Koe1907a]. Finally, Chapter XIII is devoted to Poincaré’s proof of the
same theorem in [Poin1907], and also to the simplification of that proof proposed
by Koebe in [Koe1907b].

Box: The classification of surfaces

In a completely natural way the theory of Riemann surfaces — the veri-
table topic of this book — evolved in parallel with the topological theory of
surfaces, that is, of 2-dimensional manifolds not endowed a priori with a com-
plex structure. While the history of these developments would furnish enough
material for another book, we thought it nonetheless apropos to indicate here
some of the most important milestones. In their progress towards the general
uniformization theorem, Poincaré and Koebe used, proved, or quite simply
anticipated the main results of the topology of surfaces. Often the borrow-
ings from topology are completely implicit. Yet again do we find the situation
somewhat confused.

The topological classification of compact surfaces took place gradually,
progressively gaining in rigour and generality. The very concept of surface
was some time in maturing, from the idea of a surface as embedded in 3-
dimensional space to the conception of an abstract surface. Moreover two
surfaces embedded in 3-space could be homeomorphic without there existing
any homeomorphism of the ambient space sending one to the other: thus, for
instance, a torus might be knotted in 3-space. And then it became necessary to
distinguish degrees of regularity of surfaces under investigation, which might
be smooth or merely topological. Fractal sets, arising at the same time as
Kleinian groups, furnish many examples of curves that are not differentiable
and whose local properties are such as to make one despair of any topological
classification.

The main theorem, become classical, may be stated as follows:

Theorem. — Every compact connected orientable surface is homeomorphic
to a sphere or to a connected sum of tori.

This theorem was “known” — and used — by B. Riemann, with no at-
tempt made to justify it. For its history one may consult [Pont1974]: the
most important names in this connection are F. A. Möbius [Möb1863], C. Jor-
dan [Jor1866] and W. von Dyck [Dyc1888]. The first proofs meeting (almost)
today’s standards of rigour date from the 1860s and use two different kinds of
ideas. They assume implicitly that the surfaces are smooth.

First Möbius produced a remarkable proof in the case of compact surfaces
embedded in space (which is a posteriori equivalent to orientability).
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His proof involves choosing a real-valued function on the surface and investi-
gating the nature of its level curves. By means of successive modifications of
the function he simplifies it so as to step by step eliminate critical points and
reduce it to “standard” form. (One sees here the germ of what will much later
be called Morse theory.) He also proves that the surface may be cut into two
planar surfaces, that these are characterized to within a homeomorphism in
terms of the number n of components of their boundary, and that this number
is the only invariant of the initial closed surface. He observes also that n − 1 is
the greatest number of disjoint closed curves on the surface that do not discon-
nect it, thus recovering Riemann’s definition of genus. These ideas were then
elaborated on and consolidated by, among others, J.C. Maxwell [Max1870]
and C. Jordan [Jor1872].

Jordan takes a different approach, in some sense reprising Riemann’s
method, which consists in cutting the surface along disjoint simple closed
curves. His surfaces are compact, smooth, and without boundary, but not nec-
essarily embedded in 3-space: curves of self-intersection are allowed, so that
in fact he allows his surfaces to be immersed in 3-space.

The classification of nonorientable surfaces was also carried out progres-
sively. In 1861, J.B. Listing (to whom, incidentally, we owe the word “topol-
ogy” [Lis1847]) appears to have been the first to describe the nonorientable
surface with boundary that today we call the Möbius strip [Lis1861], and in
1882 Klein described the “bottle” bearing his name in an article discussed
earlier [Kle1882c]. In 1886, Möbius clearly defines the concept of orientabil-
ity [Möb1886], and then Dyck obtains the classification of arbitrary compact,
smooth surfaces, possibly with boundary, possibly nonorientable [Dyc1888].
Volume 6 of Poincaré’s collected works includes a glossary allowing one to
pass from the topological terminology of 1950 back to that of Poincaré. For
example, opposite “Möbius strip” one finds Poincaré’s term “the one-sided
surface that everyone knows”.

This was all made precise in an article by Dehn and Heegaard in 1907
[DeHe1907]. Here the surfaces are triangulated, and are allowed to be nonori-
entable and have non-empty boundary. The classification is combinatorial in
nature, and the arguments are convincing. Klein comments on this article that
it is “written in a rather abstract style. . . . It begins by formulating the concepts
and facts fundamental to topology. Then the rest is deduced in a purely logical
manner. This contrasts completely with the inductive presentation that I have
always recommended. To be understood plainly, [let me say that] this article
presupposes of the reader that he has already pondered the topic deeply in the
inductive manner” [Kle1925].
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The characterization of topological surfaces to within a homeomorphism
will take more time, as we shall now see.

The Jordan Curve Theorem and the Osgood–Schoenflies Theorem

Theorem. — The complement of a simple closed curve in the plane has exactly
two connected components.

This theorem was stated by Jordan in 1887 [Jor1887]. The “proof” he
proposed did not seem convincing to those who commented on it [Veb1905,
Ale1920, Schoe1906, DoTi1978], and it should be noted that it assumed the
statement to be obvious in the case of a polygonal (or smooth) curve . . .
A proof for a polygonal curve was in fact first given by Schoenflies in 1896
[Schoe1896]. The first complete proof of the full theorem seems to be that
given by Veblen in 1905 [Veb1905].

Consider these dates in relation to the period of relevant activity of the
protagonists of this part of our book — Poincaré and Koebe — from 1883
to 1907. Since their interest lay with Riemann surfaces, which are necessarily
smooth, all the theorems on the classification of surfaces were at their disposal,
and indeed they exploited them to the full, though sometimes without mention.

The following theorem, especially delicate in the case of non-smooth
curves, progressively makes its appearance during the same period.

Theorem. — Every simple closed curve in the plane can be mapped onto a
circle by means of a global homeomorphism of the plane.

Here are some comments on the history of this result, traditionally called
“Schoenflies’ Theorem”, drawn largely from a recent publication of Sieben-
mann [Sieb2005].

Even though the arguments Jordan used in his attempt to prove the Jordan
Curve Theorem [Jor1887] were not convincing, they still showed essentially
that the bounded component of the complement of a curve is homeomorphic
to an open disc. This fact was explicitly established using conformal methods
in 1900 by Osgood in an article we will be discussing later on [OsgW1900].

It was in 1902 that Osgood stated Schoenflies’ Theorem [OsgW1902];
however it would take another ten years or so before the first complete proofs
appeared, again using conformal methods [Car1913a, Car1913b, Car1913c,
Koe1913a, Koe1913b, Koe1915, OsTa1913, Stu1913]. Schoenflies stated “his”
theorem clearly enough in 1906 [Schoe1906]. His proof, fully correct in the
case of a polygonal or smooth curve, was, however, lacking in the general case.
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The first correct proof, using only topological arguments (and not confor-
mal ones) seems to be due to Tietze in 1914 [Tie1913, Tie1914] or to Antoine
in 1921 [Ant1921]. The name “Schoenflies’ Theorem” was given to the result
by Wilder in 1949 [Wil1949].

The topological classification of surfaces

We emphasize once again that since the interest of Poincaré and Koebe was
concentrated on Riemann surfaces, and these are automatically smooth, the
question of the structure of topological surfaces was of no direct interest to
them at that time. It seemed to us nonetheless useful to give a quick description
of the later developments concerning topological surfaces.

Schoenflies’ theorem would be the key allowing Radó to prove in 1925 that
every topological surface countable at infinity is triangulable, and thence to
obtain a classification in the compact case [Rad1925].

The outstanding case of noncompact surfaces was dealt with thanks to the
introduction of the idea of end compactification by Freudenthal, Kerékjártó
and Schoenflies. The complete classification in the noncompact case was ob-
tained by Kerékjártó in 1923 [Ker1923], and fully rigorized by Richards in
1963 and Goldman in 1971 [Ric1963, GolM1971].

We mention in conclusion a particular case that will be needed in the proof
of Lemma XI.2.1: a noncompact, simply connected surface is homeomorphic
to the plane.


