
Introduction

/
ccording to Hartshorne ([96], Section I.8), one of the guiding problems in
Algebraic Geometry is the classification of algebraic varieties up to isomor-
phy. Let us briefly mention two (related) variants of the problem. The first
one is the classification of complex projective varieties up to isomorphy,

usually assumed to be smooth or mildly singular. The strategy is first to accomplish
the birational classification of so-called minimal varieties and then relate any projec-
tive variety to a minimal model by some specific operations such as blow-down. The
reader may consult [14] for the classical case of surfaces and [121], [47], and [145]
for results in higher dimension. In the second one, we place ourselves in one partic-
ular projective space !n and wish to classify all closed subvarieties of this projective
space up to projective equivalence. We remind the reader that two subvarieties of !n

are called projectively equivalent, if there is an automorphism of the ambient space
!n, i.e., an element of PGLn+1('), which carries the first variety onto the second one.
This problem is just the abstract formulation of putting a system of homogeneous equa-
tions in the variables x0, . . . , xn into a suitable normal form. In modern language, one
states it as the slightly more general problem of classifying polarized varieties, i.e.,
pairs (X, L) which consist of a projective variety X and an ample line bundle L on it.
Treatises of this theory are in [68], [17], and [215]. The two problems do overlap: A
Fano manifold X, for example, yields the polarized variety (X,−KX). Conversely, two
polarized varieties (X, L) and (X′, L′) with dim(X) = dim(X′), Ldim(X) = L′ dim(X′), and
Pic(X) ! Pic(X′) ! ( are projectively equivalent, if and only if they are isomorphic.
As Hartshorne also describes, these classification problems usually fall into two parts.
First, one has some discrete numerical invariants such as the Hilbert polynomial of a
polarized variety (X, L) which yields a coarse subdivision of the class of all objects.
Second, the objects with fixed numerical invariants usually come in positive dimen-
sional families and one has to construct a moduli space for them, which is an algebraic
variety whose points are in “natural” bijection to the set of isomorphy classes of the
objects with fixed numerical data. Mumford has conceived his Geometric Invariant
Theory (GIT) as a major tool for constructing such moduli spaces.

To get a more concrete idea, let us look at a special case of the second classification
problem, namely the classification of hypersurfaces in !n up to projective equivalence.
The numerical invariant which we have to take into account is just the degree of a
hypersurface, a positive integer. For fixed d ∈ (>0, the hypersurfaces of degree d form
the linear system |O(n (d)|. If '[x0, . . . , xn]d denotes the vector space of homogeneous
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polynomials of degree d in the variables x0, . . . , xn, then we have the identification

|O(n (d)| = P
(
'[x0, . . . , xn]d

)
:=

(
'[x0, . . . , xn]d \ {0}

)
/'..

The group PGLn+1(') = SLn+1(')/(µn+1 ·$n+1) acts on !n as its automorphism group.
It clearly induces an action of PGLn+1(') on |O(n (d)| and P('[x0, . . . , xn]d). This
action may also be obtained in a different way: The group SLn+1(') acts on the vec-
tor space '[x0, . . . , xn]d as a group of linear automorphisms by change of variables.
This action descends to an action of SLn+1(') on P('[x0, . . . , xn]d). Since the cen-
ter µn+1 · $n+1 acts trivially, it induces an action of PGLn+1(') on P('[x0, . . . , xn]d)
which is—using the right conventions—the one that we have introduced before. In-
tuitively, the moduli space for hypersurfaces of degree d in !n will be the quotient
P('[x0, . . . , xn]d)/ PGLn(').1 So far, we have no clue whether or in which sense
we can construct the quotient P('[x0, . . . , xn]d)/ PGLn+1(') as an algebraic variety.
The same circle of ideas works in the more general context: Subvarieties of !n with
fixed Hilbert polynomial are parameterized by a projective scheme, a so-called Hilbert
scheme, which replaces the linear system in the above example, and, as before, the ac-
tion of PGLn+1(') on !n yields an action of PGLn+1(') on this Hilbert scheme. Again,
we are lead to the problem of forming quotients (see [215] for this general context).

The guiding problem has thus evoked our interest in the following problem: Let G
be an algebraic group, X a variety or, more generally, a scheme, and α: G x X −→ X
an action of G on X. In which sense can we form the quotient of X by the action of
G? One easily checks that, in general, the set of orbits does not carry a natural scheme
structure. Thus, one first has to develop the appropriate notion of a quotient. The most
general one is that of a categorical quotient which is denoted by X//G. Still one finds
examples where even the categorical quotient does not exist as a variety, separated
scheme, or just scheme. Thus, let us formulate the following more concrete problem:
In the above situation, suppose that X is a variety or a scheme of finite type over '.
Then, the task is to find a G-invariant open subset U ⊆ X, as large as possible, such
that U//G exists as a variety or a scheme of finite type over '. Now, we restrict to the
case where G is a reductive linear algebraic group (e.g., SLn(') or GLn(')). Then,
Mumford’s GIT as developed in [155] is a formalism for finding such open subsets.
(More recently, various generalizations have been discovered, e.g., [99].)

To give the reader an impression, let us indicate the most basic case. For this, let
*: G −→ GL(V) be a representation of G, i.e., * is a homomorphism of linear algebraic
groups. Then,

κ: G x V −→ V

(g, v) 1−→ *(g)(v)

is an action of G on V by linear automorphisms. The '-algebra of regular functions on
the affine variety V is '[V] = Sym.(V∨) =

!
d≥0 Symd(V∨). We form the algebra

'[V]G =
%
d≥0

Symd(V∨)G (1)

1We make the following abuse of notation: Although the actions will be usually left actions, we always
divide from the right, for typographical reasons.
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of the functions that are constant on all G-orbits in V . A fundamental theorem of
Hilbert asserts that '[V]G is again a finitely generated '-algebra, so that it belongs
to an affine algebraic variety which we shall denote by V//*G. Moreover, the inclusion
'[V]G ⊆ '[V] gives a G-invariant morphism π: V −→ V//*G. This maps exhibits V//*G
as the categorical quotient of V by the action of G. It has several nice properties. One
of them is that π maps the set of closed G-orbits in V bijectively onto V//*G. Thus, in
this case, we may just take U = V as the whole variety.

The representation * also supplies the action

κ: G x P(V) −→ P(V) :=
(
V \ {0}

)
/'.(

g, [v]
)
1−→

[
*(g)(v)

]
.

As we have implicitly observed in (1), the algebra '[V]G is graded. It therefore de-
fines a projective variety P(V)//*G. This time, the inclusion '[V]G ⊆ '[V] of graded
algebras gives rise to a G-invariant rational map π: P(V) $ P(V)//*G. The map π is
defined in the point x = [v], if there is a non-zero homogeneous function f ∈ '[V]G

of positive degree with f (v) % 0. Such a point is said to be *-semistable. The set
P(V)*-ss of *-semistable points in P(V) is open and *-invariant, and the morphism
π: P(V)*-ss −→ P(V)//*G exhibits P(V)//*G as the categorical quotient of P(V)*-ss by
the induced G-action. Hence, we take U = P(V)*-ss in this case. In general, U will be
a proper subset. However, its categorical quotient is a projective variety. It is clearly
an important task to characterize the semistable points with a handy criterion. This
is the so-called Hilbert–Mumford criterion. (This criterion is the main reason for
the success of GIT in applications. It is still lacking in its strong form in the recent
generalizations of GIT such as [99].)

There are two things noteworthy here: The question of determining the invariant
ring '[V]G with respect to the action of G := SLn+1(') on V := '[x0, . . . , xn]d which
we have introduced above was the topic of classical invariant theory. Hilbert managed
to prove the finite generation of the invariant ring and the Hilbert–Mumford criterion in
precisely that set-up. Along the way, he discovered his most famous results in commu-
tative algebra, such as the Nullstellensatz. (The reader may have a look at the lecture
notes [107].) The second point is that almost everything (especially in applications) is
reduced in one way or another to the above results.

As the main abstract (i.e., isolated from applications) results of GIT in which we
are interested we note the following: Given a representation *: G −→ GL(V), leading
to the actions κ: G x V −→ V and κ: G x P(V) −→ P(V), GIT provides us with:

• The categorical quotient π: V −→ V//*G.

• The G-invariant open subset U := P(V)*-ss and the categorical quotient π: U −→
P(V)//*G.

• A characterization of U by means of the Hilbert–Mumford criterion.

It is the aim of this book to provide a generalization of the above abstract results to
a relative setting. To formulate it, let X be a connected smooth projective curve over
the complex numbers. The input datum for our theory will be again a representation
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*: G −→ GL(V) of the reductive group G on the finite dimensional '-vector space V .
If P −→ X is any principal fiber bundle with structure group G, then we may associate
to it a vector bundle P* with fiber V , using the representation *. Thinking in terms
of cocycles, P* is glued together with a cocycle in GL(V) which is the image under
* of a cocycle in G which gives P . According to the actions κ: G x V −→ V and
κ: G x P(V) −→ P(V), we want to classify affine and projective *-pairs. The former
objects are pairs (P , σ) which consist of a principal G-bundle P on X and a section
σ: X −→P* and the latter objects are pairs (P , β) composed of a principal G-bundle
P on X and a section β: X −→ P(P*) := (P* \ { zero section })/'.. These objects
may be viewed as families of points v ∈ V and x ∈ P(V) varying over X in the way that
vector bundles on X may be considered as families of vector spaces varying over X: The
bundle G := A ut(P) −→ X of (local) automorphisms of P −→ X is a group scheme
over X, i.e., there are maps eX: X −→ G , the neutral section, iX : G −→ G , the inversion
map, and mX: G xX G −→ G , the multiplication map, of varieties over X, such that the
diagrams expressing the group axioms for these operations do commute. The fibers of
G over X are affine algebraic groups which are isomorphic to G. Furthermore, there
are the actions

κX : G x
X
P* −→P*

and
κX : G x

X
P(P*) −→ P(P*).

There are obvious isomorphy relations on the classes of affine and projective *-pairs.
As usual, there are some natural discrete data to be considered. To this end, we look
at X as a compact Riemann surface, i.e., as a complex manifold and eventually as an
oriented topological manifold. Denote by Π(G) the set of isomorphy classes of topo-
logical principal G-bundles on X. (If G is connected, then Π(G) can be identified with
the fundamental group π1(G).) Then, to each (algebraic) principal G-bundle can be
assigned a class in Π(G), its topological type. If we fix ϑ ∈ Π(G), then the topological
vector bundle P* does not depend on the principal G-bundle P of topological type ϑ.
Thus, it makes sense to speak about the cohomology class [β(X)] ∈ H.(P(P*),() of
the section β. This class naturally identifies with an integer l ∈ (.

The program which will be carried out in the present book is the following:

• We first formulate a notion of semistability for affine and projective *-pairs
(which will depend on several parameters). This is, so to say, the Hilbert–
Mumford criterion for *-pairs.

• Having fixed the topological background data ϑ ∈ Π(G) and l ∈ ( as well as
the stability parameters, we construct the moduli space M (*, ϑ, l) for semistable
projective *-bumps2 of topological type (ϑ, l) as a projective scheme over '.

• For fixed ϑ ∈ Π(G) and chosen stability parameters, we construct the moduli
space M (*, ϑ) for semistable affine *-pairs (P , σ), where P has topological
type ϑ, as a quasi-projective scheme of finite type over '. It comes with a pro-
jective map to an affine space.

2Certain generalizations of *-pairs needed for getting projective, i.e., compact moduli spaces.
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These results are clearly formal generalizations of the results of GIT which we have
considered above: In fact, replacing the base manifold X by a point, we recover the
results which we had declared before to be the most interesting ones. Note the im-
portant difference that we have to define a priori what the semistable objects are. The
reason is that there is no scheme of finite type over ' which parameterizes the isomor-
phy classes of affine or projective *-pairs, even if we fix the topological background
data. This “unboundedness” phenomenon is familiar from the theory of vector bundles.
Thus, we first have to single out a bounded family of affine or projective *-pairs. This
is what the notion of semistability first does for us. Having a bounded family, standard
methods may be applied to construct a parameter spaceBwhich parameterizes isomor-
phy classes of affine or projective *-pairs in such a way that any isomorphy class from
the bounded family under inspection does correspond to a point in B. The parameter
space comes also with an action of a general linear group GL(Y). Thus, we are in the
setting of GIT as we have described before. The final point to be checked is that the
Hilbert–Mumford criterion that comes from GIT agrees with our “Hilbert–Mumford
criterion”, i.e., the notion of semistability. The problem here is that our notion is in-
trinsic in terms of the *-pair whereas the notion coming from GIT depends on many
unnatural choices. The hard part of the work really is to arrange everything in such
a way that this last step works out nicely: Whereas it is comparably easy to establish
for GLn(') and projective *-pairs (restricting to homogeneous representations), more
and more elaborate tricks are necessary to pass via GLn1 (') x · · · x GLnt (') to arbitrary
reductive groups and from projective to affine *-pairs. It is the main aim of these notes
to present these methods in a fairly self-contained way. It should be noted that these
results seem to be completely new for reductive groups other than products of general
linear groups and, in the case of affine *-pairs in the above generality, also for GLn(').
In the end, we see that our results are certainly a formal generalization of GIT but also
an application of it.

After this outline of the main achievements of this monograph, we will look at po-
tential applications. Let us have a brief glance at the case of principal bundles without
extra structures. The best known reductive linear algebraic groups are automorphism
groups of certain algebraic or geometric structures. The general linear group GLn(')
is the group of linear automorphisms of 'n. This observation makes the notion of a
principal GLn(')-bundle equivalent to the more familiar notion of a vector bundle of
rank n. Likewise, the fact that PGLn+1(') is the group of automorphisms of the pro-
jective space !n shows that the notion of a principal PGLn+1(')-bundle is equivalent
to the notion of a !n-bundle over X. Now, !n-bundles over X are examples of smooth
projective manifolds, and their classification up to isomorphy over the base manifold
X is equivalent to the classification of principal PGLn+1(')-bundles over X. Thus, this
special case relates to the above guiding problem in Algebraic Geometry. (Admittedly,
since any projective bundle over the curve X is the projectivization of a vector bundle,
the classification of !n-bundles over X can be expressed in terms of vector bundles
as, e.g., in Section V.2 of [96]. The formalism of PGLn+1(')-bundles is, however, the
right framework when thinking about higher dimensional base varieties.) In a similar
spirit, one can treat the classification of divisors in projective bundles, with respect to
isomorphy which respects the embedding into the projective bundle and the map onto
X, as the classification of certain projective *-pairs for the group GLn(').
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There is, however, a more exiting construction which gives a whole new horizon
of applications: Treating X again as a topological manifold, we define its fundamental
group π1(X). We may equip π1(X) with the discrete topology and view it as a complex
Lie group. In this way, the universal covering X̃ −→ X becomes a holomorphic princi-
pal π1(X)-bundle. Choosing an appropriate open covering of X in the strong topology,
X̃ is thus determined by a cocycle with values in π1(X). (Note that this cocycle is lo-
cally constant.) Next, we may give ourselves a representation ψ: π1(X) −→ G. Then,
we use ψ to transfer the cocycle from π1(X) to G. This new cocycle is the gluing da-
tum for a holomorphic principal G-bundle Pψ on X. By Serre’s GAGA theorems (see
[194] and [195]), it is associated to an algebraic principal G-bundle which we also call
Pψ. A classical theorem of Narasimhan and Seshadri [158] asserts that the assignment
ψ 1−→ Pψ induces a bijection between the set of equivalence classes of irreducible
representations ψ: π1(X) −→ Un(') and isomorphy classes of stable vector bundles of
degree 0. It even yields a homeomorphism between the corresponding moduli spaces.
The representations are classified by a real analytic moduli space whereas the moduli
space of stable bundles is a smooth quasi-projective variety. Thus, we have found an
algebro geometric model for a topological space which has been defined in terms of
the topology of X only. The tools of Algebraic Geometry become in this way available
to study questions of purely topological nature. The generalization of this theorem to
other reductive groups is due to Ramanathan [174]. Donaldson has interpreted these
results in the framework of the Kobayashi–Hitchin correspondence [58]. Now, the
Kobayashi–Hitchin correspondence has been widely extended (see, e.g., [13], [156],
and [138]). It relates, among other things, semistable affine and projective *-pairs to
solutions of certain vortex type equations. The moduli spaces which we have obtained
will be again models for some gauge theoretically defined topological spaces. Thus,
our results fill an apparent gap in the literature. The work of Hitchin, Donaldson,
Simpson, and Corlette also brings us back to studying representations (the introduction
to [38] gives a better account of this and precise references): Representations of the
fundamental group π1(X) in (non-compact) real forms of a reductive linear algebraic
group G, such as U(p, q) for GLp+q('), lead to interesting algebro geometric objects,
and our results provide moduli spaces. In various situations, where moduli spaces were
known before, these constructions were exploited to gather information on the moduli
spaces of representations (topological spaces defined in terms of the topology of X) by
studying their algebro geometric models (see, e.g., [38] and [39]). Looking at Table 3
in [40], we see that some other moduli spaces among those which we construct here
for the first time will become important, too.

Detailed Content of the Book

The first chapter is an introduction to Geometric Invariant Theory (GIT) as developed
by Mumford in his famous book [155]. As mentioned earlier in the introduction, we
will mainly deal with actions of a reductive linear algebraic group G on a vector space
V or a projective space P(V) by means of a representation *: G −→ GL(V). In order to
be reasonably self-contained, we will first review the theory of linear algebraic groups
and their representations on finite dimensional vector spaces. The crucial notions are
irreducible and completely reducible representations. Since, in this book, we will al-
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ways be working over the field of complex numbers, we may introduce reductive linear
algebraic groups as those groups for which all finite dimensional representations are
completely reducible. As a first illustration, we verify that finite groups and tori, e.g.,
'., are reductive linear algebraic groups. In the appendix to Section 1.1, we present a
method due to Hermann Weyl which allows to check that the classical groups such as
GLn(') and SLn(') are reductive. Then, it also follows that GLn1 (') x · · · x GLnt (') is
reductive. This is a very important fact, because almost all the actions at which we will
look in the applications are induced by representations of products of general linear
groups. Subsections 1.1.5 and 1.1.6 discuss some more specific topics on representa-
tions which are mainly technical tools for the moduli space constructions in the second
chapter. The main references for this section are the books by Borel [30] and Kraft
[123].

In Section 1.2, we start to look at the problem of forming the quotient of a vector
space by the action of an algebraic group G via a representation *: G −→ GL(V).
First, we observe that we cannot parameterize the G-orbits in V in any useful way by
an algebraic variety, if there are non-closed orbits. Then, we derive how the globally
defined regular functions on any quotient should look like. A classical theorem by
Hilbert states that the ring of these functions is finitely generated, if the group G is
reductive. Thus, we get an affine algebraic variety as potential quotient. We formulate
the basic properties of this quotient: Basically it is as good as it can be (keep in mind
that G must be reductive). Finally, we present the important notions of stable and
semistable points and of nullforms. The nullforms are precisely those points in V which
map to the same point in the quotient as 0 ∈ V . (The nullforms have to be “thrown
away”, if one wants to form the quotient of P(V)!) The Hilbert–Mumford criterion
tells us how to detect the stable and semistable points (whence also the nullforms).

Before proceeding to the proofs of the fundamental theorems stated in Section 1.2,
we would like to see them in action. This happens in Section 1.3. We will speak there
about some specific representations which were studied in the classical literature on
invariant theory. The most prominent one is the representation of SLn(') on algebraic
forms of degree d in n variables. In a more geometric language, one studies here the
classification of projective hypersurfaces of degree d in the projective space !n−1 up
to projective equivalence. We will evaluate the Hilbert–Mumford criterion in several
examples and also compute the invariant rings in some situations, or, equivalently de-
scribe the resulting quotient. Another instructive example is the action of GLn(') on
(n x n)-matrices by conjugation. Here, one can explicitly determine the quotient and
compare it with the Jordan normal form. The reader should study this example very
carefully and reflect what it tells us about properties of the quotient. Interesting gen-
eralizations arise when studying the action of GLn(') on tuples of matrices or, more
generally, quiver representations. Here, it is in general impossible to obtain a complete
list of normal forms. Consequently, it is more interesting to find out as much about the
quotient as possible.

Section 1.4 is devoted to the fundamental concepts of GIT. In order to correctly
appreciate GIT quotients, we first define good and geometric quotients according to
Mumford. The defining properties are certain natural requirements on a quotient which
have two important consequences: First, a good quotient is also a quotient in the cate-
gorical sense. Second, a good quotient can be patched up from affine quotients. Hence,
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we first study the theory of affine quotients. This means we will first prove Hilbert’s
theorem on the finite generation of the ring of invariants. Then, we check that the
quotient we thus obtain is really a good one in the sense of Mumford. Here, we have
followed the exposition in the book by Dieudonné and Carrell [53]. If *: G −→ GL(V)
is a representation of the reductive group G and if Vss is the set of semistable points in
V , then we get the G-invariant (open) subset P(V)ss := Vss/'. ⊆ P(V). The result of
Hilbert grants that we may form the quotient π: P(V)ss −→ P(V)//*G. The properties
of good quotients imply that this is also a good quotient. The salient feature here is
that P(V)//*G is again a projective variety. In order to apply these findings to a wider
range of examples, one has to use linearizations. So, assume that G is a reductive linear
algebraic group, X is a projective variety, and σ: G x X −→ X is an action of G on X.
A linearization of σ consists of a representation *: G −→ GL(V) and a G-equivariant
closed embedding ι: X ↪→ P(V). We may define Xss := P(V)ss ∩ X. Then, we obtain
the following commutative diagram

Xss !
"

77

πX

33

P(V)ss

π

33

X//(*,ι)G
!
"

77 P(V)//*G,

and X//(*,ι)G is a good quotient of Xss and a projective variety. The choice of a lin-
earization is a parameter in the theory. Note that any given linearization (*, ι) of σ
may be multiplied by a character χ of G: The linearization χ · (*, ι) := (*χ, ι) features
the representation *χ: G −→ GL(V), g 1−→ χ(g) · *(g). We use this to study (all pos-
sible) linearizations of a '.-action on a projective space: Let λ:'. −→ GL(V) be a
representation. It leads to an action λ:'. x P(V) −→ P(V). Of course, (λ, idP(V)) is
a linearization of λ. Next, we can form (λk, vk) where λk is the k-th symmetric power
of λ and vk is the k-th Veronese embedding. If χd:'. −→ '. denotes the character
z 1−→ z−d, we thus get the family χd · (λk, vk), k ∈ (>0, d ∈ (, of linearizations. It is
easy to verify that the quotient depends only on the ratio d/k ∈ 3. A priori, we get an
infinite family of possible quotients. However, we can easily determine the semistable
points for each linearization and check that we get only a finite number of open sub-
sets which arise as subsets of semistable points with respect to different linearizations
and consequently also only finitely many possible quotients. Moreover, it is possible
to understand the relationship between different quotients. Although this seems to be
only a peculiar example, it is a very important one. Indeed, we will see in Section 1.6
that it has far reaching consequences. For the basic formalism of GIT, we have used
the sources [155] and [160].

Before we proceed to Section 1.6, we will prove and study in Section 1.5 the
Hilbert–Mumford criterion. It is the main reason for the success of GIT in applications.
Note that, so far, we have only an abstract formalism which attaches to a group action
on a projective variety and a linearization of that action an open subset of semistable
points for which the good quotient exists as a projective variety. With the definition of
semistability, it is almost impossible to find the semistable points. On the other hand,
using the Hilbert–Mumford criterion, one often gets nice intrinsic characterizations of
semistable points. (Recall that we have already studied meaningful examples in Sec-
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tion 1.3.) After presenting Richardson’s proof of the Hilbert–Mumford criterion from
[24], we will evaluate it in several attractive examples. Notably, we investigate King’s
example of χ-semistable quiver representations [120]. The last two subsections contain
some refined semistability criteria which are useful in some special problems.

In Section 1.6, we address the issue of the linearization as a parameter more se-
riously. First, we show that, given G, X, and σ: G x X −→ X as before, there are
only finitely many G-invariant open subsets which occur as open subsets associated to
a linearization of σ. This interesting and important fact was independently obtained
by Dolgachev and Hu [57] and by Białynicki-Birula [21]. We give a transcription of
Białynicki-Birula’s approach to the GIT setting, originally published in [185]. Next,
we would like to understand how the quotients to two different linearizations of a given
action are related. To this end, we discuss the master space construction of Thaddeus
[214] and use the semistability criteria from Section 1.5.3 to reduce to the case of a '.-
action with which we are already familiar. This is a simplified version of the results in
[57] and [214].

The final section of the first chapter is devoted to a certain refinement of the Hilbert–
Mumford criterion: Look again at a representation *: G −→ GL(V) and at a null-
form v ∈ V . By the Hilbert–Mumford criterion, there is a one parameter subgroup
λ:'. −→ G, such that limz→∞ λ(z) · v = 0. The question is whether one can find a
one parameter subgroup with this property, such that the convergence to zero is the
“fastest possible” and “how unique” this one parameter subgroup is. The solution is
due to Bogomolov [29], Hesselink [105], [106], Kempf [118], and Rousseau [181].
Their uniqueness result is that the parabolic subgroup Q associated to λ is unique. An
essential consequence of this result is that the Hilbert–Mumford criterion remains true
over non-algebraically closed fields of characteristic zero. Another useful application
is due to Ramanan and Ramanathan [173] who associate to the nullform v a point
[v∞] ∈ P(V) which is semistable for the action of a Levi subgroup L of the instability
parabolic subgroup Q for the canonical linearization modified by a certain character χ.
All these results are exposed with almost no proof, following the paper [173]. Finally,
we mention a result by the author [189] on the instability one parameter subgroup for
an unstable point in a product P(V1) x P(V2). The content of Section 1.8 is crucial for
many of the constructions of Chapter 2.

We have written Chapter 1 entirely in the language of complex algebraic varieties
in order to make it accessible to a large audience. As prerequisite, a good acquaintance
with Chapter I of Hartshorne’s “Algebraic Geometry” [96] should suffice. The reader
who is familiar with the theory of schemes will have no trouble in extending all the
results to the setting of schemes of finite type over '. Indeed, the results will be used
in that framework in the second chapter. The foundations of GIT were, of course, put
down in Mumford’s book. His book is, however, considered to be rather technical.
More user friendly accounts have been given since, including [160], [170], [56], and
[153]. The reader may replace or complement some sections with these references.
The main novelty of our exposition is the elementary discussion of the finiteness of
the number of different quotients for the same action and the variation of the quotients.
Moreover, the results of Section 1.8 do not seem to have been included in text books
either. Finally, we have tried to highlight some phenomena or facts which have coun-
terparts in the theory of moduli spaces which will be developed in the second chapter.
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The second chapter is more in the style of a research monograph. The reader will
need here some familiarity with the theory of schemes. Again, Hartshorne’s book will
amply suffice. However, it would be very useful, if the reader had some ideas about
the concept of moduli spaces or spaces representing certain functors. A basic example
of such a moduli space is projective n-space or more generally the projectivization of a
vector bundle. Its universal property is given in [96], Chapter II, Proposition 7.12. An
important generalization of this example are Graßmannians (see Lecture 6 in [95]). The
reader who has mastered the example of Graßmannians is well-prepared for all kinds of
parameter and moduli spaces which he or she will encounter in our book. Additional
introductions to the concept of a moduli space are contained in [160] and Lecture 4
and 21 of [95]. Together with Chapter 1, these prerequisites should be sufficient for
attacking Chapter 2.

Section 2.1 introduces the classification problem whose solution will occupy the
rest of Chapter 2. In order to properly state it, we need the basic notions of the theory
of principal bundles. Since there is no standard textbook which covers this theory, we
will give a brief account of this theory, following an exposition of Serre [195].

In Section 2.2, we discuss or review the theory of vector bundles on complex alge-
braic curves. The reader should be aware that there are several excellent introductions
to this topic, including [160], [135], [116], and, for bundles of rank two, [153]. To
begin with, we will present the classification of topological vector bundles on a smooth
projective curve. Then, we state the Riemann–Roch theorem for coherent sheaves and
reduce it to the familiar case of line bundles. Section 2.2.3 discusses the crucial no-
tion of a bounded family of vector bundles. Boundedness is a necessary condition
for constructing moduli spaces. Unfortunately, the family of vector bundles of fixed
topological type is not bounded. We will give numerical extra conditions which en-
sure boundedness. One of the possible conditions is the famous semistability. In that
section, we will also present Grothendieck’s quot scheme. Using it, we reduce the
classification problem for semistable vector bundles of given topological type to the
problem of forming the quotient of a certain quasi-projective variety by the action of a
reductive linear algebraic group. In Section 2.2.4, we will sketch the exact procedure
how the techniques from Chapter 1 are applied.

The hard work will begin in Section 2.3. We address the solution of the classifica-
tion problem in case the structure group is a general linear group and the representation
is a homogeneous one. This is the core also for the subsequent constructions: We will
devise various tricks and methods in order to reduce everything to it. After review-
ing the classification problem, we give an example how, for a concrete choice of the
representation, the general problem specializes to the classification of interesting al-
gebraic varieties. Then, we give the notion of semistability. This time, it will depend
on a parameter, namely, a positive rational number. We have included two examples
where the semistability concept comes in an easier form. Afterwards, the construc-
tion of the moduli space begins. We first check the boundedness of semistable objects,
using the criterion from Section 2.2.3. Then, we construct the parameter space with
its group action and evaluate the Hilbert–Mumford criterion. The latter is the hardest
part. It origins from our paper [187] and is a refinement of techniques developed by
Simpson [204] and Huybrechts and Lehn [114], [115]. After having constructed the
moduli spaces, we describe (without proof) two basic geometric properties they enjoy
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under certain conditions. Section 2.3 concludes with the chain of moduli spaces. This
parallels the finiteness of GIT quotients from Chapter 1. We briefly mention the work
of Thaddeus [213] (without explicitly addressing the Verlinde formula).

The following section on moduli spaces of principal G-bundles should be regarded
as a first highlight of this monograph. There, we give a full construction of the moduli
space of semistable principal G-bundles with connected reductive structure group. Al-
though these moduli spaces were constructed over 30 years ago by Ramanathan [175],
[176], they haven’t been treated in textbooks, so far. The approach we will present
origins from the papers [186] and [188]. The basic idea is to use the results on dec-
orated vector bundles. In order to do so, one has to describe principal G-bundles as
vector bundles with additional structures. In Section 2.4.1, we will take the first steps
in that direction. Moreover, we will discuss the notion of semistability, the concept of
S-equivalence and polystability, and state the main theorem on the existence of moduli
spaces. In the subsequent section, we study some GIT problems which naturally ap-
pear in our approach. Afterwards, we introduce pseudo G-bundles. These are certain
generalizations of principal G-bundles. The advantage is that one can easily associate
to a pseudo G-bundle a decorated vector bundle. This gives a notion of semistability
which depends on a parameter δ and makes the construction of the moduli space for δ-
semistable pseudo G-bundles as a projective variety fairly easy. The “miracle” is that
the moduli space thus obtained is the moduli space of semistable principal G-bundles.
After presenting the proofs of these assertions, we give a brief survey on the literature
on moduli spaces of principal G-bundles. In three appendices, we have collected some
remarks on the moduli stack, a sketch of the construction of the moduli space for non-
semisimple reductive structure groups, and a verification of the fact that our notion of
semistability indeed coincides with Ramanathan’s.

Section 2.5 is dedicated to the structure group G := GLr1(') x · · · x GLr1('). There
are two novel and important aspects here: a) The group G has lots of characters which,
of course, enter the definition of semistability and b) we have to choose a faithful rep-
resentation κ: G −→ GL(W). This introduces even more parameters into the theory.
In the first two sections, we conceive some tools in the representation and invariant
theory of G which help us develop an efficient formalism for the complicated objects
we are dealing with and prepares us for the construction of the moduli spaces. After
presenting the moduli problem and the main result on the existence of moduli spaces
in Section 2.5.3, we proceed to the construction of the moduli spaces. The faithful
representation κ allows us to reduce to the case of decorated vector bundles. The de-
tails of the construction are rather tricky and technical. After having constructed the
moduli spaces, we study the asymptotic behavior of the semistability concept. Again,
the fact that G has many characters gives us various directions in which we can look
at the asymptotics. To get from the very general and abstract results to more concrete
situations, we discuss our results in the special case of quiver representations. We will
see that we obtain a generalization of King’s result on moduli spaces of quiver repre-
sentations to the setting of vector bundles on curves. Specializing even further, we give
elements of the theory of holomorphic chains from the paper [2]. In that setting, we
can easily describe and study several important phenomena which conjecturally extend
to more general quiver problems. In view of the importance of quiver representations
in representation theory, we hope that this special case of our construction will have
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interesting applications in the future. An immediate one concerns the determination of
the Betti numbers of some representation spaces of the fundamental group π1(X) of the
Riemann surface X.

If we want to treat classification problems involving principal G-bundles with re-
ductive but non-semisimple structure group, then the techniques of Section 2.4 are not
perfectly suited. The approach of that section is based on embeddings of the struc-
ture group G into a special linear group SL(W). Now, G has non-trivial characters but
SL(W) does not. Hence, we cannot extend the characters from G to SL(W). On the
other hand, the characters of G are important parameters for the semistability concept.
The way out is to embed G into a group of the shape H := GLr1 (') x · · · x GLr1('). In-
deed, one can arrange that any character of G extends to a character of H (at least up to
positive multiples). In this way, we may use the results of Section 2.5 in order to treat
classification problems for principal G-bundles with arbitrary reductive structure group
G. The set-up will be explained in Section 2.6. Most of the arguments are straightfor-
ward generalizations of their counterparts in Section 2.4. One can use these methods
to construct moduli spaces for principal G-bundles without additional structures (see
[80]). Since the details are rather awkward and we already have constructed the moduli
spaces in Section 2.4 with different methods, this application is omitted here.

In the following section, we come to the real novelties of this volume. We are now
able to cover the classification of principal G-bundles, G a (not necessarily connected
nor semisimple) reductive linear algebraic group, together with sections in the projec-
tive bundle that is associated via a previously fixed representation *: G −→ GL(V).
Here, there are still some technical assumptions on *. In Section 2.7.1, we will de-
fine the notion of semistability for the objects under consideration and formulate the
main result on the existence of moduli spaces. Afterwards, we will introduce some
more general objects, called decorated pseudo G-bundles, and define a crude notion of
semistability for them. The benefit is that we can harvest the projective moduli spaces
for semistable decorated pseudo G-bundles from Section 2.5 and Section 2.6. In order
to derive the main result of Section 2.7, we have to carefully analyze the behavior of
semistability for decorated pseudo G-bundles when certain parameters become large.
This is done in Section 2.7.2. The conclusion of this analysis is that the moduli spaces
of semistable decorated principal G-bundles are special examples of the moduli spaces
of decorated pseudo G-bundles for certain stability parameters. Next, we will also
study the asymptotic behavior of the semistability concept for decorated principal G-
bundles. This is crucial for the results in Section 2.8. As a first application, we will
explain in Section 2.7.4 how we obtain the moduli space of semistable Higgs bundles
together with a natural compactification as an example of the general result. In Sec-
tion 2.7.5, we address the subtle point of representations *: G −→ GL(V) whose kernel
contains a positive dimensional central torus. Here, the notion of semistability may be
relaxed a bit.

Section 2.8 finally presents the main result of this monograph: The semistability
concept and the moduli spaces for principal G-bundles which are decorated by a section
in the vector bundle that is associated via a previously fixed representation *: G −→
GL(V). Here, there is absolutely no restriction on *. Again, we will first introduce the
notion of semistability and state the result on the existence of moduli spaces. This result
will be reduced to the main technical result from Section 2.7. In order to do so, we
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have to cook up a homogeneous representation *̃: G −→ GL(Ṽ) from *. Then, we can
associate, for any principal G-bundle P , to a section σ: X −→ P* a section β: X −→
P(P*̃). We check that this assignment is finite-to-one on the isomorphy classes and
compatible with semistability. Therefore, we can use this assignment to construct the
moduli spaces for semistable affine *-pairs (P , σ) from those for semistable projective
*̃-pairs (P , β). An important point here is that we do not expect our moduli spaces
to be projective in general. Instead, they should be projective over an affine variety
which depends on the GIT-quotient V//*G via a generalized Hitchin map. After the
construction of the moduli spaces, we will discuss in Section 2.8.4 some extensions
and examples of our general results. In particular, we will show how we can remove
the technical assumption in Section 2.7, how we recover the moduli space of Bradlow
pairs, and how we get, as a new example, moduli spaces of Higgs bundles for real
reductive groups. At the end, we will again discuss representations *: G −→ GL(V)
whose kernel contains a positive dimensional central torus.

The proofs leading to the main results of Chapter 2 are already very technical and
lengthy. Still, one might ask for even more general results. The following two di-
rections of generalization seem very natural: a) Extend the results to base fields of
positive characteristic; b) Extend the results to base varieties of higher dimensions. A
more specialized extension c) asks for equipping the vector and principal bundles with
parabolic structures. Objects of this kind arise in connection with the investigation of
representations of the fundamental group of an open Riemann surface in a connected
real or complex reductive group. In Section 2.9, we will explain what we know about
these potential extensions. In positive characteristic, the business becomes very com-
plicated, if principal G-bundles with non-classical structure groups are involved and
there the theory is still in its beginnings. Over smooth higher dimensional base vari-
eties over a field of characteristic zero, the results are as general as over curves. There
are only some fine points to be observed. Finally, on a curve over the field ', the
introduction of parabolic structures poses no problem at all.
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cher Varietäten—Periods, Moduli Spaces and Arithmetic of Algebraic Varieties ”, the
DAAD via the “Acciones Integradas Hispano-Alemanas” program, contract number
D/04/42257, the European Commission through its sixth framework program “Struc-
turing the European Research Area” and the contract Nr. RITA-CT-2004-505493 for
the provision of Transnational Access implemented as Specific Support Action.

Notation and Conventions

General. — We have tried to follow the standard terminology of Algebraic Geometry
such as in Hartshorne’s book [96]. The ground field will be ' unless otherwise speci-
fied. In the first chapter, the reader may think of varieties in the classical sense, i.e., in
the one defined in Chapter I of [96]. We write $n for the unit (n x n)-matrix.
Sets. — If S is a set and n a positive integer, we write S x n for the n-fold cartesian
product S x · · · x S . We write {pt} for a set containing exactly one element.
Categories. — A groupoid is a category in which all morphisms are isomorphisms.
Schemes and varieties. — A scheme will be a scheme of finite type over the complex
numbers. A variety is a scheme which is reduced and irreducible. For a cartesian prod-
uct X x Y = X xSpec(.) Y of schemes, we let πX: X x Y −→ X and πY : X x Y −→ Y be
the projections onto the first and the second factor, respectively. If X is a scheme or a
variety and W is any subset, then W stands for its closure in the Zariski topology (with
its induced reduced scheme structure). If X is a projective scheme and F is a coherent
OX-module, the cohomology groups of F are finite dimensional '-vector spaces, and
we set hi(F ) := hi(X,F ) := dim.(Hi(X,F )), i ≥ 0. An open subset U ⊂ X of the
variety X is said to be big, if the complement X \U has codimension at least two in X.
Algebraic groups. — In the standard reference [30], the theory of reductive groups is
developed only for connected groups. We will slightly deviate from this: A reductive
group need not be connected. (This allows to include the orthogonal groups.) However,
we require a semisimple group to be connected, so that a semisimple group does not
have any non-trivial character.
Vector bundles . — By a standard abuse of language, we do not distinguish between
vector bundles (geometric objects) and locally free sheaves (see [96], Exercise II.V.18):
A geometric vector bundle is identified with its sheaf of sections. Recall that the projec-
tive bundle !(E) associated to a vector bundle E on the variety X is Pro j(S ym.(E)),
i.e., it is the bundle of hyperplanes in the fibers of E or, equivalently, lines in the fibers
of the dual vector bundle E∨. This applies, in particular, to vector spaces, so that !(V)
stands for (V∨ \ {0})/'., V being a finite dimensional '-vector space. Occasionally,
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we will also use P(E) := (E \ zero section)/'.
! !(E∨) for the projective bundle of

lines in the fibers of E.
If E is a vector bundle on a curve and F ⊂ E is a subsheaf, then

F := ker
(
E −→ (E/F )/Tors(E/F )

)
is a subbundle of E which coincides with F in all but finitely many points. We will
refer to F as the subbundle generated by F . (Note that we have deg(F) ≥ deg(F ).)
Semistability conditions . — If a certain object such as a one parameter subgroup
or a subbundle occurs in a definition of semistability, we will always assume that it is
non-trivial. (This prevents us from defining stable objects in a way that they will never
exist.)


