Chapter 1

Introduction

1.1 Stochastic partial differential equations

Stochastic partial differential equations (SPDEs) describe the time-evolution of spa-
tially extended systems subject to a random driving. There is a large variety of such
equations, but this book will focus on parabolic SPDEs forced by space-time white
noise. Their general form is

3:¢(t,x) = Ap(t,x) + F(p(t,x), Vo(t,x)) + V2e£(t, x), (1.1.1)

where A denotes the Laplacian acting on a spatial variable x in the d-dimensional
torus, and F is a non-linearity that may in principle depend on both the solution
¢ and its gradient V¢, though later on in this monograph only ¢-dependent non-
linearities will be considered. The symbol & denotes space-time white noise, which
can be intuitively understood as a Gaussian random forcing acting independently at
different points in space and time. The parameter V2 measures the noise intensity,
and may be either small or of order 1, depending on the type of phenomenon one
wants to consider.

Let us briefly discuss some particular examples of non-linearities F that occur
in various applications. A first example is the dynamic ®* model, which is formally
given by

ip(t,x) = Ap(t, x) —m?¢p(t, x) — p(t, x)* + £(¢, x) (1.1.2)
with m = 0. This model, also called stochastic quantisation equation, was introduced
as a way to analyse the ®* measure in bosonic quantum field theory [2, 109, 135].
This measure is formally given by

w(@p) = gexol= [ [Z190017 + 32007 + Jo0*|arfap, .19

where the term in || V¢ (x)||* describes the kinetic energy, while the other two terms
represent a rotation-invariant potential energy, with m having the interpretation of
a mass. As such, this measure is not well-defined, because there is no Lebesgue meas-
ure d¢) on the infinite-dimensional space of functions ¢ : T¢ — R (say in L?). One
can however try to construct the ®* measure by starting with a lattice approxima-
tion, in which the lattice spacing, called ultraviolet cut-off, is sent to zero. While this
works in dimension d = 1, dimensions 2 and 3 require a so-called renormalisation
procedure, meaning that the mass parameter m has to depend on the lattice spacing
in an appropriate way to yield a well-defined limit — in fact, it has to diverge as the
lattice spacing goes to zero.
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Figure 1.1. A solution of the Allen—Cahn equation (1.1.4) on a two-dimensional torus. The
initial condition is random, and the field is shown at four successive times.

The idea proposed in [135] by Giorgio Parisi and Yong Shi Wu was to interpret
the Gibbs measure (1.1.3) as the invariant measure of the dynamic equation (1.1.2),
which could be used as in a Monte—Carlo method to sample the measure. It turns out
that giving a mathematical sense to the dynamical model is not easier than for the
static measure, but ultimately this approach has led to new insights into the theory.
Another reason why the dynamic equation (1.1.2) is interesting is that it is related to
the Ising model with Glauber dynamics near its critical temperature [31, 83].

Our second example, which will be the main focus of this book, is the stochastic
Allen—Cahn equation

3 (t,x) = AP(r,x) + (1, x) — p(t,x)> + V26 £(t, x). (1.1.4)

While this equation differs from the dynamic ®* model (1.1.2) only by a sign, its solu-
tions behave quite differently. The deterministic version of (1.1.4) was used by John
W. Cahn and Sam Allen in [4] to model phase separation in multi-component alloys,
and by Nathaniel Chafee and Ettore Infante in [55] to study bifurcations in PDEs. One
particularity of the Allen—Cahn equation (1.1.4) with & = 0 is that it admits exactly
two stable solutions, which are constant in space, with ¢ equal to either 1 or —1. These
can be considered as pure states in an alloy or mixture of two different fluids, such as
oil and water. The deterministic equation also admits unstable stationary solutions in
which ¢ changes sign, which become more numerous the larger the domain is. The
sign changes of these solutions are interpreted as interfaces between different phases.
Non-stationary solutions of the equation that start with an initial condition having
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several interfaces show an interesting dynamics, including interfaces colliding with
each other and annihilating in the process (Figure 1.1).

The main new feature of the stochastic version (1.1.4) of the Allen—Cahn equa-
tion, that makes it qualitatively different from the dynamic ®* model (1.1.2), is meta-
stability. This property means that for small values of ¢ > 0, solutions tend to spend
long time spans in the neighbourhood of each deterministically stable state, with occa-
sional transitions between neighbourhoods. As a consequence, while the invariant
measure of the system is still a Gibbs measure analogous to (1.1.3), convergence
towards this measure is much slower than in the case of the dynamic ®* model.

Another important model in the theory of parabolic SPDEs is the KPZ equation,
given formally by

3,p(1,%) = Bxx(t, %) + (0x0(1, %)) + £(2, %) (1.1.5)

in dimension d = 1. This model was introduced by Meran Kardar, Giorgio Parisi, and
Yi-Cheng Zhang in [111] in order to describe the height of a growing interface. Here
the second spatial derivative and the noise term describe the random deposition of
molecules on a flat interface, while the non-linear term takes into account the fact that
the growth does not occur in the vertical direction, but rather in the direction normal
to the interface. It is obtained by a Taylor expansion of the term /1 + (3x¢(f, x))?
that one gets by projecting the growth velocity on the vertical axis. The KPZ equation
is expected to describe the large-scale behaviour of many different interface growth
models that are not invariant under time reversal, and which form the so-called KPZ
universality class (see for instance [66]).

As a last example of SPDE, let us mention the continuous parabolic Anderson
model, given by

A (1.x) = Ap(1,x) + ¢ (1, x)§ (x), (1.1.6)

where & (x) denotes spatial white noise that is constant in time. This equation is used
to describe a random motion in a random environment, such as an alloy or a glass
containing randomly distributed impurities [51]. It is related to the phenomenon of
Anderson localisation, that is, the fact that waves in a random potential tend to be
localised in space.

1.2 Singular SPDEs

Many of the examples of SPDEs we have discussed in the previous section share
the problem that they are, in fact, mathematically ill-defined. This is due to space-
time white noise being a very irregular object, which should be viewed as a random
Schwartz distribution, instead of a random function.

A standard way of trying to construct solutions to SPDEs of the form (1.1.1) is
to use the Duhamel formula (also called variation of constants formula) to obtain the
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fixed-point equation

t t
$(1) = &2 o + / eI F(¢(s), Vo (s)) ds + vzs/ eDA dg(s), (1.2.1)
0 0
where /2 stands for convolution with the heat kernel P, given by

(€ f)x) =/ P(t,x —y)f(y)dy.
Td

A solution of the fixed-point equation (1.2.1) is called a mild solution of the SPDE
(1.1.1) with initial condition ¢y.

To be able to obtain existence of a solution via Banach’s fixed-point theorem, one
needs a function space that remains invariant under the right-hand side of (1.2.1).
This can be problematic, because the second integral in (1.2.1), called stochastic
convolution, is not necessarily a function.

This issue can be quantified by introducing a scale of the so-called parabolic
Besov—Holder spaces 6. For « € (0, 1), these spaces are defined similarly to the
usual Holder spaces by a condition on the increments, except that distances are meas-
ured in a way that treats time and space differently. For o > 1, they are defined
recursively by requiring that the derivatives of a function in €< belong to a space
of lower exponent. For o < 0, elements of ‘5;" are in general distributions, that fulfil
a specific scaling condition when tested against approximations of the Dirac distribu-
tion (see Section 3.2 for details). One can then show that space-time white noise on
the d-dimensional torus T¢ belongs to ¢¥ for any a0 < —%. Furthermore, convo-
lution with the heat kernel improves the Holder regularity of a distribution or function
by two units, showing that the stochastic convolution belongs to 6 for any o < #.

Consider the case of the KPZ equation (1.1.5). Since it is defined on the one-
dimensional torus, the stochastic convolution belongs to 6 for any o < % There-
fore, it is a well-defined function. However, its derivative (in the sense of distribu-
tions) will only belong to € for any o < —1 which poses a problem when trying to
evaluate the non-linearity F after plugging the stochastic convolution into the right-
hand side of (1.2.1), because there is no canonical way of defining the square of
a distribution. More precisely, it is known that given two distributions f € €< and
ge Cff , the product fg can be defined in a consistent manner (that is, as a bilinear
form giving the pointwise product if f and g are functions) if and only if &« + § > 0
(see Theorem 4.3.1).

A way around this difficulty was found by Lorenzo Bertini and Giambattista
Giacomin in [30], based on the so-called Cole—Hopf transformation. This consists
in formally setting ¢ (¢, x) = log Z(¢, x). Disregarding the second-order term in Ito’s
formula, one obtains that Z(z, x) satisfies the linear multiplicative heat equation

dZ(t,x) = 0xx Z(t, x)dt + Z(t, x) dW (¢, x),
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where Z (¢, x)dW(t, x) is interpreted as an Ito integral. It is known [68] that this
equation admits a unique mild solution in a suitable function space, which can then
be used as a definition of solution to the KPZ equation.

This approach turns out to be compatible with another way of constructing solu-
tions to singular SPDEs, that consists in replacing space-time white noise £ by a spa-
tially regularised version & 8 obtained by testing £ against a spatial approximation at
scale § of the Dirac distribution. The solutions of the family of equations

8,5 (1, x) = Bxxs (, X) + (x5 (¢, x))* — Cs + E3(, x)

then indeed converge to the Cole—Hopf solution as § decreases to zero, provided
one chooses the so-called counterterm Cs diverging like §~!, with an appropriate
prefactor. This counterterm can be viewed as playing the role of the Ito correction
that was neglected in the formal derivation of the Cole—Hopf solution, and provides
another example of renormalisation procedure of a singular SPDE. Nevertheless, this
approach is not entirely satisfactory, because it is not robust under changes of the
approximation procedure. For instance, it does not work if one uses a space-time
mollification of the noise term, instead of only a spatial one, cf. [91, Section 1].

Similar difficulties arise for both the dynamic ®* model (1.1.2) and the Allen—
Cahn equation (1.1.4) as soon as the space dimension d exceeds 1. Indeed, we have
just seen that the stochastic convolution belongs to the Besov—Holder space ¢ for
any o < # Thus for d = 1, the stochastic convolution is still a function, and one
can evaluate its third power, yielding a well-posed fixed-point problem. However,
as soon as d = 2, we again encounter the problem that the stochastic convolution is
a genuine distribution, for which no canonical definition of the third power exists.

A way around this difficulty in dimension d = 2 was found by Giuseppe Da Prato
and Arnaud Debussche in the seminal work [67]. They consider renormalised equa-
tions of the form

s (t, x) = Ags (1. x) — (¢5(t, x)* — 3Css(t, x)) + £ (¢, x) (1.2.2)

where & 5 now denotes a spatio-temporal regularisation of space-time white noise, and
Cs is a logarithmically divergent constant. The main result is that as § decreases to
zero, solutions of (1.2.2) converge to a limit in any Besov—Holder space of strictly
negative exponent. In fact, the difference ¢s(z,x)> —3Cs¢s(t, x) converges to the
so-called third Wick power of ¢ (¢, x), and the results in [67] extend to more general
non-linearities that are renormalised in Wick’s sense.

The main new idea in the Da Prato—Debussche approach is to write an equa-
tion for the difference 15 between ¢s and the stochastic convolution. This difference
actually remains a function as § decreases to zero, showing that while the stochastic
convolution is a genuine distribution in the two-dimensional case, the solution of the
®* equation differs from that distribution by a smoother object. Unfortunately, this
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argument no longer works in the three-dimensional case. Indeed, the stochastic con-
volution is then a distribution in ¢ only for o < —%. Writing as before 5 for the
difference between ¢ and the stochastic convolution, one obtains for s an equation
containing products that are not well-defined as § — 0.

In the case of the parabolic Anderson model (1.1.6), the noise term & is only
spatial, and one can show that it belongs to ¢ for any o < —%. Therefore, in dimen-
sion 1, the stochastic convolution belongs to € for any o < % and the fixed-point
equation (1.2.1) is again well-defined. The equation is indeed well-posed, as shown
for instance in [108]. In dimension d = 2, however, space-time white noise and the
stochastic convolution are in Besov—Holder spaces of exponent ¢ < —1 and @ < 1
respectively, so that their product is not well-defined.

1.3 Regularity structures

A major breakthrough in the theory of singular SPDEs was achieved by Martin
Hairer in the works [91] and [92]. The article [91] provides a solution theory for
the KPZ equation (1.1.5), while the article [92] introduces the concept of regularity
structure, and associated function spaces that allow to solve a rather large family of
previously ill-defined singular SPDEs. The method also requires a renormalisation
procedure that was worked out in detail for the three-dimensional ®* model and the
two-dimensional parabolic Anderson model in [92]. The theory of regularity struc-
tures will be the main focus of Chapter 5 of this monograph. At this stage, let us
just mention that one of the main ideas is to construct spaces making the following
diagram commute:
(0. Z%) —— @

(¢o, €%) — bs.

Here . is the classical solution map, associating to the initial condition ¢ and a reg-
ularised realisation £ of space-time white noise a local solution ¢s. The symbol Z%
represents a so-called model, which gathers information on & 8 the stochastic convo-
lution, and several other iterated integrals involving the noise term. The map .% asso-
ciates with the initial condition and the model an element ® of an abstract function
space, called a space of modelled distributions. Finally, the so-called reconstruction
operator % maps @ to the solution ¢, and one has the relation

Ro. S oW=15.

The interest of this approach is that the renormalisation procedure can be encoded in
a modification of the model Z¢, yielding a suitable modification of ®, whose image
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under the reconstruction operator % converges to a well-defined distribution as §
decreases to zero.

While the article [92] provided a general theory of regularity structures and asso-
ciated spaces of modelled distributions, the renormalisation part was restricted to
the ®* and parabolic Anderson models. This was remedied in a series of works
by Yvain Bruned, Ajay Chandra, Ilya Chevyrev, Martin Hairer, and Lorenzo Zam-
botti [43,45,57], that provide a general theory allowing to systematically construct
solutions to a broad class of singular SPDEs satisfying a so-called local subcriticality
condition. This condition is also known as super-renormalisability in quantum field
theory. In four space dimensions, the ®* model is no longer locally subcritical, and
no non-trivial concept of solution is expected to exist. See in particular [1] for recent
advances in this direction.

The theory of regularity structures is not the only player in the recent develop-
ments in the theory of singular SPDEs. Another approach called paracontrolled cal-
culus, developed by Massimiliano Gubinelli, Peter Imkeller, and Nicolas Perkowski
in [89], allows to give a meaning to renormalised products of distributions in cer-
tain situations. It was used by Rémi Catellier and Khalil Chouk to solve the three-
dimensional ®* model in [53]. Yet another proof of existence of solutions to the ®*
model, based on the Wilsonian approach to the renormalisation group, was obtained
by Antti Kupiainen in [112]. Depending on the kind of result one aims at, each of
these methods has its advantages and drawbacks, so that it may often be useful to
combine them when working with a specific example. In the works [9, 10], Ismagl
Bailleul and Masato Hoshino have provided a dictionary between regularity structures
and paracontrolled calculus, showing that the approaches are in a sense equivalent.

1.4 About this book

The purpose of this book is to provide a rather gentle introduction to SPDEs, singular
SPDEs, and the theory of regularity structures, by focusing on a specific example, the
Allen—Cahn equation and its lattice approximation. It thus does not develop a general
theory for all non-singular or subcritical SPDEs, but rather illustrates how the theory
works in the specific chosen example. Many aspects developed in this particular case
can however rather easily be extended to other equations.

Another particularity of this monograph is that it does not focus on proving
existence and uniqueness of solutions alone, but includes qualitative and quantitative
results on how these solutions behave over long time spans. This includes the ques-
tion of existence and uniqueness of an invariant probability measure, estimates on
the speed of convergence to this measure, large-deviation techniques, and metastable
properties, that describe situations where the convergence to the invariant measure is
very slow.
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Figure 1.2. Schematic organisation of the sections of the book. An arrow indicates which sec-
tions should preferably be read before others.

Figure 1.2 gives an overview on the relations between the different sections. It
is of course possible to read this book in a linear way, one chapter at a time. This
will give a presentation of the models by increasing degree of difficulty, each chapter
introducing some new aspects of the theory. However, it is also possible to skip certain
sections to get more quickly to the most advanced parts of the theory. For instance,
readers not immediately interested in large deviations and metastability may safely
ignore the corresponding sections in Chapters 2, 3 and 4.

We provide now a more detailed account of the content of each chapter.

* In Chapter 2, we introduce a system of coupled stochastic differential equa-
tions (SDEs) obtained by discretising in space the one-dimensional Allen—Cahn
equation. This gives us the opportunity to recall some basic properties of SDEs,
regarding existence and uniqueness of solutions, invariant measures, and large-
deviation estimates. An important part of the chapter is dedicated to quantifying
the phenomenon of metastability that occurs for weak noise intensity. In partic-
ular, it provides a derivation of the Eyring—Kramers formula, that gives sharp
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asymptotics on transition times between two metastable equilibrium states of
the system.

Chapter 3 is dedicated to the one-dimensional Allen—Cahn SPDE. It contains
a precise definition and several properties of space-time white noise, as well
as a discussion of the stochastic heat equation. The solution of this equation,
called stochastic convolution, and its stationary state, the Gaussian free field,
are two important objects for constructing solutions to the Allen—Cahn equation.
The chapter then proceeds with results on existence and uniqueness of solutions,
invariant measures, large deviations and metastability.

In Chapter 4, we turn to the Allen—Cahn equation on the two-dimensional torus.
As we have seen, what is new in that case is that the equation is not well-posed as
such, and requires a renormalisation procedure to make sense. This can be done
with the help of Wick calculus for jointly Gaussian random variables, that we
present before again turning to existence and uniqueness of solutions, invariant
measures, large deviations and metastability.

The final and longest Chapter 5 concerns the three-dimensional Allen—Cahn equa-
tion and the theory of regularity structures. Here we depart somewhat from pre-
vious chapters, by first developing perturbation theory for the invariant meas-
ure of the equation. This allows us to present several important ideas related
to renormalisation in a somewhat simpler setting. The next three sections give
a general presentation of the theory of regularity structures, where mainly algeb-
raic and mainly analytic aspects of the theory have been collected respectively
in Section 5.4 and Section 5.5. The chapter is then concluded with properties on
existence and uniqueness of solutions and large deviations. Metastable properties
have not been included, since they are not yet understood on the same level of
sharpness as in lower-dimensional situations.

The main part of the monograph is complemented by five appendices, that give

more details on specific mathematical aspects of the theory:

Appendix A gives a summary of the potential-theoretic approach to metastabil-
ity in the case of Markov chains. While this theory is not directly needed for the
metastability results presented in this book, it provides an alternative and slightly
simpler view on the methods used in Section 2.5 to derive Eyring—Kramers estim-
ates for SDEs.

Appendix B contains definitions and examples of Hopf algebras, that play a cent-
ral role in the algebraic theory of regularity structures presented in Section 5.4.
Hopf algebras are also used in the perturbative renormalisation of the invariant
measure outlined in Section 5.2.

In Appendix C, we give a short account of BPHZ renormalisation, named after
Nikolay Bogoliubov, Ostap Parasyuk, Klaus Hepp, and Wolthart Zimmermann,
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Symbol Meaning Introduced in

|x| absolute value, £! norm

[lx|] Euclidean norm

zll5 parabolic norm Section 3.2

I f |0 supremum norm Section 3.4

I/ Iz () parabolic Holder norm Definitions 3.2.6, 3.2.7,

and 3.3.7

| f v total variation norm Section 4.4

Izl norm on sector J Section 5.5.2

Il norms on models Definition 5.5.1
norm on 27 Definition 5.5.9

H = L*(A) square integrable f : A — R

SLN(H) Schwartz distributions Section 3.2

CE(K) parabolic Holder—Besov space  Definitions 3.2.6, 3.2.7,

and 3.3.7

H? fractional Sobolev space Definition 3.3.2

©° continuous functions Section 3.4

Y, Py modelled distributions Definition 5.5.9

-y, {x,y) inner product on R? or RZ/NZ

(f 2)12(A) Ia m@dx Section 2.3

(f.8)n S m(x) f(x)g(x)dx Section 2.3

(&, 0) testing a distribution Section 3.2

(g, 1) action of 7* on A Section 5.5.5

anb,avb minimum, maximum

1,1d identity operator Sections 3.7 and 5.4

1p indicator function

P*{} probability with initial value

E*[] expectation with initial value

f(x) = 0(g(x))
f(x) < g(x)

Landau symbol
bounded up to a constant

Table 1.1. Frequently used notations.
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that plays a role in the more analytic and combinatorial aspects of Sections 5.2
and 5.4. This includes in particular the notion of “Hepp sectors” and Zimmer-
mann’s forest formula.

* Appendix D contains a short presentation of the theory of Wiener chaos expan-
sion, which builds on the theory of Wick renormalisation introduced in Sec-
tion 4.2. This theory is used both in the construction of renormalised models in
Section 5.5 and in the proof of the large-deviation principle in Section 5.7.

» Finally, Appendix E contains hints or solutions of some of the exercises included
in Chapters 2 to 5.

Table 1.1 collects some notations frequently used in this monograph, grouped by
norms or norm-like quantities, function spaces, inner products and linear forms, and
other notations.



