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Introduction

This book is devoted to the study of dispersive estimates for small perturbations of
a stationary solution (the “kink”) of a cubic wave equation of the form�

@2t � @
2
x

�
� D � � �3;

in one space dimension. Before discussing that equation and stating our results, we
shall give a general presentation of the framework in which this study lies.

1.1 Long time existence for perturbed evolution equations

The question of long time (or global) existence of solutions to nonlinear dispersive
equations, like the wave equation, has been a major line of research for at least the
last fifty years. Let us start from the following simple model that encompasses several
equations �

Dt � p.Dx/
�
u D N.u/; (1.1)

where u W .t; x/ 7! u.t; x/ is a function defined on I �Rd , with I interval of R,
with values in C, whereDt D

1
i
@
@t

, p.Dx/ D F �1.p.�/ Ou.�//, F �1 denoting inverse
Fourier transform, and where N.u/ is some nonlinearity. The function p.�/ may be
equal to
� p.�/ D j�j, in which case (1.1) is an half-wave equation,
� p.�/ D

p
1C j�j2, corresponding to a half-Klein–Gordon equation,

� p.�/ D 1
2
j�j2 in the case of a Schrödinger equation.

The right-hand side in (1.1) is a nonlinear expression, that we denote byN.u/, though
it may contain also factors like Dx

jDx j
u; Dx
hDxi

u, or their conjugates, or even first-order
derivatives of u in general. For instance, a Klein–Gordon equation of the form�

@2t ��C 1
�
� D F.�; @t�;rx�/ (1.2)

with real-valued �, will be reduced to (1.1) defining u D .Dt C
p
1C jDxj

2/�,
so that

@t� D
i

2
.u � Nu/; rx� D

1

2
rx

�
1C jDxj

2
�� 12 .uC Nu/;

and setting

N.u/D F

�
1

2

�
1CjDxj

2
�� 12 .uC Nu/; i.u � Nu/

2
;
1

2
rx

�
1CjDxj

2
�� 12 .uC Nu/�; (1.3)
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which is a non-local nonlinearity. One may proceed in the same way for a quasi-linear
version of (1.2), i.e. equations where the right-hand side of (1.2) contains second-
order derivatives, and is linear in these second-order derivatives. Then N.u/ depends
also on first-order derivatives of .u; Nu/.

When one wants to study long time existence for solutions of equations like (1.1)
or (1.2), one of the possible ways is to try to perturb initial data corresponding to
a stationary solution, and to show that this perturbation gives rise to a global solution
that will remain, for long or all times, close to the stationary solution. Of course, the
simplest stationary solution that one may consider is the zero one, in which case one
is led to study (1.1) with small initial data. Since the right-hand side vanishes at least
at order two at zero, one may hope that it might be considered as an higher-order
perturbation.

This framework has been considered by many authors since the mid-seventies,
starting with problems of the form (1.1) in higher space dimensions. Let us explain
why the question is easier in high space dimensions describing some classical results.

1.2 The use of dispersion

A key point in the study of equations of the form (1.1) is the use of dispersion. Con-
sider first the linear equation .Dt � p.Dx//u D 0. Assuming that p.�/ is real valued,
p.Dx/ is self-adjoint when acting onL2 or on Sobolev spaces, so that one has preser-
vation of the Sobolev norms of u along the evolution: ku.t; � /kH s D ku.0; � /kH s for
any t . If one considers instead equation (1.1), a Sobolev energy estimate gives just
that, as long as the solution exists, one has for any t � 0,

ku.t; � /kH s � ku.0; � /kH s C

Z t

0

kN.u/.�; � /kH s d�; (1.4)

so that one needs, in order to control uniformly the left-hand side, to be able to esti-
mate the integral term on the right-hand side. If one considers a simple model where
N.u/ is given by N.u/ D P.u; Nu/, where P is an homogeneous polynomial of order
r � 2, one has, for s > d

2
where d is the space dimension, a bound

kN.u/kH s � Ckuk
r�1
L1kukH s ;

so that (1.4) implies

ku.t; � /kH s � ku.0; � /kH s C C

Z t

0

ku.�; � /kr�1L1ku.t; � /kH s d�: (1.5)

As a consequence, by Gronwall’s lemma,

ku.t; � /kH s � ku.0; � /kH s exp
�
C

Z t

0

ku.�; � /kr�1L1 d�

�
: (1.6)
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One thus sees that, if we want to get a control of ku.t; � /kH s for large t , one needs to
obtain as well a priori estimates for ku.�; � /kL1 . In particular, to get a uniform global
bounds in (1.6), one would need the right-hand side of this inequality to be bounded,
i.e.

R C1
0
ku.�; � /kr�1L1 d� < C1.

One may try to guess what are the best estimates one may expect for ku.�; � /kL1
from those holding true for solutions to the linear equation .Dt � p.Dx//u D 0. As
the solution is given by

u.t; x/ D
1

.2�/d

Z
eitp.�/Cix� Ou0.�/ d� (1.7)

where u0 D u.0; � /, one sees from the stationary phase formula that if u0 is smooth
enough and has enough decay at infinity, ku.t; � /kL1 D O.t�

�
2 /, where � depends

on the rank of the Hessian of p.�/. In the case of the wave equation p.�/ D j�j, one
has � D d � 1, while for Schrödinger or Klein–Gordon equations (i.e. p.�/ D 1

2
j�j2

or p.�/ D
p
1C j�j2), � D d . Conjecturing that the same decay will hold for solu-

tions of the nonlinear equation, we would get that the integral on the right-hand side
of (1.6) will converge if �

2
.r � 1/ > 1, so that if d�1

2
.r � 1/ > 1 for the wave equa-

tion and d
2
.r � 1/ > 1 for the Klein–Gordon or Schrödinger ones.

1.3 Vector fields methods and global solutions

The above heuristics turn out to give a correct answer for nonlinear wave equations if
one considers general nonlinearities: actually, in this case, smooth enough decaying
initial data of small size give rise to global solutions when d � 4 if the nonlinearity
does not depend on u and is at least quadratic (i.e. r � 2) as it has been proved
by Klainerman [50], Shatah [75], including for quasi-linear nonlinearities. In the
same way, for Klein–Gordon equations with quadratic nonlinearities, global existence
holds if d � 3 (see Klainerman [49], Shatah [76]). Moreover, the solutions scatter, i.e.
have the same long time asymptotics as the solution of a linear equation.

Let us recall the “Klainerman vector fields method” that provides a powerful way
of proving that type of properties. We consider an equation of the form

�u D f .@tu;rxu/; (1.8)

where u is a function of .t; x/ in R �Rd , � D @2t ��x and f is a smooth function
vanishing at least at order 2 at the origin. Instead of � in the linear part of (1.8),
one may more generally take the operator

P
j;k g

jk.@tu;rxu/@j @k , where x0 D t
and the coefficients gjk are smooth and satisfy

P
j;k g

jk.0; 0/@j @k D �, so that the
method is not limited to semilinear equations, but works as well for quasi-linear ones,
that is one of its main interests. For the sake of simplification, we shall just discuss
(1.8), referring to the original paper of Klainerman [51] and to the book of Hörman-
der [42] for the more general case. The Sobolev energy inequality applied to (1.8)
together with nonlinear estimates for the right-hand side imply that, if s > d

2
, the
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energy Es.t/ D k@tu.t; � /k2H s C krxu.t; � /k
2
H s satisfies, as long as ku0.�; � /kL1 is

bounded,

Es.t/
1
2 � Es.0/

1
2 C C

Z t

0

ku0.�; � /kL1Es.�/
1
2 d�; (1.9)

where we set u0 for .@tu;rxu/. This is the analogous of (1.5) for the solution of (1.8)
and in order to exploit this estimate, one needs to show that t 7! ku0.t; � /kL1 is
integrable. The Klainerman vector fields method allows one to deduce such a property
from L2 estimates for the action of convenient vector fields on u. More precisely,
one introduces the Lie algebra of vector fields tangent to the wave cone t2 D jxj2,
generated by

t@xj C xj @t ; j D 1; : : : ; d;

xi@xj � xj @xi ; 1 � i < j � d;

t@t C

dX
jD1

xj @xj

(1.10)

and if one denotes by .Zi /i2I the family of fields given by (1.10) or by the usual
derivatives @t ; @xj , j D 1; : : : ; d , we set, for I D¹i1; : : : ; ipº � Ip , ZI DZi1 � � �Zip
and jI j D p. Then, as ZI commutes to � by construction (up to a multiple of the
equation), one gets from (1.8) essentially

�ZIu D ZIf .@tu;rxu/ (1.11)

from which it follows that, if t � 0,

kZIu.t; � /kL2 � kZ
Iu.0; � /kL2 C

Z t

0

kZIf .@tu;rxu/.�; � /kL2 d�: (1.12)

Using that ZI is a composition of vector fields, one deduces from Leibniz rule that,
setting u0N D .Z

Iu0/jI j�N ,

ku0N .t; � /kL2 � ku
0
N .0; � /kL2 C

Z t

0

C
�
ku0N=2.�; � /kL1

�
� ku0N=2.�; � /kL1ku

0
N .�; � /kL2 d�: (1.13)

This is thus an inequality of the form (1.9), and in order to deduce from it an a pri-
ori bound for the left-hand side of (1.13), one again needs a dispersive estimate for
ku0
N=2

.�; � /kL1 in O.��
d�1
2 /. This estimate follows from the Klainerman–Sobolev

inequality

.1C jt j C jxj/d�1
�
1C

ˇ̌
jt j � jxj

ˇ̌�
jw.t; x/j2 � C

X
jI j�dC22

kZIw.t; : : : /kL2 (1.14)

for the proof of which we refer for instance to [42, Proposition 6.5.1]. This implies in
particular that, if we take N large enough so that N

2
C

dC2
2
� N , one has for t � 0,

ku0N=2.t; � /kL1 � C.1C t /
�d�12 ku0N .t; � /kL2 : (1.15)
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One deduces from (1.13) and (1.15) a priori bounds of the form

ku0N .t; � /kL2 � A"; (1.16)

ku0N=2.t; � /kL1 � B".1C t /
�d�12 (1.17)

by a bootstrap argument when d � 4: If one assumes that (1.16) and (1.17) hold
for t in some interval Œ0; T �, one shows that if A;B have been taken large enough in
function of the initial data, and if " is small enough, then (1.16) and (1.17) hold on the
same interval with .A;B/ replaced by .A

2
; B
2
/. One has just to plug (1.16) and (1.17)

in (1.13), and to use that .1C t /�
d�1
2 is integrable in order to prove (1.16) with A

replaced by A
2

. Concerning (1.17) with B replaced by B
2

, it follows from (1.15) and
(1.16) if B is taken large enough with respect to A. Combining these a priori bounds
with local existence theory for smooth data shows that solutions are global, for "
small enough, and satisfy (1.16) and (1.17) for any time.

The same type of arguments works more generally when f in (1.8) vanishes
at order r � 2 at zero and .d�1/

2
.r � 1/ > 1.

Of special interest is the limiting case of long range nonlinearities when

d � 1

2
.r � 1/ D 1:

This happens in particular if d D 3; r D 2, i.e. for quadratic nonlinearities in three
space dimension. In this case, one gets in general that data of size " > 0 give rise to
solutions existing over a time interval of length at least e

c
" for some c > 0, but finite

time blow-up may occur. Nevertheless, if the solution satisfies a special structure,
the so-called “null condition”, global existence holds true (see Klainerman [51]). We
again refer to the book of Hörmander [42] and references therein for more discussion
of long time existence for wave equations, in particular in two space dimension, and
to Alinhac [2] for the study of blow-up phenomena when solutions are not global. We
also refer to Christodoulou and Klainerman [11] and to Lindblad and Rodnianski [62]
for applications to general relativity.

In Section 1.4 we discuss the case of long range nonlinearities for Schrödinger
and Klein–Gordon equations in one space dimension, which is the relevant frame-
work for the problem we study in this book. To conclude the present section, let us
make some comments on another well known way of exploiting the dispersive char-
acter of wave (or other linear) equations, namely Strichartz estimates. The vector
fields method that we described above has the advantage of providing explicit decay
rates for the solution (and, combined with other arguments, may even furnish precise
information on asymptotic behavior of solutions). Moreover, it applies to quasi-linear
equations, even if we described it just on a simple semilinear case. On the other hand,
it is limited to the study of equations with small and decaying data.

When one deals with semilinear equations, and wants to study solutions whose
data do not have further decay than being in some Sobolev space, one may instead
use Strichartz estimates. Recall that they are given, for a solution u to a linear wave
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equation,
.@2t ��/u D F;

u.0; � / D u0; @tu.0; � / D u1;
(1.18)

defined on I �Rd , where I is an interval containing 0, by

kukLqt L
r
x.I�Rd / � C

�
ku0kL2 C ku1k PH�1 C kF kL Qq

0

t L
Qr0
x .I�Rd /

�
; (1.19)

where the indices satisfy

1

Qq
C
1

Qq0
D 1;

1

Qr
C
1

Qr 0
D 1;

1

q
C
d

r
D
d

2
;

1

Qq0
C
d

Qr 0
D
d

2
C 2;

1

q
C
d � 1

2r
�
d � 1

4
;

1

Qq
C
d � 1

2 Qr
�
d � 1

4
;

.q; r; d/ ¤ .2;1; 3/; q; r � 2; r <1

. Qq; Qr; d/ ¤ .2;1; 3/; Qq; Qr � 2; Qr <1:

(1.20)

We refer to the book of Tao [83] and references therein for the proof. These estimates
express both a smoothing and a time decay property of the solution. Because of that,
they are useful both in the study of local existence with non-smooth initial data or for
global existence and scattering problems in the semilinear case, including for large
data. We shall not pursue here on that matter, as this is not the kind of methods we
shall use below, since we are more interested in explicit decay rates of solutions. We
refer to [83] for some of the many applications of these Strichartz estimates.

1.4 Klainerman–Sobolev estimates in one dimension

The preceding section was devoted to the use of Klainerman vector fields in the frame-
work of wave equations in higher space dimensions. In the present section, we shall
focus on the case of (half-)Klein–Gordon or Schrödinger equations in dimension one,
as this is the closest framework to our main theorem. As a prerequisite, we shall
describe first how (a variant of) the method of Klainerman vector fields allows one
to get dispersive decay estimates for solutions when the nonlinearity vanishes at high
enough order at initial time. We start with the simplest model of gauge invariant non-
linearities, to which more general equations may be in any case reduces by the normal
forms methods we shall discuss later. Denote thus for � in R, p.�/ D

p
1C �2 or

p.�/ D �2

2
and consider equation (1.1) with N.u/ D juj2pu with p 2 N�, i.e.�

Dt � p.Dx/
�
u D ˛juj2pu;

ujtD1 D u0;
(1.21)

where for convenience of notation we take the initial data at time t D 1, ˛ is a com-
plex number and u0 will be given in a convenient space. One has the following
statement.
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Theorem 1.4.1. Let p be larger than or equal to 2 in (1.21). There are s0; �0 in
N such that, for any s � s0, there are "0 > 0;C > 0 and for any " 2 �0; "0�, any
u 2 H s.R/ satisfying

ku0kH s C kxu0kL2 � "; (1.22)

the solution to (1.21) is global and satisfies for any t � 1,

ku.t; � /kH s � C"; ku.t; � /kW �0;1 � C
"
p
t
; (1.23)

where kwkW �0;1 D khDxi
�0wkL1 .

We shall present the proof following arguments due to Hayashi and Tsutsumi [40]
in the case of Schrödinger equations. For Klein–Gordon equations, the first proof of
such a result is due to Klainerman and Ponce [52] and Shatah [75], using a different
method. We shall describe here a unified approach for both equations. Notice also
that for Klein–Gordon equations, global existence result hold for much more general
nonlinearities. We shall give references to that in the forthcoming sections.

Idea of proof of Theorem 1.4.1. We apply the Klainerman vector fields idea, except
that instead of using true vector fields, we make use of the operator

LC D x C tp
0.Dx/: (1.24)

This operator commutes to the linear part of the equation, ŒLC;Dt � p.Dx/� D 0.
Moreover, because the nonlinearity is gauge invariant, a Leibniz rule holds. Actually,
in the case of Schrödinger equations, one has a bound

kLC.juj
2pu/kL2 � Ckuk

2p
L1kLCukL2 (1.25)

that follows using that if p.�/ D �2

2
, then LC D x C tDx and then

LC.juj
2pu/ D LC.u

pC1
Nup/

D .p C 1/.LCu/juj
2p
� pupC1 Nup�1LCu:

When p.�/ D
p
1C �2, one has an estimate similar to (1.25) up to replacing the L1

norm by a W �0;1 one, for some large enough �0, and up to some remainders that do
not affect the argument below (see [20]). We shall pursue here the argument in the
Schrödinger case. Applying LC to (1.21) and using the commutation property seen
above and (1.25), we obtain�

Dt � p.Dx/
�
.LCu/ D OL2

�
kuk

2p
L1kLCukL2

�
(1.26)

so that one has by L2 energy inequality

kLCu.t; � /kL2 � kLCu.1; � /kL2 C C

Z t

1

ku.�; � /k
2p
L1kLCu.�; � /kL2 d�: (1.27)



Introduction 8

The proof of the theorem now proceeds with a bootstrap argument: One wants to find
constants A > 0;B > 0 such that

ku.t; � /kH s � A";

kLCu.t; � /kL2 � A";

ku.t; � /kL1 � B
"
p
t

(1.28)

for any t � 1, as long as " > 0 is small enough. Assume that these inequalities hold
true for t in some interval Œ1; T �. Then, it is enough to show, using equation (1.21),
that for t in the same interval Œ1; T �, one has in fact the better estimates

ku.t; � /kH s �
A

2
";

kLCu.t; � /kL2 �
A

2
";

ku.t; � /kL1 �
B

2

"
p
t
:

(1.29)

Actually, estimates (1.28) hold on some interval Œ1; T � if one has taken A;B large
enough, because of assumptions (1.22) made on the initial data, and of Sobolev
embedding in order to get the L1 bound.

To show that (1.28) implies the first two estimates (1.29), one uses (1.5) (with r
replaced by 2p C 1) and (1.27). Plugging there the a priori bounds (1.28), one gets
for any t in Œ1; T �,

ku.t; � /kH s � ku0kH s C CB
2pA"2pC1

Z t

1

��p d�;

kLCu.t; � /kL2 � kLCu.1; � /kH s C CB
2pA"2pC1

Z t

1

��p d�

(1.30)

with p > 1. Consequently, using assumption (1.22), taking A large enough and "
small enough, one gets the first two inequalities (1.29). To obtain the last one, one
uses Klainerman–Sobolev estimates, that allow one to recover an L1 bound with the
right time decay from an L2 one for LCu. In the case we are treating p.�/ D �2

2
, this

is very easy: one writes, by the usual Sobolev embedding

kwkL1 � Ckwk
1
2

L2
kDxwk

1
2

L2
:

Applying this with w D ei
x2

2t u.t; � /, one gets

ku.t; � /kL1 �
C
p
t
ku.t; � /k

1
2

L2
kLCu.t; � /k

1
2

L2
: (1.31)

Plugging the first two inequalities (1.28) inside the right-hand side, one gets

ku.t; � /kL1 �
"
p
t
CA;
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which gives the last bound (1.29) if B is chosen large enough relatively to A and
concludes the proof.

1.5 The case of long range nonlinearities

In equation (1.21) we limited ourselves to the case p > 1, which may be considered
as a short range case: actually, if we consider juj2p as a potential, the time decay
of ku.t; � /kL1 in t�

1
2 shows that kju.t; � /j2pkL1 is time integrable at infinity. This

played an essential role in order to bound the integrals on the right-hand side of (1.30).
Thought, a variant of Theorem 1.4.1 holds as well when p D 1:

Theorem 1.5.1. Let p.�/ D
p
1C �2 or p.�/ D �2

2
in one space dimension, ˛ a

real constant. There are s0; �0 in N, ı > 0 such that for any s � s0, there are "0 > 0,
C > 0 so that, for any " 2 �0; "0�, any u0 in H s.R/ satisfying (1.22), the solution of�

Dt � p.Dx/
�
u D ˛juj2u;

ujtD1 D u0
(1.32)

is defined for any t � 1 and satisfies there

ku.t; � /kH s � C"t
ı ; ku.t; � /kW �0;1 � C

"
p
t
: (1.33)

Remarks. We make the following observations.
� A difference between the conclusion of Theorem 1.4.1 and the above statement is

that the Sobolev estimate is not uniform: a slight growth in tı is possible. Actu-
ally, ı may be taken of the form C"2 for some constant C .

� The form of the nonlinearity is important, at the difference with the short range
case of the preceding section. For instance, one cannot take on the right-hand side
of (1.32) for ˛ an arbitrary complex number. The fact that ˛ should be real is an
example of a null condition that has to be imposed in order to get global solutions.

� The proof of the theorem provides also modified scattering for u as t goes to
infinity.

Let us give some references. For the Schrödinger case, a first proof of Theo-
rem 1.5.1 and of modified scattering of solutions is due to Hayashi and Naumkin [38].
See also Katayama and Tsutsumi [46] and, more recently, Lindblad and Soffer [65],
Kato and Pusateri [47] and Ifrim and Tataru [45]. In the case of Klein–Gordon equa-
tions, including in the case of quasi-linear nonlinearities satisfying a null condition,
we refer to Moriyama, Tonegawa and Tsutsumi [71], Moriyama [70], Delort [18–20],
Lindblad and Soffer [63], Lindblad [64] and Stingo [82]. See also Hani, Pausader,
Tzvetkov and Visciglia [37] for some further applications.

Before explaining the general strategy of proof of Theorem 1.5.1, let us describe
informally how the dispersive estimate in (1.33) will be proved, using an auxiliary
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ODE deduced from (1.32). We make this derivation in the case p.�/ D 1
2
�2, deferring

to next paragraph the case of general p. Denote by '.x/ D �1
2
x2 and look for a solu-

tion to (1.32) under the form

u.t; x/ D
eit'.

x
t /

p
t
A
�
t;
x

t

�
; (1.34)

where A.t; y/ is a smooth function. Plugging this Ansatz inside equation (1.32) with
p.Dx/ D

1
2
D2
x , one gets

DtA.t; y/ D
˛

t
jA.t; y/j2A.t; y/C

1

2t2
D2
yA.t; y/: (1.35)

If one ignores the last term (that will be proved a posteriori to be a time integrable
remainder), one gets that A solves the ODE

DtA.t; y/ D
˛

t
jA.t; y/j2A.t; y/ (1.36)

from which follows, as ˛ is real, that jA.t; y/j D jA.1; y/j for all t � 1, whence

A.t; y/ D A.1; y/ exp
�
i˛jA.1; y/j2 log t

�
:

One thus gets a uniform bound for A, and also discovers that the phase of oscillation
of (1.34) involves a logarithmic modification that reflects modified scattering, i.e. one
gets when time goes to infinity

u.t; x/ �
1
p
t
A0

�x
t

�
exp

�
�i
x2

2t
C i˛

ˇ̌̌
A0

�x
t

�ˇ̌̌2
log t

�
for some function A0. Of course, to establish this rigorously, one has to show that the
last term in (1.35) is really a remainder whose addition to the right-hand side of (1.36)
does not modify the analysis of asymptotic behavior of solutions.

One may perform such a derivation in a rigorous way using a wave-packets analy-
sis as in Ifrim and Tataru [45] or using a semiclassical approach as we do here. The
idea is the following: because of formula (1.34), u appears naturally as a function of t
and x

t
, so that it is natural to write it in terms of a new unknown v by

u.t; x/ D
1
p
t
v
�
t;
x

t

�
; (1.37)

where v will satisfy an equation

Dtv �
1

2t

�
x �Dx CDx � x

�
v � p

�Dx
t

�
v D

˛

t
jvj2v: (1.38)

By (1.34), we expect v.t; x/ to oscillate like eit'.x/. We compute for any smooth
function a.t; x/,

p
�Dx
t

��
eit'.x/a.t; x/

�
D
�
p.@x'.x//a.t; x/CO.t

�1/
�
eit'.x/:
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One expects thus that the main contribution to the left-hand side of (1.38) will be
obtained replacing Dx

t
by @x'. This gives an ODE which is nothing but (1.35) if

we replace v by eit'.x/A.t; x/. In other words, we obtain an ODE allowing us to
describe the asymptotics of the solution starting from the quantum problem given by
the PDE (1.36) and reducing it to the classical problem obtained making in (1.38) the
substitution Dx

t
7! @x'. We explain below, in the strategy of proof of Theorem 1.5.1,

the rigorous way of doing so controlling the errors.

Strategy of proof of Theorem 1.5.1. The starting point of the proof is the same as for
Theorem 1.4.1, except that the inequalities to be bootstrapped read now as

ku.t; � /kH s � A"t
ı ;

kLCu.t; � /kL2 � A"t
ı ;

ku.t; � /kW �0;1 � B
"
p
t

(1.39)

instead of (1.28), with ı > 0 a small number. Again, one has (1.30) with p D 1 and
the integral term replaced by

R t
1
��1Cı d� � ı�1tı . If "2ı�1 is small enough, one

deduces from (1.30) that the first two inequalities in (1.39) actually hold with A
replaced by A

2
. On the other hand, one cannot deduce the L1 estimate in (1.39)

from the Sobolev and L2 ones using (1.31), as the lack of uniformity in the estimate
of kLCu.t; � /kL2 would just provide a bound in O.t�

1
2C0/ instead of O.t�

1
2 /. On

thus needs an extra argument to obtain the L1 estimates (since the L2 ones cannot
be expected to be improved). There have been several approaches to do so, that all
rely on the derivation from the PDE (1.32) of an ODE, that may be used in order to
get the optimal L1 decay (and the asymptotics of the solution). That ODE may be
written either on the solution itself or on its Fourier transform (actually on the profile
eitp.�/ Ou.t; �/ of the Fourier transform). As indicated in the preceding paragraph, the
method we shall use in this book, inspired in part from the approach of Ifrim and
Tataru [45] based on wave packets, relies on a semiclassical version of the equation
satisfied by a rescaled unknown.

We introduce as a semiclassical parameter h D 1
t
2 �0; 1� and define from the

unknown u the new unknown v through (1.37). If we denote kvkH s
h
D khhDxi

svkL2 ,
then ku.t; � /kH s D kv.t; � /kH s

h
. The last estimate in (1.39) is equivalent to getting an

O."/ bound for khhDxi�0v.t; � /kL1 . Plugging (1.37) inside (1.32), one gets�
Dt � OpW

h .x� C p.�//
�
v D h˛jvj2v; (1.40)

where the semiclassical Weyl quantization OpW
h associates to a “symbol” a.x; �/ the

operator

v 7! OpW
h .a/v D

1

2�h

Z
ei.x�y/

�
h a
�x C y

2
; �
�
v.y/ dy d�: (1.41)

The above formula makes sense for more general functions a than the one

a.x; �/ D x� C p.�/
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appearing in (1.40). We do not give here these precise assumptions, referring to
Appendix D below. Let us just remark that one may translate the action of opera-
tor LC on u by

LCu.t; x/ D
1
p
t

�
LCv

��
t;
x

t

�
(1.42)

with
LC D

1

h
OpW

h .x C p
0.�// (1.43)

so that the second a priori assumption (1.39) may be translated as

kLCvkL2 D O."h
�ı/: (1.44)

This brings us to introduce the submanifold

ƒ D ¹.x; �/ 2 R �R W x C p0.�/ D 0º (1.45)

that is actually the graph

ƒ D ¹.x; d'.x// W x 2 ��1; 1Œº with '.x/ D
p

1 � x2 (1.46)

given by the following picture.

The idea is to deduce from (1.40) an ODE restricting the symbol x� C p.�/ toƒ.
By (1.46) and a direct computation, .x� C p.�//jƒ D '.x/, so that we would want
to deduce from (1.40) an ODE of the form�

Dt � '.x/
�
w D h˛jwj2w CR; (1.47)
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where w should be conveniently related to v and R being a remainder such thatZ C1
1

kR.t; � /k
W
�0;1

h

dt D O."/:

We notice first that the a priori bound (1.44) provides a uniform estimate for v
cut-off outside a

p
h-neighborhood of ƒ. The idea is as follows:

First, contributions to v cut-off for high frequencies have nice bounds if we
assume the first a priori estimate (1.39): actually, it implies

khhDxi
sv.t; � /kL2 D O."h

�ı/;

so that if � 2 C10 .R/ is equal to one close to zero, ˇ > 0 is small and s0 > 1
2

, one
gets by semiclassical Sobolev estimate

kOpW
h

�
�.hˇ �/

�
vkL1 � Ch

� 12 khhDxi
s0OpW

h

�
�.hˇ �/

�
vkL2

� Ch�
1
2Cˇ.s�s0/khhDxi

svkL2

� C"h�
1
2�ıCˇ.s�s0/:

(1.48)

Consequently, for any fixed N in N, if sˇ is large enough, we get an O."hN / bound
for estimate (1.48). This shows that one may assume essentially that Ov is supported
for hˇ j�j � C for some constant, some small ˇ > 0. In the rest of this section, in
order to avoid technicalities, we shall argue as if we had actually j�j � C . The case
hˇ j�j � C may be treated similarly, up to an extra loss h�ˇ

0

in the estimates of the
remainders, ˇ0 > 0 being as small as we want. This extra loss does not affect the
general pattern of the reasoning.

Take 
 in C10 .R/, equal to one close to zero, with small enough support, and
decompose

v D vƒ C vƒc ; (1.49)

where

vƒ D OpW
h

�


�x C p0.�/
p
h

��
v; vƒc D OpW

h

�
.1 � 
/

�x C p0.�/
p
h

��
v; (1.50)

i.e. vƒ (resp. vƒc ) is the contribution to v that is microlocally located inside (resp.
outside) a

p
h-neighborhood of ƒ. Then vƒc satisfies, as a consequence of the L2

estimate (1.44), a uniform L1 bound: define 
1.z/ D
.1�
/.z/

z
and write

vƒc D OpW
h

�

1

�x C p0.�/
p
h

��x C p0.�/
p
h

��
v

D h
1
2OpW

h

�

1

�x C p0.�/
p
h

��
.LCv/C remainder:

(1.51)

Since, at fixed x, � 7! 
1..x C p
0.�//=

p
h/ is supported inside an interval of length

O.
p
h/, one may show that the L1 norm of the first term on the right-hand side
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of (1.51) is essentially bounded from above by h�
1
4 times its L2 norm, i.e.

kvƒckL1 � Ch
1
4 kLCvkL2 : (1.52)

(Actually, if one takes into account the fact that on the support of Ov one has j�j � ch�ˇ

instead of j�j � C , one would get a power h
1
4�ˇ

0

instead of h
1
4 , for some 0 < ˇ0 � 1

in (1.52), that would not change the estimates below). In any case, combining with
(1.44), we get an estimate

kvƒckL1 D O."h
1
4�ı
0

/; ı0 > 0 small: (1.53)

If we assume a uniform a priori bound for v (that follows from the third inequality
(1.39) and from (1.37)), we see that (1.53) implies that the difference jvj2v�jvƒj

2vƒ
will beO."3h

1
4�ı
0

/, so that replacing on the right-hand side of equation (1.40) hjvj2v
by hjvƒj

2vƒ induces an error of the form of R in (1.47), i.e. we have�
Dt � OpW

h .x� C p.�//
�
v D h˛jvƒj

2vƒ CR: (1.54)

We make act next OpW
h .
..x C p

0.�//=
p
h// on that equality. We get at the left-

hand side .Dt � OpW
h .x� C p.�///vƒ and a commutator whose principal contribu-

tion may be written as

�
h
3
2

i
OpW

h

�

 0
�x C p0.�/
p
h

��
.LCv/: (1.55)

This is of the same form as (1.51), up to an extra h factor, so that, arguing as in (1.52)
and (1.53), we bound the L1 norm of (1.55) by C"h

5
4�ı
0

D C"t�
5
4Cı

0

. As ı0 > 0
is small, this is an integrable quantity that may enter in the remainders on the right-
hand side of (1.47). As the action of OpW

h .
..x C p
0.�//=

p
h// on the right-hand side

of (1.54) may be written under the same form, up to a modification of the remainder,
we get �

Dt � OpW
h .x� C p.�//

�
vƒ D h˛jvƒj

2vƒ CR: (1.56)

We make now a Taylor expansion of x� C p.�/ on ƒ given by (1.45) and (1.46). As
d
d�
.x� C p.�//jƒ D 0, we get

x� C p.�/ D '.x/CO
�
.x C p0.�//2

�
: (1.57)

The action of OpW
h ..x C p

0.�//2/ on vƒ may be written essentially as (1.55), so
provides again a contribution toR in (1.56). Finally, plugging (1.57) inside (1.56), we
see that we get an equation of the form (1.47) for w D vƒ. This implies in particular
that @

@t
jvƒ.t; � /j

2 is time integrable (since the coefficient ˛ in (1.56) is real) and thus
that kvƒ.t; � /kL1 is bounded. Coming back to the expression (1.37) of u in terms of
v D vƒ C vƒc , remembering (1.53) and adjusting constants, one gets that the a priori
assumptions (1.39) imply that the last inequality in these formulas holds true with B
replaced by B

2
(the reasoning for W �0;1 norms instead of L1 ones being similar).

This shows that the bootstrap argument holds. Moreover, the ODE (1.47) may be used
also in order to get asymptotics for u when times goes to infinity.
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1.6 More general nonlinearities and normal forms

In model (1.32), we considered only a special case of nonlinearity namely ˛juj2u. We
used this special structure in order to get a Leibniz type rule (see (1.25)). However,
we know that we should be able to obtain global solutions even for (some) cubic or
quadratic nonlinearities that have a more general form. This is done in [18, 19] for
quasi-linear Klein–Gordon equations with a nonlinearity satisfying a null condition
(see also Stingo [82]). One makes use of “real” Klainerman vector fields instead of
the operator LC above. On the other hand, for other equations like Schrödinger ones,
the natural operator to be used in order to exploit dispersion is an operator like LC,
that is not a vector field. It is possible to reconcile both points of view using normal
forms. Moreover, the use of the latter allows also one to treat quadratic nonlinearities.
Consider as a model �

Dt � p.Dx/
�
u D ˛0u

2
C ˛juj2u;

ujtD1 D u0;
(1.58)

where p.�/ D
p
1C �2, ˛0 is a complex number and ˛ a real one. We would like to

prove the analogous of Theorem 1.5.1, namely:

Theorem 1.6.1. There are s0; �0 in N, ı > 0 such that, for any s � s0, there are
"0 > 0, C > 0 so that, for any " 2 �0; "0�, any u0 in H s.R/ satisfying (1.22), the
solution of (1.58) is global and satisfies for any t � 1,

ku.t; � /kH s � C"t
ı ; ku.t; � /kW �0;1 � C

"
p
t
: (1.59)

Remarks. We make the following observations.
� Again, one can obtain also the asymptotics of the solution when t goes to infinity,

and in particular show modified scattering, and not just the dispersive estimate
(1.59).

� One may consider more general quadratic and cubic nonlinearities than on the
right-hand side of the first equation in model (1.58), as soon as they satisfy the
null condition (see [18, 19, 82]).

The key idea of the proof is essentially to reduce (1.58) to (1.32) by normal
forms. One cannot expect to get directly energy estimates on (1.58): for instance,
the quadratic part of the nonlinearity has Sobolev norm bounded from above by
Cku.t; � /kL1ku.t; � /kH s , so taking into account the a priori L1 estimate in (1.39),
by .C"=

p
t /ku.t; � /kH s . One thus would get an inequality of the form (1.6) with

r D 2, which would give only exponential time control. Though, as shown first by
Shatah [76] and Simon and Taflin [77], one may easily reduce the quadratic nonlin-
earity in (1.58) to a cubic one.

Lemma 1.6.2. Define

m.�1; �2/ D
�q

1C �21 C

q
1C �22 �

p
1C .�1 C �2/2

��1
:
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Then m.�1; �2/ is well defined,

jm.�1; �2/j � C
�
1Cmin

�
j�1j; j�2j

��
(1.60)

and if one sets

Op.m/.u1; u2/ D
1

.2�/2

Z
eix.�1C�2/m.�1; �2/ Ou1.�1/ Ou2.�2/ d�1 d�2; (1.61)

one has for a fixed �0 and any large enough s,

kOp.m/.u1; u2/kH s � C
�
ku1kW �0;1ku2kH s C ku1kH sku2kW �0;1

�
: (1.62)

Moreover, the map given by u 7! u � Op.m/.u; u/ is a diffeomorphism from the open
set H s \ ¹u 2 W �0;1 W kukW �0;1 < rº to its image, for small enough r , and if u is
in that set, and solves equation (1.58), then w D u � Op.m/.u; u/ solves�

Dt � p.Dx/
�
w D ˛jwj2w � 2˛0Op.m/.w2; w/CR.w/; (1.63)

where R is a sum of contributions of degree of homogeneity larger than or equal to 4.

Proof. Estimate (1.60) follows by an immediate computation. It implies that one does
not lose derivatives when applying Op.m/ to a couple .u1; u2/, i.e. that (1.62) holds
without losing on s on the right-hand side. This allows one to construct the local
diffeomorphism u 7! w. When one makes actDt � p.Dx/ on Op.m/.u; u/, one gets
using equation (1.58), on the one hand

Op.m/
�
p.Dx/u; u

�
C Op.m/

�
u; p.Dx/u

�
� p.Dx/Op.m/.u; u/ (1.64)

which, because of the definition of m is equal to u2, and on the other hand contribu-
tions of the form

Op.m/
�
˛0u

2
C ˛juj2u; u/; Op.m/

�
u; ˛0u

2
C ˛juj2u/: (1.65)

If we compute the left-hand side of (1.63), we thus see that (1.64) compensates the
quadratic term, and that we are left on the right-hand side with the juj2u term and
expressions of the form (1.65). If we express u in terms of w D u � Op.m/.u; u/,
we shall get the cubic terms on the right-hand side of equation (1.63), and higher-
order terms R.w/. These higher-order contributions are essentially of the form

Rk D Op.mk/.w; : : : ; w; Nw; : : : ; Nw/

with k � 4,mk D mk.�1; : : : ; �k/ a smooth function satisfying convenient estimates,
and Rk defined as in (1.61) from

Op.mk/.u1; : : : ; uk/ D
1

.2�/k

Z
eix.�1C���C�k/mk.�1; : : : ; �k/

� Ou1.�1/ : : : Ouk.�k/ d�1 � � � d�k :

(1.66)
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Then R.w/ satisfies estimates of the form

kR.w/kH s � Ckwk
3
W �0;1kwkH s (1.67)

if w stays in some ball of W �0;1, i.e. plays the role of a perturbation that is at least
quartic.

The preceding lemma thus reduces the case of a quadratic nonlinearity to a cubic
one. Of course, the cubic term on the right-hand side of (1.63) is non-local, but this is
not a real extra difficulty. Because of that, in order not no be disturbed by unessential
technicalities, we shall pursue the reasoning considering a simple variant of (1.63),
namely �

Dt � p.Dx/
�
u D ˛juj2uC ˛1u

3
C ˛2u

2
Nu2 (1.68)

with ˛ real, ˛1; ˛2 complex, forgetting any contribution homogeneous of order larger
than or equal to 5 that is in any case easier to treat. Moreover, the special structure
of the nonlinear terms on the right-hand side does not matter except the fact that ˛
is real.

We have already noticed that a term like u3 is not compatible with the action
of LC on the right-hand side. The same holds for u2 Nu2. In order to get around that
difficulty, one may try to perform a normal form in order to get rid of cubic or quartic
terms. Nevertheless, unlike the quadratic case, one my not eliminate all these terms.
Actually, to get rid of u2 Nu2 for instance, one would have to introduce a new unknown
of the form u � Op.m4/.u; u; Nu; Nu/, where m4 would be the inverse of

�

q
1C �21 �

q
1C �22 C

q
1C �23 C

q
1C �24 �

p
1C .�1 C � � � C �4/2: (1.69)

But such a quantity vanishes for some values of .�1; : : : ; �4/. The idea to overcome
that difficulty is to use “space-time normal forms” introduced by Germain, Masmoudi
and Shatah in [29–32], and Germain and Masmoudi [28] (see also the review paper
of Lannes [58] and the works of Hu and Masmoudi [44], Deng, Ionescu, Pausader
and Pusateri [21], Wang [84] and Deng and Pusateri [22] for further applications and
extensions of the method). These authors define and use space-time normal forms
on the profiles of the solutions, namely the functions e�itp.Dx/u. Here, we present
an equivalent approach based on u itself and on microlocal cut-offs similar to those
introduced in (1.50), following [20]. Actually, introducing again from u the unknown
v given by (1.37), we rewrite (1.68) as�

Dt � OpW
h

�
x� C p.�/

��
v D h˛jvj2v C h˛1v

3
C h

3
2˛2v

2
Nv2 (1.70)

using notation (1.41). The idea of space-time normal forms may be described in a geo-
metrical way as follows. As we have seen above, a term like v2 Nv2 in (1.70) may not
be fully eliminated by a usual (time) normal form since (1.69) may vanish for some
values of the arguments. Though, we have seen in (1.34) that v defined by (1.37) is
expected to be a function oscillating as ei

'.x/
h , which means that we expect that v is

“concentrated” on the manifold ƒ defined in (1.45), (1.46). This means that, up to



Introduction 18

remainders having better time decay, we should hope to be able to design a normal
form eliminating the term v2 Nv2 of (1.70) as soon as (1.69) does not vanish when the
frequencies �1; �2 (corresponding to v) are set equal to d'.x/ (by characterization
(1.46) of ƒ) and �3; �4 (corresponding to Nv) are set equal to �d'.x/. Notice that
restricted to this subset, (1.69) is just equal to �1, so does not vanish. Of course, in
order to justify that, we need to explain how we may reduce ourselves to the fact that
v may be replaced by a function that is frequency localized on ƒ, up to convenient
remainders, and show how this allows one to prove energy estimates for the solution
of (1.70). Our goal will thus be to prove the following:

Proposition 1.6.3. The solution v of (1.70) satisfies estimates of the form

kv.t; � /kH s
h
� kv.1; � /kH s C C

Z t

1

kv.�; � /k2
W
�0;1

h.�/

�
1C kv.�; � /k

W
�0;1

h.�/

�
� kv.�; � /kH s

h.�/

d�

�

(1.71)

and

kLCv.t; � /kL2 � kLCv.1; � /kH s

C C

Z t

1

kv.�; � /k2
W
�0;1

h.�/

�
1C kv.�; � /k

W
�0;1

h.�/

�
� kLCv.�; � /kL2

d�

�
;

(1.72)

where h D 1
t
, h.�/ D 1

�
, kvkH s

h
D khhDxi

svkL2 , kvk
W
�0;1

h

D khhDxi
�0vkL1 and

LC is defined in (1.43).

Remark. These estimates are the translation on v of bounds of the form (1.5) and
(1.27) on u according to (1.37). Consequently, if we prove them, we shall get, as in
the proof of Theorem 1.5.1, that an a priori set of inequalities of the form (1.39) will
imply that the first two of these bounds hold with A replaced by A

2
.

Proof of the proposition. As indicated before the statement, in order to get (1.71) and
(1.72), we have to perform a “space-time” normal form. More precisely, we shall
decompose in the v3; v2 Nv2 terms of (1.70) each factor v as

v D vƒ C vƒc ; (1.73)

where vƒc will have better bounds than v, so that cubic or quartic terms involving at
least one factor vƒc will provide remainders. In a second step, we shall get rid of the
remaining nonlinearities ˛1v3ƒ, ˛2v2ƒ Nvƒ

2 by a normal form process. The function
vƒ in (1.73) will be defined as in (1.49), except that we cut-off around an O.1/-
neighborhood of ƒ instead of an O.

p
h/ one, i.e. we define now

vƒ D OpW
h

�

.x C p0.�//

�
v; vƒc D OpW

h

�
.1 � 
/.x C p0.�//

�
v: (1.74)
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(Actually, the above definition is the correct one when the frequency � stays in a com-
pact set. It should be adapted for large � , but we forget this technical detail in this
introduction.) Then vƒc will satisfy estimates with an O.h/ gain, as we may write it
essentially under the form

vƒc D hOpW
h

�

1.x C p

0.�//
�
.LCv/; (1.75)

where 
1.z/ D
.1�
/.z/

z
, so that

kvƒckL2 � ChkLCvkL2 :

Decomposing on the right-hand side of (1.70) v D vƒ C vƒc , one has thus�
Dt �OpW

h .x�Cp.�//
�
v D h˛jvj2vCh˛1.vƒ/

3
Ch

3
2˛2v

2
ƒ Nv

2
ƒCh

2S.v/; (1.76)

where S.v/, coming from monomials involving at least one factor vƒc , satisfies an
estimate of the form

kS.v/kL2 � Ckvk
2
L1kLvkL2 (1.77)

as long as kvkL1 stays bounded. Actually, one has to be more careful when making
the above estimates, sinceƒ has a degeneracy when � goes to infinity. The preceding
reasoning works for j�j staying in a compact set , or equivalently for x staying in
a compact subset of ��1; 1Œ. The general case is a little bit more involved, and in
particular estimate (1.77) holds with kvkL1 replaced by kvkW �0;1

h
for some �0.

Since making act the operator LC on S makes lose a factor h�1 (see the defini-
tion (1.43) of LC), we get that

h2kLCS.v/kL2 � Chkvk
2
L1kLCvkL2 ; (1.78)

which will be the kind of estimate we want for remainders. By (1.25) with p D 1,
rewritten in terms of the unknown v, we have also

hkLC.jvj
2v/kL2 � Chkvk

2
L1kLCvkL2 : (1.79)

On the other hand, the remaining contributions on the right-hand side of (1.77) would
not satisfy such estimates, but may now be eliminated by normal forms. Actually,
take � in C10 .R/, equal to one close to zero, and define

m4.x; �1; : : : ; �4/ D

2Y
jD1

�.x C p0.�j //

4Y
jD3

�.x � p0.�j //

�

h
�

q
1C �21 �

q
1C �22 C

q
1C �23

C

q
1C �24 �

p
1C .�1 C � � � C �4/2

i�1
:

(1.80)

This function is well defined, as the term inside the bracket does not vanish on the
support of the cut-off: actually (again forgetting what happens for large frequencies),
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on the support of the cut-off, �j D d'.x/C o.1/, j D 1; 2, �j D �d'.x/C o.1/,
j D 3; 4, so that the term inside the bracket is equal to �1C o.1/, and thus does not
vanish. Consequently, if we define

Oph.m4/
�
vƒ; vƒ; Nvƒ; Nvƒ

�
D

1

.2�/4

Z
eix.�1C���C�4/m4.�1; : : : ; �4/

� Ovƒ.�1/ Ovƒ.�2/bNvƒ.�3/bNvƒ.�4/ d�1 � � � d�4;
(1.81)

one obtains that�
Dt � OpW

h .x� C
p
1C �2/

��
Oph.m4/.vƒ; : : : ; Nvƒ/

�
D v2ƒ Nv

2
ƒ C remainder;

where the remainder, coming from the nonlinearities of the equation, contains at least
one h factor. Defining in the same way some cubic symbol m3, in order to eliminate
the v3ƒ term in (1.76), one gets that�

Dt � OpW
h .x� C

p
1C �2/

��
v � hOph.m3/.vƒ; vƒ; vƒ/

� h
3
2Oph.m4/.vƒ; : : : ; Nvƒ/

�
D h2S.v/C h˛jvj2v

(1.82)

for a new S.v/ satisfying (1.77).
In other words, we have reduced ourselves to an equation where the right-hand

side has the same structure as in (1.7) (up to changing the unknown u to v by (1.37)),
modulo a remainder h2S.v/ that has better time decay. Using estimates of the form
(1.78)–(1.79), one thus gets, applying L2 energy inequalities to (1.82) and denoting

w D v � hOph.m3/.vƒ; vƒ; vƒ/ � h
3
2Oph.m4/.vƒ; : : : ; Nvƒ/;

that

kLCw.t; � /kL2 � kLCw.1; � /kL2 C

Z t

1

kv.�; � /k2L1kLCv.�; � /kL2
d�

�
: (1.83)

As one may show that kLCw.t; � /kL2 is equivalent to kLCv.t; � /kL2 , one does get
an estimate of the form (1.72).

Remark. As already mentioned, in the proof of Proposition 1.6.3, we argued as if the
frequencies were staying in a compact set. When one makes the reasoning taking into
account what happens also for large frequencies, one gets a lower bound of the bracket
in (1.80) computed for �j in a convenient neighborhood of ˙d'.x/ by a negative
power of hd'.x/i. Since for all j , hd'.x/i � h�j i if .�1; : : : ; �4/ is in the support
of (1.80), one may write hd'.x/i � 1Cmax2.j�1j; : : : ; j�4j/, and the bounds one
gets in general for a symbol of the form m4 is

jm4.x; �1; : : : ; �4/j � C
�
1Cmax2.j�1j; : : : ; j�4j/

�N0 (1.84)



Perturbations of non-zero stationary solution 21

for some N0. Because of that, one gets bounds of type

kOph.m4/.v; : : : ; Nv/kH sh � Ckvk
3

W
�0;1

h

kvkH s
h

(1.85)

for any s and with �0 depending only on N0. In other words, coming back to the
unknown u, one obtains an estimate similar to (1.62). These inequalities (1.84) and
(1.85) explain why one gets in Proposition 1.6.3 upper bounds involving W �0;1

h

norms instead of L1 ones.

End of proof of Theorem 1.6.1. As for the proof of Theorem 1.5.1, one has just to
bootstrap estimates (1.39), showing that if they hold on some time interval and A;B
have been taken large enough and " small enough, then they still hold with A;B
replaced by A

2
; B
2

. We have seen after the statement of Proposition 1.6.3 that this
holds for the first two inequalities (1.39). To show that the last one holds, with B
replaced by B

2
, one argues as in the proof of Theorem 1.5.1. Actually, in that proof,

we did not really use the special form of the nonlinearity in (1.40) (except the fact
that ˛ is real), and the same arguments hold for an equation like (1.68).

1.7 Perturbations of non-zero stationary solution

Our main goal in this book is to study the perturbation of a non-zero stationary solu-
tion of a cubic wave equation in dimension one. In this section, we mention some
results and references on that kind of problems. The first set of questions one may
ask is the orbital stability of stationary solutions.

Let us mention first the result of Henry, Perez and Wreszinski [41] that will be
very relevant for us. Consider U a C 2 function on an interval Œa�; aC� satisfying
U � 0, U.a�/ D U.aC/ D 0, U 00.a˙/ > 0. Assume moreover that there is a smooth
strictly increasing function x 7!H.x/ solving the equation

H 00.x/ D U 0.H.x//

such that
lim

x!˙1
H.x/ D a˙

and that

E0 D

Z
R

�H 0.x/2
2

C U.H.x//
�
dx < C1:

Define for any function � and any q > 0,

dq.�/ D inf
c2R

Z
R

�
.�0.x/ �H 0.x C c//2 C q.�.x/ �H.x C c//2

�
dx:

One may state the main result of [41] as follows.
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Theorem 1.7.1. There are positive constants r; q; k such that if .t; x/ 7! �.t; x/ is
the solution of �

@2t � @
2
x

�
� C U 0.�/ D 0 (1.86)

satisfying �.0; � / 2 H 1
loc.R/, @x�.0; � /; @t�.0; � / 2 L

2.R/, and

dq.�.0; � // < r;Z
R

�
@t�.0; x/

2

2
C
@x�.0; x/

2

2
C U.�.0; x//

�
dx < E0 C kr

2;
(1.87)

then � is globally defined and for any t

dq.�.t; � // � r: (1.88)

This theorem means that H is orbitally stable, in that sense that an initial data
that is close enough to H gives rise to a solution that remains at any time close to a
translation of H . It applies in particular to U.�/ D 1

4
.�2 � 1/2, H.x/ D tanh. xp

2
/

and a˙ D ˙1, i.e. it shows the orbital stability of the “kink”, that is the stationary
solution H.x/ D tanh. xp

2
/ of the ˆ4 model given by the equation�

@2t � @
2
x

�
� D � � �3: (1.89)

The question of orbital stability has been then widely studied for other equations. In
particular, we refer to Weinstein [86] for orbital stability of Schrödinger or general-
ized KdV equations. References to earlier works on that topic may be found in the
reference list of that paper.

Once orbital stability is established for a given equation, the next step is to study
asymptotic stability. For Schrödinger equations, the first results are due to Buslaev
and Perelman [5–7] in dimension one and to Soffer and Weinstein [78] in higher
dimension. Buslaev and Perelman consider a one-dimensional Schrödinger equation,
of the form

i@t D �@
2
x C F.j j

2/ : (1.90)

Under convenient assumptions on F , one may construct soliton solutions of the equa-
tion, that have the form

e�iˇ0�it!0C
i
2xv0�.x � b0 � tv0/ (1.91)

for constants ˇ0; !0; b0; v0 and where � is a smooth exponentially decaying function.
The main result of the above references is that if one solves the initial value problem
for (1.90), with initial condition close to the preceding soliton solution, then the solu-
tion may be written when time goes to infinity as a sum of a modified soliton, i.e.
a function of the form (1.91) (with different values of the parameters ˇ0; : : : ; v0), of
a solution to a linear Schrödinger equation and of a remainder that converges to zero
in L2.
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In the work of Soffer and Weinstein, one introduces a potential in the linear part
of the operator, i.e. one considers an equation of the form

i@t� D ��� C .V .x/C �j�j
m�1/� (1.92)

in d D 2 or 3 space dimension, and for 1 < m < dC2
d�2

. They assume, among other
things, that the operator ��C V.x/ has exactly one eigenvalue, that is moreover
strictly negative. They show that for E close to that eigenvalue, there is a solution of
(1.92) of the form e�iEt E .x/, with  E smooth and decaying. Then, under some
further assumption, they prove that, if one solves the Cauchy problem starting from
an initial data that is close to ei
0 E0 , for given E0 close to the eigenvalue, 
0 real,
then the solution may be written at any time t as e.t/ E.t/ CR.t/ where E.t/ is
real, e.t/ is in the unit circle of C and R.t/ goes to zero in a weighted Sobolev space.
We refer to [78] for a precise description of the asymptotics of t 7!E.t/; e.t/ when
time goes to infinity.

Following the above references, a lot of results concerning asymptotic stabil-
ity for solutions to nonlinear Schrödinger equations or Gross–Pitaevsky ones have
been obtained. Limiting ourselves to one-dimensional problems, and without try-
ing to give an exhaustive list of references, one may cite Buslaev and Sulem [8],
Bethuel, Gravejat and Smets [4], Gravejat and Smets [36], Germain, Pusateri and
Rousset [35], Cuccagna and Pelinovski [16], Cuccagna and Jenkins [15], Gang and
Sigal [25–27], Cuccagna, Georgiev and Visciglia [14]. Still in one space dimension,
analogous results have been obtained for (generalized) KdV equations, by Pego and
Weinstein [73], Germain, Pusateri and Rousset [34], Martel and Merle [67–69] and
for Benjamin–Ono equation by Kenig and Martel [48]. Let us point out that for
Schrödinger or gKdV equations, the perturbation of the initial data induces a non-
zero translation speed on the stationary solution, so that the perturbed solution is the
sum of a progressive wave and of a dispersive part. This will be in contrast with
the results we shall obtain in this book, where the bound state that is perturbed will
remain stationary.

Let us discuss now some results more closely related to our work, concerning non-
linear wave equations. A main breakthrough has been made by Soffer and Weinstein
who in [79] consider an equation similar to (1.92), but where the Schrödinger operator
is replaced by the wave (or Klein–Gordon) one in three space dimension, namely

@2t � D .� � V.x/ �m
2/� C ��3; (1.93)

where � is some real constant, m > 0 and V is a smooth decaying potential. One
assumes among other things that ��C V Cm2 has Œm2;C1Œ as continuous spec-
trum and that there is a unique positive eigenvalue 0 < �2 < m2. One denotes by '
a normalized eigenfunction associated to that eigenvalue, so that for any R; � in R,
.t; x/ 7!R cos.�t C �/'.x/ is a solution to equation (1.93) when � D 0. The main
result of [79] asserts that if one solves (1.93) with small initial data in weighted
Sobolev spaces of smooth enough and decaying enough functions, the solution at
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time t may be written under the form

�.t; x/ D R.t/ cos.�t C �.t//'.x/C �.t; x/; (1.94)

whereR.t/ D O.jt j�
1
4 / and k�.t; � /kL8 D O.jt j�

3
4 /when t goes to˙1. This result

holds under a special non-resonance condition, Fermi’s golden rule, that we shall
further discuss below in the framework of our problem.

The above breakthrough has been at the origin of many other works. Let us men-
tion in particular Bambusi and Cuccagna [3] who generalized the result of [80] to
a wider framework, namely the case when the operator ��C V.x/Cm2 has several
eigenvalues instead of just one. Closer to our main result in this book, let us mention
the work where Cuccagna [13] studies asymptotic stability of a kink solution in three
space dimension. More precisely, one considers the solutionH of (1.89) as a solution
independent of two of the three space variables of the equation .@2t ��/� D � � �

3

on R3. The main result of [13] asserts that if one starts from initial data that are
a small perturbation of .H; 0/ by a smooth compactly supported function on R3, then
the solution of the evolution equation may be written as H C �.t; � /, where �.t; � /
is O.jt j�

1
2 / in L1. The proof uses the fact that in three space dimension, one has

much better dispersive decay than on the real line.

1.8 The kink problem. I

The main goal of this book is to study long time dispersion for small perturbations of
the “kink” H.x/ D tanh. xp

2
/ that is a stationary solution of equation (1.89) that we

recall below �
@2t � @

2
x/� D � � �

3:

We have seen in the preceding section (see Theorem 1.7.1) that H is orbitally stable,
and one wants to study its asymptotic stability. In order to do so, one writes � under
the form

�.t; x/ D H.x/C '.t
p
2; x
p
2/ (1.95)

and we aim at describing the asymptotics of ', in particular its dispersive properties,
when at initial time ' is small in a convenient weighted Sobolev space. By Theo-
rem 1.7.1, we know that ' is globally defined. It satisfies by direct computation the
equation �

D2
t � .D

2
x C 1C 2V.x//

�
' D �.x/'2 C

1

2
'3; (1.96)

where
V.x/ D �

3

4
cosh�2

�x
2

�
; �.x/ D

3

2
tanh

x

2
: (1.97)

The fact that the linear part of equation (1.96) contains a non-zero potential has two
consequences: first, as seen in the preceding section, the operator D2

x C 1C 2V.x/

may have bound states (and it has for the potential given by (1.97)). Second, even in



The kink problem. I 25

the absence of bound states, that operator does not have nice commutation properties
with the operator LC that we used in order to get dispersion in Sections 1.5 and 1.6.

Let us first discuss some results that are known concerning equations of the form
(1.96) either in the case of potentials without bound states, or for equations of that
form with V D 0 but where the nonlinearities have coefficients that are non- constant
functions of x, as on the right-hand side of (1.97). Such results have been proved
by Kopylova [53] for linear Klein–Gordon equations in a moving frame and, in the
nonlinear case, by Lindblad and Soffer [66], Lindblad, Lührmann and Soffer [60,61],
Lindblad, Lührmann, Schlag and Soffer [59], Sterbenz [81]. Very recently, Germain
and Pusateri [33] obtained the most general result in that framework. They consider
a model version of (1.96) of the form�

@2t � @
2
x C V.x/Cm

2
�
' D a.x/'2; (1.98)

where a.x/ is a function similar to � on the right-hand side of (1.96), i.e. a smooth
function that has finite limits at ˙1 and whose derivative is rapidly decaying. The
potential V is assumed to be Schwartz and such that �@2x C V has no bound state.
One of the results of [33] may be stated as follows:

Theorem 1.8.1. Let V be a generic potential without bound state, m > 0. There is
"0 > 0 such that for any " 2 �0; "0�, equation (1.97) has for any .'0; '1/ satisfying

�q�@2x C V C 1'0; '1�

H4 C 

hxi�q�@2x C V C 1'0; '1�

H1 � "
a unique global solution corresponding to the initial data 'jtD0 D '0, @t'jtD0 D '1.
Moreover, the dispersive estimate

�q�@2x C V C 1'0; '1�

L1 � C".1C jt j/� 12 (1.99)

holds and for some small ı > 0

k'.t; � /kH5 C k@t'.t; � /kH4 � C".1C jt j/
ı : (1.100)

Finally, let us mention that for nonlinearities with coefficients that are rapidly
enough decaying in x, Lindblad, Lührmann and Soffer [60] (in the case V � 0) and
Lindblad, Lührmann, Schlag and Soffer [59] (for generic potentials) could show that
a dispersive bound like (1.99) does not hold in general, and has to be replaced by the
product of the right-hand side with a logarithmic loss.

Remark. The assumption that V is generic is explained in Chapter 2 below. The
result of [33] is actually more general than Theorem 1.8.1 above. It also applies to
non-generic potentials if one makes in addition evenness/oddness assumptions. Let us
also mention that the question of asymptotic stability estimates on a compact domain
in space, when the linearized equation on the stationary solution has no bound state,
has been addressed by Kowalczyk, Martel, Muñoz and Van Den Bosch [57] for some
models of semilinear wave equations.
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Let us explain the new difficulties one has to take into account to prove a result of
the form above in comparison with the case V � 0. Clearly, if one wanted to apply
the operator

LC;m D x C t
Dx

.m2 CD2
x/
1
2

(or a “true” Klainerman vector field like t@x C x@t ) to equation (1.97), its commuta-
tor with the potential V would generate a new term with coefficients growing like t ,
which makes the method inapplicable. In order to circumvent such a difficulty, two
approaches are possible. The one implemented by Germain and Pusateri relies on the
use of the “modified Fourier transform”, which is a version of the Fourier transform
well adapted to ��C V instead of being tailored to ��. They introduce then the
profile g of the solution by

g.t; x/ D eit
p
�@2xCVCm

2
�
@t � i

q
�@2x C V Cm

2
�
� (1.101)

and its modified Fourier transform Qg.t; �/. The analogue of what does work in the case
V � 0 would be to get estimates of k@� Qg.t; �/kL2 (which is related to kLC;m�kL2
when V � 0). It turns out that, in order to get the most general statement of their
paper, Germain and Pusateri have to introduce a bigger space than L2 in which @� Qg
has to be estimated, allowing for some degeneracy close to a special frequency. They
have then to combine estimates in that space with normal forms constructed from the
modified Fourier transform.

The approach we use in this book is the one of wave operators. Let us just say
here that, when V is a potential in �.R/, without bound states, one may construct
a bounded operator WC on L2 such that

W �CWC D Id; WCW
�
C D Id and W �C.��C V /WC D ��:

Applying W �C to (1.98), one thus gets�
@2t � @

2
x Cm

2
�
W �C' D W

�
C.a.x/'

2/:

If w D W �C', one is thus reduced to an equation of the form�
@2t � @

2
x Cm

2
�
w D W �C.a.x/.WCw/

2/; (1.102)

i.e. to an equation for which the linear part has again constant coefficients, and thus
has nice commutation properties relatively to t@x C x@t or to LC;m. Of course, the
drawback is that the right-hand side of (1.102) is no longer a local nonlinearity, but
involves the operators WC; W �C . In the framework we shall be interested in, namely
odd initial conditions and odd coefficient a.x/, it turns out that WC; W �C may be
expressed from pseudo-differential operators b.x;Dx/, with a symbol b.x; �/ such
that @b

@x
.x; �/ is rapidly decaying when jxj tends to infinity. We shall explain in more

detail in Chapter 2 how we treat an equation of the form (1.102). Let us just say
now that if we had a cubic nonlinearity on the right-hand side, one could use directly
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vector fields methods on w. For a quadratic nonlinearity, one has to make use first of
normal forms in order to reduce quadratic nonlinearities to cubic ones. The difference
with Lemma 1.6.2 is that, because of the presence ofWC; W �C; a.x/ on the right-hand
side of (1.102), one has to consider quadratic corrections of the form (1.61), but with
a symbol m.x; �1; �2/ that depends also on x. This introduces new commutators,
involving quadratic operators associated to the symbol @m

@x
.x; �1; �2/. Though, as the

latter is rapidly decaying in x, and since we limit ourselves to odd solutions, such
terms form remainders that are not fully negligible, but that may be treated more
easily than in the more general case considered by Germain and Pusateri [33] or
Lindblad, Lührmann and Soffer [60].

1.9 The kink problem II. Coupling with the bound state

In the preceding section, we discussed an equation of the form (1.98) with a poten-
tial V that has no bound state. In this section, we go back to the kink problem (1.96),
where the potential V given by (1.97) does have bound states, so that the preceding
discussion does not apply.

Our starting point has been the paper [56] of Kowalczyk, Martel and Muñoz,
where the authors study the asymptotics of solutions of (1.89) when one takes as
an initial condition an odd perturbation of .H; 0/ that is small enough in the energy
norm. They prove that the perturbation of the solution .'; @t'/ may be decomposed
under the form

.'.t; x/; @t'.t; x// D .u1.t; x/; u2.t; x//C .z1.t/; z2.t//Y.x/; (1.103)

where Y is in �.R/ and is a normalized odd eigenfunction of�1
2
@2x C V.x/, zj .t/ are

scalar functions of time and .u1.t; x/; u2.t; x// is the dispersive part of the solution.
The main result of [56] states that the functions t 7! zj .t/ decay in time in the sense
that Z C1

�1

�
jz1.t/j

4
C jz2.t/j

4
�
dt < C1

and that the local energy of .u1; u2/ satisfiesZ C1
�1

Z
R

�
.@xu1/

2
C u21 C u

2
2

�
.t; x/e�c0jxj dt dx < C1:

At the light of the discussion previously given in the case of small perturbations of the
zero solution of nonlinear Klein–Gordon equations, or for (1.98) with a potential that
has no bound state, the above inequalities raise the following questions: making even-
tually stronger assumptions on the smoothness/decay of the initial perturbation, could
one get an explicit decay rate for the preceding quantities, instead of just integral
inequalities? Moreover, could one obtain decay estimates for kuj .t; � /kL1 instead of
just local in space decay?
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A more long term objective might be to obtain for odd perturbations of the kink
solution of (1.89) a description as precise as the one that holds when V � 0 or when
V is a potential without bound state. We are far from being able to achieve that in this
paper, where as a first step we aim at describing the perturbed solution up to time "�4

if " is the small size of the smooth decaying perturbation of the kink at initial time.
Recall that if we look for solutions of (1.89) under the form (1.95), we get that the
perturbation ' satisfies (1.96), with notation (1.97). We already mentioned that the
Schrödinger operator �@2x C 2V.x/ has discrete spectrum: it has two negative eigen-
values �1 and �1

4
and absolutely continuous spectrum Œ0;C1Œ. Eigenvalue �1 will

not be of interest to us as it is associated to an even eigenfunction, while we solve
(1.96) for odd initial data. Consequently, restricting ourselves to odd solutions, one
may decompose the solution of (1.96) as ' D Pac' C h'; Y iY , where Pac is the pro-
jector on the absolutely continuous spectrum Œ0;C1Œ and Y is an (odd) normalized
eigenfunction associated to eigenvalue �1

4
. Setting a.t/ D hY; 'i, one may deduce

from (1.96) that .a; Pac'/ satisfies a coupled system of ODE/PDE (see (2.9) in Chap-
ter 2).

Our main result asserts the following: Let c > 0 be given and consider (1.96)
with initial data 'jtD1 D "'0, @t'jtD1 D "'1 with .'0; '1/ satisfying for some large
enough s,

k'0k
2
H sC1

C k'1k
2
H s C kx'0k

2
H1
C k'1k

2
L2
� 1: (1.104)

Then, if " < "0 is small enough, the decomposition '.t; � / D Pac'.t; � /C a.t/Y of
the solution of (1.96) satisfies

ja.t/j C ja0.t/j D O.".1C t "2/�
1
2 /;

kPac'.t; � /kL1 D O.t
� 12 ."2

p
t /�
0

/;
(1.105)

where � 0 2 �0; 1
2
Œ, as long as t � "�4Cc . Let us mention that we limit our study to

positive times (that does not reduce generality) and that, in order to simplify some
notation, we take the Cauchy data at t D 1 instead of t D 0. Moreover, the statements
we get in Theorem 2.1.1 below give more precise information that (1.105). We just
stress here the fact that (1.105) provides the information we are looking for, namely
an explicit decay rate for a and Pac', up to time "�4Cc .

We notice that the dispersive estimate obtained for kPac'kL1 is pretty similar to
the bound in "t�

1
2 that holds for small solutions of equations .@2t �@

2
x C 1/u D N.u/.

Here, when t � "�4Cc , we get that

kPac'kL1 D O."
c
2 �
0

t�
1
2 /;

i.e. an estimate in c."/t�
1
2 , with c."/ going to zero with zero. Of course, if t goes close

to "�4, the small factor in front of t�
1
2 in the second estimate (1.105) gets closer and

closer to one, and this explains why our result is limited to times that are O."�4Cc/.
We shall comment more on that below.

Let us remark also that for dispersive estimates of the form (1.105), there is
a “trivial” regime, corresponding to t � c"�2. For such times, the ODE satisfied
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by a.t/, from which we shall deduce the first bound (1.105), is in a small time regime,
before any singularity could form. On the other hand, to reach a time of size "�4C0,
one has to use the structure of that ODE, namely exploit Fermi’s golden rule that we
shall discuss in Chapter 2 below, in order to exclude blowing up in finite time, and
prove the decay estimate (1.105).

Let us comment more on the limitation to times t D O."�4C0/ which contrasts
with the fact that, when the potential has no bound state, one may obtain dispersive
estimates up to infinity. The new difficulty, when bound states are present, comes
from the fact that in (1.105), a.t/ and a0.t/ have a decay in "

.1Ct"2/1=2
, which is larger

than the rate in "p
t

that holds for dispersive bounds in the absence of eigenvalues.
This has consequences on the estimates satisfied by the dispersive part of the solu-
tion Pac'.t; � /. Actually, applying Pac to equation (1.96), one will get an equation
that, at first glance, might seem pretty similar to (1.98), since on the range of Pac,
�@2x C 2V will have no bound state. Though, a major difference appears on the right-
hand side: if, for instance, one plugs in the quadratic term of (1.96) the decomposition
'.t; � / D Pac'.t; � /C a.t/Y , one might get a source term

a.t/2Pac.�.x/Y
2/; (1.106)

where a.t/ has only an O. 1p
t
/ decay for t � "�2 (ant not a "p

t
bound). This has

dramatic consequences on the solution to the equation itself. Actually, the solution
Pac' will have to encompass the solution of the linear equation�

D2
t � .D

2
x C 1C 2V.x//

�
w D a.t/2Pac.�.x/Y

2/

with zero initial data. We shall solve this equation, but will be able to obtain for its
solution only a bound in t�

1
2 ."2
p
t /�
0

for t � "�4C0 and some � 0 > 0. When doing
so, we are not able to obtain O.t�

1
2 / bounds for w along two lines

x

t
D ˙

r
2

3

when t � "�4. Actually, one might expect a logarithmic loss along these two lines,
similar to the ones in the work of Lindblad, Lührmann and Soffer [60] and Lindblad,
Lührmann, Schlag and Soffer [59].

Let us also stress on the fact that, besides (1.106), other new terms appear in
comparison to the case of potentials without bound states. For instance, a contribution
like Pac.�.x/.Pac'/a.t/Y / needs also a specific treatment, as it is not amenable to
standard normal forms treatment. We describe that in more detail in Section 2.7 of
Chapter 2.

To conclude this introduction, let us point out the results of Kopylova and Komech
in [54, 55] concerning asymptotic stability of a (moving) kink for a modified version
of (1.89). In their model, the Hamiltonian of the equation is tuned in such a way that
the projection of equation (1.96) on the absolutely continuous spectrum has coeffi-
cients in the nonlinearity that decay when x goes to infinity (instead of converging
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to some constant) This allows the authors to obtain a description of the dispersive
behavior of the corresponding solution for any time.

Finally, let us refer to the recent paper of Chen, Liu and Lu [10] concerning
asymptotic stability of kinks for sine-Gordon equations. Using the integrability of
that equation, they may prove soliton resolution for generic data and show the full
asymptotic stability of kinks under space decaying perturbations (see Corollary 1.5
of their paper). In particular, the difference between the solution and the moving kink
is shown to decompose, when time goes to infinity, as the sum of anO.t�

1
2 / contribu-

tion that involves a logarithmic phase correction and of a more decaying remainder.


