
Chapter 2

The kink problem

2.1 Statement of the main result

Consider � W R �R! R a global solution to the nonlinear wave equation�
@2t � @

2
x

�
� D � � �3: (2.1)
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H.x/ D tanh

� x
p
2

�
(2.2)

is a stationary solution of (2.1), and we are interested in describing the dispersive
behaviour in large time of solutions to (2.1) corresponding to initial data that are
small, smooth, odd and decaying perturbations of the state H . It is known that this
state is orbitally stable in the energy space by Henry, Perez and Wreszinski [41], and
for odd perturbations in that space, asymptotic stability with space exponential weight
is proved by Kowalczyk, Martel and Muñoz [56]. This result describes the dispersive
behaviour of the perturbation on compact space domains, but does not give insight
into its behaviour in the whole space time. Our goal is to obtain information when
.t; x/ describes I" �R, where I" is a time interval of length O."�4C0/, " being the
size of the initial data in a convenient space of smooth decaying functions.

We shall look for solutions to (2.1) under the form

�.t; x/ D H.x/C '
�
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p
2; x
p
2
�
: (2.3)

We get for ' the equation�
D2
t � .D

2
x C 1C 2V.x//
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2
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1
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4
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�
: (2.5)

The operator �@2x C 2V has Œ0;C1Œ as its continuous spectrum and has two eigen-
values�1 and�1

4
. The first one is associated to an even eigenfunction, and the second

one to the odd normalized eigenfunction

Y.x/ D

p
3

2
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�x
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�
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�x
2

�
(2.6)

(see Nikiforov and Uvarov [72] and Kowalczyk, Martel and Muñoz [56]).
We denote by Pac the spectral projector on the continuous spectrum, restricted

to odd functions. The spectral projector on the eigenspace associated to the eigen-
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value �1
4

is ' 7! h'; Y iY so that

Pac' D ' � h'; Y iY; (2.7)

where h � ; � i denotes the L2 scalar product. If ' solves (2.4), we set

a.t/ D h'; Y i (2.8)

so that (2.4) may be written�
D2
t �

3
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�
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D
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�
a.t/Y C Pac'
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a.t/Y C Pac'
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a.t/Y C Pac'

�3�
:

(2.9)

Our main result asserts that, up to a time of order "�4, the dispersive part Pac' of
(2.9) has a time decay in uniform norm of magnitude t�

1
2 , and that the function a.t/

in (2.8) has some oscillatory behavior, with decay in t�
1
2 . More precisely, we have:

Theorem 2.1.1. There is �0 2 N and for any � � �0, any c > 0, any � 0 2 �0; 1
2
Œ, any

large enoughN in N, any large enough s in N, there are "0 2 �0; 1Œ, C > 0 such that
for any couple .'0; '1/ of real-valued odd functions inH sC1.R/ �H s.R/ satisfying

k'0k
2
H sC1

C k'1k
2
H s C kx'0k

2
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C kx'1k

2
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� 1; (2.10)

the global solution ' of�
D2
t � .D

2
x C 1C 2V.x//

�
' D �.x/'2 C

1

2
'3;

'jtD1 D "'0;

@t'jtD1 D "'1

(2.11)

satisfies when " 2 �0; "0Œ the following bounds for any t 2 Œ1; "�4Cc�: The oscillatory
part a of ' given by (2.8) may be written

a.t/ D eit
p
3
2 gC.t/ � e

�it
p
3
2 g�.t/; (2.12)

where

jg˙.t/j � C".1C t "
2/�

1
2 ; j@tg˙.t/j � C"t

� 12 .1C t "2/�
1
2 : (2.13)

The dispersive part Pac'.t; � / satisfies

kPac'.t; � /kW �;1 � Ct�
1
2 ."2
p
t /�
0

;

khxi�2NPac'.t; � /kW �;1 � Ct�
3
4 ."2
p
t /�
0

;

khxi�2NPacDt'.t; � /kW ��1;1 � Ct�
3
4 ."2
p
t /�
0

;

(2.14)

where k kW �;1 D khDxi
� kL1 .
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Remarks. We make the following observations.
� The first estimate (2.14) shows that, up to time essentially equal to "�4, the dis-

persive part of the solution decays like t�
1
2 , which is the behavior of small global

solutions to nonlinear Klein–Gordon equations (see [18,19,64,82]). Nevertheless,
in that case, the upper bound is inO."t�

1
2 /, while in (2.14), we have a degeneracy

of the factor multiplying t�
1
2 when t goes to "�4.

� We construct in the proof some approximate solutions that are o.t�
1
2 / for times

t � "�4Cc and " small. To go past that time seems to require extra arguments –
like devising more accurate approximate solutions – in order to get a useful point-
wise control of Pac' for t > "�4.

� Our estimates are consistent with the ones of Kowalczyk, Martel and Muñoz [56]
in time O."�4/. Actually, it follows from (2.12), (2.13) that if p > 2,Z "�4Cc

1

ja.t/jp dt � C"p�2

andZ "�4Cc

1

�
khxi�2N�1Pac'.t; � /k

2
H1
C khxi�2N�1DtPac'.t; � /k

2
L2

�
dt � C"4�

0

for large enough N . These estimates are in accordance with those proved in [56]
(when p D 4 for the first one) (see Theorem 1.2 in that reference).

2.2 Reduced system

We shall conjugate the second equation (2.9) by the wave operator WC associated
to �1

2
@2x C V.x/. We discuss in Appendix A.1 below the properties of such an opera-

tor. According to Proposition A.1.1 of that Appendix, it may be written, when acting
on odd functions, under the form

WC D b.x;Dx/ ı c.Dx/; (2.15)

where b.x; �/ is a symbol of order zero satisfying estimates (A.8) and

c.�/ D ei�.�/1�>0 C e
�i�.�/1�<0

for some odd smooth real-valued function � . Moreover, if we set A D �1
2
@2x C V.x/,

A0 D �
1
2
@2x , one has by (A.6) and (A.7), for any Borel function m on R,

m.A/Pac D WCm.A0/W
�
C; m.A0/ D W

�
Cm.A/WC

WCW
�
C D Pac; W �CWC D IdL2

(2.16)

so that applying W �C on the second equation (2.9), we get�
D2
t � .D

2
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�
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2
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2
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3
�
:

(2.17)
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Let us define
w D b.x;Dx/

�Pac': (2.18)

Since Pac' is real valued, and since because of the symmetry properties (A.9) of
b.x; �/, b.x;Dx/ and b.x;Dx/� preserve the space of real (resp. even, resp. odd)
functions, w is still a real-valued odd function. As c.Dx/ ı c.Dx/� D Id,

Pac' D WCW
�
CPac' D b.x;Dx/w

c.Dx/W
�
CPac' D w;

(2.19)

so that making act c.Dx/ on (2.17) we see that w solves�
D2
t � .D

2
x C 1/

�
w D b.x;Dx/

�
�
�.x/

�
a.t/Y C b.x;Dx/w

�2�
C
1

2
b.x;Dx/

�
�
a.t/Y C b.x;Dx/w

�3
:

(2.20)

We shall study from now on the system given by the first equation (2.9) and (2.20).
We define

w0 D b.x;Dx/
�Pac'0;

w1 D b.x;Dx/
�Pac'1:

(2.21)

Since by (2.15) and (2.16), Pac D b.x;Dx/ ı b.x;Dx/
�, and since b.x;Dx/ and

Œx; b.x;Dx/� are bounded on Sobolev spaces, we get from (2.10) that

kw0k
2
H sC1

C kw1k
2
H s C kxw0k

2
H1
C kxw1k

2
L2
� C0 (2.22)

for some constant C0. Denote by p.Dx/ the operator

p.Dx/ D

q
1CD2

x (2.23)

and introduce complex-valued odd unknowns

uC D
�
Dt C p.Dx/

�
w;

u� D
�
Dt � p.Dx/

�
w D �NuC:

(2.24)

If I D .i1; : : : ; ip/ is an element of ¹�;Cºp , we shall set

uI D .ui1 ; : : : ; uip / (2.25)

and we denote also uI;j D uij , so that equivalently

uI D .uI;1; : : : ; uI;p/: (2.26)

Let us write (2.20) under the equivalent form

�
Dt � p.Dx/

�
uC D

2X
jD0

F 2j ŒaIuC; u��C

3X
jD0

F 3j ŒaIuC; u��; (2.27)
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where F 2j (resp. F 3j ) will be made of terms that are O.t�1/ (resp. O.t�
3
2 /) in L1 if

the bounds (2.12)–(2.14) hold true, and are given by the following:
� Contribution depending only on a and not on u˙ are

F 20 ŒaIuC; u�� D F
2
0 Œa� D a.t/

2b.x;Dx/
�.�.x/Y 2/;

F 30 ŒaIuC; u�� D F
3
0 Œa� D

1

2
a.t/3b.x;Dx/

�.Y 3/:
(2.28)

� Contributions that are homogeneous of degree j > 0 in .uC; u�/ are given by the
following quantities, where if jI j D .i1; : : : ; ip/, we set jI j Dp and "I D i1 � � � ip:

F 2j ŒaIuC; u�� D a.t/
2�j

X
jI jDj

F 2j;I ŒuI �; j D 1; 2;

F 3j ŒaIuC; u�� D a.t/
3�j

X
jI jDj

F 3j;I ŒuI �; j D 1; 2; 3;
(2.29)

with linear terms in .uC; u�/

F 21;I ŒuI � D "Ib.x;Dx/
�
�
Y.x/�.x/b.x;Dx/p.Dx/

�1uI
�
;

F 31;I ŒuI � D
3

4
"Ib.x;Dx/

�
�
Y.x/2b.x;Dx/p.Dx/

�1uI
�
;

(2.30)

quadratic terms in .uC; u�/

F 22;I ŒuI � D
1

4
"Ib.x;Dx/

�

 
�.x/

2Y
`D1

b.x;Dx/p.Dx/
�1uI;`

!
;

F 32;I ŒuI � D
3

8
"Ib.x;Dx/

�

 
Y.x/

2Y
`D1

b.x;Dx/p.Dx/
�1uI;`

!
;

(2.31)

and a cubic term in .uC; u�/

F 33;I ŒuI � D
1

16
"Ib.x;Dx/

�

 
3Y
`D1

b.x;Dx/p.Dx/
�1uI;`

!
: (2.32)

Notice that since � and Y are odd, as well as u˙, and b.x;Dx/ preserves odd
functions, F 2j ; F

3
j are odd functions.

Let us write now the first equation in (2.9) in terms of a; uC; u�. We define

aC.t/ D
�
Dt C

p
3

2

�
a; a�.t/ D

�
Dt �

p
3

2

�
a D �NaC (2.33)

so that a D
p
3
3
.aC � a�/ and we rewrite the first equation (2.9) as�
Dt �

p
3

2

�
aC D

2X
jD0

.aC � a�/
2�j

ĵ ŒuC; u��

C

3X
jD0

.aC � a�/
3�j�j ŒuC; u��;

(2.34)
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where the terms independent of u˙ are

ˆ0 D
1

3
hY; �Y 2i;

�0 D

p
3

18
hY; Y 3i

(2.35)

and for j � 1,
ĵ ŒuC; u�� D

X
jI jDj

ĵ;I ŒuI �;

�j ŒuC; u�� D
X
jI jDj

�j;I ŒuI �
(2.36)

with linear expressions

ˆ1;I ŒuI � D

p
3

3
"I
˝
Y; Y�b.x;Dx/p.Dx/

�1uI
˛
;

�1;I ŒuI � D
1

4
"I
˝
Y; Y 2b.x;Dx/p.Dx/

�1uI
˛
;

(2.37)

quadratic expressions

ˆ2;I ŒuI � D
1

4
"I

�
Y; �

2Y
`D1

b.x;Dx/p.Dx/
�1uI;`

�
;

�2;I ŒuI � D

p
3

8
"I

�
Y; Y

2Y
`D1

b.x;Dx/p.Dx/
�1uI;`

�
;

(2.38)

and cubic quantities

�3;I ŒuI � D
1

16
"I

�
Y;

3Y
`D1

b.x;Dx/p.Dx/
�1uI;`

�
: (2.39)

We shall study from now on system (2.27), (2.34) with initial data at t D 1. Accord-
ing to (2.24), (2.21), (2.22), (2.33) and the fact that by (2.8), a.1/ D h"'0; Y i and
@ta.1/ D h"'1; Y i, with '0; '1 satisfying (2.10), we may assume

uCjtD1 D "uC;0; aCjtD1 D "aC;0; (2.40)

where uC;0 is a complex-valued odd function in H s.R;C/ satisfying

kuC;0k
2
H s C kxuC;0k

2
L2
� C 20 ;

jaC;0j � C
2
0

(2.41)

for some fixed constant C0.
In the following sections, we shall describe the main steps of the method of proof

of our main result.
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2.3 Step 1: Writing of the system from multilinear operators

In Section 2.2, we have reduced (2.9) to the system made of equations (2.27) and
(2.34). One may rewrite (2.27) on a more synthetic way as�

Dt � p.Dx/
�
uC D F

2
0 Œa�C F

3
0 Œa�C

X
2�jI j�3

Op.m0;I /ŒuI �

C a.t/
X

1�jI j�2

Op.m01;I /ŒuI �

C a.t/2
X
jI jD1

Op.m02;I /ŒuI �

(2.42)

with the following notation: The term F 20 Œa� (resp. F 30 Œa�) is the quadratic (resp.
cubic) contribution in a obtained settingw D 0 on the right-hand side of (2.27). It has
structure a.t/2Z2 (resp. a.t/3Z3) for some �.R/-function Z2 (resp. Z3). The other
terms on the right-hand side of (2.42) are expressed in terms of multilinear opera-
tors Op.m/.u1; : : : ; up/, defined if m.x; �1; : : : ; �p/ is a smooth function satisfying
convenient estimates, as

Op.m/.u1; : : : ; up/ D
1

.2�/p

Z
eix.�1C���C�p/m.x; �1; : : : ; �p/

�

pY
jD1

Ouj .�j / d�1 � � � d�p:

(2.43)

On the right-hand side of (2.42), we denote by I p-tuples I D .i1; : : : ; ip/ where
i` D ˙ and set jI j D p. Then uI stands for a p-tuple uI D .ui1 ; : : : ; uip / whose
components are equal to uC or u� defined in (2.24). The symbols m0;I , m01;I , m02;I
are functions of .x; �1; : : : ; �p/ with p D jI j. We do not write explicitly in this pre-
sentation of the proof the estimates that are assumed on these functions and their
derivatives: we refer to Definition 3.1.1 below and to Appendix B for the precise
description of the classes of symbols we consider. Let us just say that symbols m0;I
are bounded in x, while their @x-derivatives are rapidly decaying in x. This comes
from the fact that the symbol b.x; �/ and the functions �; Y in (2.20) satisfy such
properties. On the other hand, symbols m01;I ; m

0
2;I (and more generally any symbol

that we shall denote as m0 in what follows) decay rapidly in x even without taking
derivatives. It turns out that operators with decaying symbol in x acting on functions
we shall introduce below will give quantities with a better time decay than operators
associated to non-decaying symbols.

2.4 Step 2: First quadratic normal form

The goal of the whole paper is to obtain energy estimates for the solution uC to (2.27)
and aC to (2.34).
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As we have seen in Section 1.6 of the Introduction, the first thing to do in order
to get Sobolev estimates for an equation like (2.27) is to eliminate the quadratic
contributions

P
jI jD2 Op.m0;I /ŒuI �. We do that through a “time normal form” à la

Shatah [76] and Simon and Taflin [77] (see also for one-dimensional Klein–Gordon
equations Moriyama, Tonegawa and Tsutsumi [71], Moriyama [70], Hayashi and
Naumkin [39] and the very recent works of Germain and Pusateri [33], of Lindblad,
Lührmann and Soffer [60] and of Lindblad, Lührmann, Schlag and Soffer [59]). Actu-
ally, we construct new symbols . Qm0;I /jI jD2 such that�

Dt � p.Dx/
��
uC �

X
jI jD2

Op. Qm0;I /ŒuI �
�

D F 20 Œa�C F
3
0 Œa�C

X
3�jI j�4

Op.m0;I /ŒuI �C
X
jI jD2

Op.m00;I /ŒuI �

C

3X
jD1

a.t/j
X

1�jI j�4�j

Op.m0j;I /ŒuI �;

(2.44)

where on the right-hand side, we eliminated the quadratic contributions Op.m0;I/ŒuI �,
but made appear new quadratic terms Op.m00;I /ŒuI � given in terms of new sym-
bols m00;I that decay rapidly when x goes to infinity. These corrections come from
the fact that, at the difference with a usual normal form method where one elim-
inates quadratic expressions like (2.43) with p D 2 and a symbol m.�1; �2/ inde-
pendent of x, we have here to cope with symbols m.x; �1; �2/. This x dependence
makes appear some commutator, given essentially in terms of Op.@m

@x
.x; �1; �2//, with

a symbol rapidly decaying in x. These commutators are the new quadratic terms
Op.m00;I /ŒuI � on the right-hand side of (2.44). As already mentioned, such expres-
sions will have better time decay estimates than the quadratic expressions given by
non-space decaying symbols that we have eliminated, and are actually better than
most remaining terms on the right-hand side of (2.44). They are not completely neg-
ligible, but will be treated only at the end of the reasoning.

2.5 Step 3: Approximate solution

Our general strategy is to define from the solution uC of (2.44) a new unknown QuC
that would satisfy similar estimates as those of the bootstrap (1.39) of the introduc-
tion. More precisely, we aim at constructing a new unknown QuC for which we could
get, for t 2 Œ1; "�4Cc� with c > 0 given, bounds of the following form:

k QuC.t; � /kH s D O."t
ı/; (2.45)

kLC QuC.t; � /kL2 D O
�
."2
p
t /� t

1
4

�
; (2.46)

k QuC.t; � /kW �;1 D O
� ."2pt /� 0
p
t

�
; (2.47)
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where ı > 0 is small, � 0 < � < 1
2

with � 0 close to 1
2

, s � �� 1, and where we
denoted kwkW �;1 D khDxi

�wkL1 . The first estimate (2.45) is the one that would
follow by energy inequality for the solution of (1.32), assuming that (2.47) holds
(since, for t � "�4Cc , (2.47) implies a bound in c."/t�

1
2 , with c."/ going to zero

when " goes to zero). In the same way, assuming (2.47) and assuming that QuC solves
an equation of the form (1.26) with p D 1, one could bootstrap a bound of the
form (2.46). Finally, an estimate of the form (2.47) will have to be deduced from
(2.46) constructing from the PDE solved by QuC an ODE with remainder term con-
trolled from (2.46).

Of course, the right-hand side of (2.44) is far from having the nice structure of the
one of (1.32), and this is why we shall have to modify the unknown uC in order to
eliminate all bad terms on the right-hand side of (2.44). In Chapter 4 of the paper we
shall get rid of the contributions F 20 Œa�, F

3
0 Œa�. These functions are bounded as well

as their space derivatives by t�1hxi�N for any N . Clearly, if we make act LC on
them and compute the L2 norm, we shall get anO.1/ quantity. If we were integrating
such a bound, we would deduce that kLCuC.t; � /kL2 D O.t/, a much worse estimate
than the one (2.46) we want. We shall thus remove from uC the solution of the linear
equation with force terms F 20 Œa�C F

3
0 Œa�, i.e. we shall solve�

Dt � p.Dx/
�
U D F 20 Œa�C F

3
0 Œa�;

U jtD1 D 0
(2.48)

and then make the difference between (2.44) and (2.48) in order to eliminate F 20 Œa�
and F 30 Œa� from the right-hand side of the new equation obtained in that way. Actually,
one needs to take also into account at this stage bilinear terms in .a; u/ in (2.44). We
thus construct in Proposition 4.1.2 an approximate solution uapp

C of�
Dt � p.Dx/

�
u

app
C D F

2
0 .a

app/C F 30 .a
app/

C aapp
X
jI jD1

Op.m01;I /.u
app
I /C remainder;

u
app
C jtD1 D 0;

(2.49)

where aapp is some approximation of the function a.t/ solving the first equation (2.9).
Let us explain what are the bounds satisfied by the approximate solution uapp

C of
equation (2.49) that we obtain in Proposition 4.1.2 using the results of Appendix C.
We decompose uapp

C D u
0app
C C u

00app
C . The term u0

app
C satisfies the kind of estimates

we aim at proving, namely (2.45)–(2.47) (and actually slightly better ones) for times
t D O."�4Cc/. On the other hand, inequalities (2.45) and (2.47) hold for u00app

C (and
even actually slightly better ones), but LCu00

app
C does not verify (2.46). On the other

hand, LCu00
app
C obeys good estimates in L1 norms, of the form

kLCu
00app
C kW r;1 D O

�
log.1C t / log.1C "2t /

�
(2.50)

that will allow us to estimate conveniently nonlinear terms containing u00app
C . Let us

stress that the limitation of our main result to times O."�4/ comes from the degen-
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eracy of bound (2.46) for LCu0
app
C when t becomes larger than "�4. We do not claim

that, in such a regime, an estimate of the form (2.46) would be optimal. But we remark
that in the construction of u0app

C made from the results of Appendix C, the main contri-
bution comes from quantities that have pretty explicit bounds: see Proposition C.1.4
and in particular bound (C.40) with ! D 1 (that gives the main contribution to u0app

C )
and (C.42) with ! D 1 (that gives the main contribution to LCu0

app
C ). If we extrap-

olate estimate (C.40) for t � "�4 (which is of course not legitimate, as we prove it
only for times O."�4/), we see that outside a conical neighborhood of the two lines
x D ˙t

p
2=3, an estimate of ju0app

C .t; x/j in O."2t�
1
2 / would hold. On the other

hand, along these two lines, a degeneracy happens, and we do not expect to be able
to prove that, for t � "�4, ju0app

C .t;˙t
p
2=3/j

p
t remains small (or even bounded).

Because of that, we do not hope to push estimates of the form (2.45)–(2.47) for such
times, without taking into account first some extra corrections. In particular, going
back to (1.105), we do not expect anO.t�

1
2 / bound for jPac'.t; x/j along these lines.

Notice that such a phenomenon cannot be detected using weighted space esti-
mates an in [56]: actually, along the lines x D ˙t

p
2=3, a space decaying weight is

also time decaying and kills bad bounds of u0app
C along these lines. We shall comment

more extensively on that issue in Section 2.10 below.
In addition to the proof of estimates of the form (2.45)–(2.47), we need, in order

to obtain (1.105), to study the solution of the first equation (2.9). We do that in Sec-
tion 4.2 of Chapter 4. Setting

aC.t/ D
�
Dt C

p
3

2

�
a; a�.t/ D

�
Dt �

p
3

2

�
a D �NaC;

the first equation (2.9) may be rewritten as

�
Dt �

p
3

2

�
aC D

2X
jD0

.aC � a�/
2�j

ĵ ŒuC; u��

C

3X
jD0

.aC � a�/
3�j�j ŒuC; u��;

(2.51)

where ĵ ; �j are expressions in the solution uC to (2.42) or (2.44). The goal of
Section 4.2 is to uncover the structure of aC. We write

aC.t/ D a
app
C .t/CO

�
"3.1C t "2/�

3
2

�
;

where aapp
C .t/ has structure (4.97), that implies in particular

a
app
C .t/ D e

it
p
3
2 g.t/Cmore decaying terms: (2.52)

The main goal of Section 4.2 is to prove by bootstrap that g.t/ satisfies bounds

jg.t/j D O.".1C t "2/�
1
2 /; j@tg.t/j D O.t

� 32 /: (2.53)
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(Actually, we get more precise bounds for @tg: see (4.99)). These bounds are obtained
showing that (2.51) implies that g satisfies an ODE

Dtg.t/ D
�
˛ � i

p
6

18
OY2.
p
2/2
�
jg.t/j2g.t/C remainder; (2.54)

where Y2 is some explicit function in �.R/ and ˛ is real. The coefficient of the cubic
term on the right-hand side comes from some of the terms on the right-hand side
of (2.51) where we replace u˙ by the approximate solution uapp

C determined in Sec-
tion 4.1. The main contribution to uapp

C , integrated against an �.R/ function, may be
computed explicitly in terms of g (see Proposition 4.1.3), and brings the right-hand
side of (2.54). The key point in that equation is that OY2.

p
2/2 < 0. This implies that

g satisfies bounds (2.53) for t � 1 if g.1/ D O."/. The inequality OY2.
p
2/2 < 0 is

nothing but Fermi’s golden rule. Actually, OY2.
p
2/2 � 0 holds trivially and the key

point is to check that OY2.
p
2/ ¤ 0. This reduces to showing that some explicit inte-

gral is non-zero. Kowalczyk, Martel and Muñoz checked that numerically in [56]. In
Appendix G, we compute explicitly this integral by residues.

2.6 Step 4: Reduced form of dispersive equation

The goal of this step is to rewrite equation (2.44) in terms of a new unknown QuC that
will satisfy estimates (2.45)–(2.47). We define

QuC D uC �
X
jI jD2

Op. Qm0;I /.uI / � u0
app
C � u

00app
C ; (2.55)

and set Qu� D �QuC. Making the difference between (2.44) and (2.49), we show in
Section 5.2 (see Proposition 5.2.1) that QuC satisfies�
Dt � p.Dx/

�
QuC D

X
3�jI j�4; ID.I 0;I 00/

Op. QmI /. QuI 0 ; u
app
I 00 /

C

X
jI jD2; ID.I 0;I 00/

Op.m00;I /. QuI 0 ; u
app
I 00 /

C aapp.t/
X
jI jD1

Op.m01;I /. QuI /

C
1

3

�
eit
p
3
2 g.t/C e�it

p
3
2 g.t/

�2 X
jI jD1

Op.m00;I /. QuI /

C remainder;

(2.56)

where:
� For 3 � jI j � 4, QmI are symbols QmI .x; �1; : : : ; �p/, p D jI j D jI 0jCjI 00jwhich

are O.1/ as functions of x, but O.hxi�1/ if one takes at least one @x-derivative.
� For 1 � jI j � 2,m00;I ,m01;I are symbols that areO.hxi�1/, even without taking

any derivative.
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� Function of time g has been introduced in (2.52) and gives the principal term in
the expansion of aapp

C .t/ or aC.t/.
� Function aapp.t/ D

p
3
3
.a

app
C .t/ � a

app
� .t//, where

a
app
C .t/ D e

it
p
3
2 g.t/C !2e

it
p
3g.t/2 C !0jg.t/j

2
C !�2e

�it
p
3g.t/

2
(2.57)

with convenient constants !2; !0; !�2 and aapp
� .t/ D �a

app
C .t/.

We cannot derive directly from equation (2.56) estimate (2.46) for QuC, as the
right-hand side of (2.56) has not the nice structure (1.32). Before applying an energy
method, we shall have to use several normal forms in order to reduce ourselves to
such a nice nonlinearity. As a preparation to that step, we show in Corollary 5.2.3 that
(2.56) may be rewritten under the following equivalent form:

�
Dt � p.Dx/

�
QuC �

2X
jD�2

eitj
p
3
2 Op.b0j;C/ QuC �

2X
jD�2

eitj
p
3
2 Op.b0j;�/ Qu�

D

X
3�jI j�4; ID.I 0;I 00/

Op. QmI /. QuI 0 ; u
app
I 00 /C

X
jI jD2

Op.m00;I /. QuI /

C

X
ID.I 0;I 00/; jI 0jDjI 00jD1

Op.m00;I /. QuI 0 ; u
0app;1
I 00 /

C

X
jI jD2

Op.m00;I /.u
0app;1
I /C remainder;

(2.58)

where, in comparison with (2.56), all linear terms in QuC; Qu� have been sent to the left-
hand side, and are expressed from symbols b0j;˙.t; x; �/ that are rapidly decaying in x
at infinity. Moreover, on the right-hand side, we still use the convention of denoting
by m00;I symbols rapidly decaying in x, while QmI are O.1/ in x, with @x-derivatives
rapidly decaying in x. Furthermore, in the last two sums in (2.58), we replaced u0app

by u0app;1, which is actually the main contribution (in terms of time decay) to u0app.
If we set Qu D Œ QuC

Qu�
�, we may rewrite (2.58) as a system of the form�

Dt � P0 � V
�
Qu DM3. Qu; u

app/CM4. Qu; u
app/

CM02. Qu; u
0app;1/C remainder;

(2.59)

where

P0 D

�
p.Dx/ 0

0 �p.Dx/

�
;

V is a 2 � 2 matrix of operators of the form

V D

2X
jD�2

eijt
p
3
2 Op.M 0j .t; x; �// (2.60)

with M 0j 2 � 2 matrix of symbols whose entries are given in terms of the b0j;˙ in
(2.58), and where the 2-vectors M3 (resp. M4, resp. M02) come from the cubic (resp.
quartic, resp. quadratic) terms on the right-hand side of (2.58).
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To obtain the wanted estimates (2.45) and (2.46) for QuC, we have next to reduce
(2.59) to an equation essentially of the form (1.32). This is the object of Step 5 of
the proof.

2.7 Step 5: Normal forms

Equation (2.59) has not structure of the form (1.32), in that sense that if we make act

L D

�
LC 0

0 L�

�
;

with L� D x � tp0.Dx/, first L does not commute to the potential term V , and
second the action of L on the nonlinearities on the right-hand side does not give
quantities whoseL2 norm isO.k Quk2L1kL QukL2/ (which is essentially necessary if we
want to get (2.46) by energy estimates). To cope with the lack of commutation of L
with V , we shall construct a wave operator and use it to eliminate V by conjugation
of the equation. This is similar to what has been done to pass from the second equa-
tion (2.9), that was involving the potential 2V.x/ to equation (2.17), where there was
no longer any potential. The difference here is that V given by (2.60) is time depen-
dent (with O.t�

1
2 / decay). We thus cannot rely on existing references, and have to

construct by hand operators B.t/; C.t/ (depending on time) such that

C.t/
�
Dt � P0 � V

�
D .Dt � P0/C.t/: (2.61)

In that way, if Qu solves (2.59), then C.t/ Qu solves the new equation without potential

.Dt � P0/C.t/ Qu D C.t/M3. Qu; u
app/C C.t/M4. Qu; u

app/

C C.t/M02. Qu; u
0app;1/C remainder

(2.62)

(see Proposition 6.1.2). Moreover, since we want to pass from an L2 bound on L Qu to
an L2 bound on LC.t/ Qu and conversely, we need to relate L ı C.t/ and L, proving
that

L ı C.t/ D QC.t/ ı LC QC1.t/; (2.63)

where QC.t/ is bounded on L2 uniformly in t and QC1.t/ is bounded with a small
time growth when t goes to infinity. The construction of operator C.t/ is made in
Appendix E by a pretty standard series expansion. We notice however that we need
to use in that construction the fact that we are dealing with odd functions Qu.

Once reduced to (2.62), we still have to handle those nonlinear terms on the right-
hand side that do not have a structure of the form (1.32), i.e. we have to cope with
nonlinearities that have the same structure as in the model (1.68) of Section 1.6 of the
introduction. We have seen there that this problem may be solved using “space-time
normal forms”. We shall follow essentially the approach of [20], already described in
Section 1.6 of the introduction, that we have to adapt to the more general operators
M3;M4 on the right-hand side of (2.62). Remark that the components of the vectors
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M3;M4 are, according to (2.58), given by expressions Op. Qm/. Qu˙; : : : ; u
app
˙
/, where

Qm.x; �1; : : : ; �p/ is a symbol that is O.1/ when jxj goes to infinity, but O.hxi�1/ if
one takes at least one @x-derivative. We have to distinguish between to type of terms,
the characteristic and the non-characteristic ones. The former correspond to the case
when, among the p arguments of Op. Qm/. Qu˙; : : : ; u

app
˙
/, pC1

2
are equal to QuC or uapp

C

and p�1
2

are equal to Qu� or uapp
� .

In the case of simple monomial nonlinearities, example of characteristic terms
are given by the right-hand side juCj2uC of (1.32), which, when making act LC on
it, may be estimated in L2 by kuC.t; � /k2L1kLCuC.t; � /kL2 . If Qm were independent
of x, the same would hold for the action of the operator LC on any characteris-
tic term like Op. Qm/. Qu˙; : : : ; Qu˙/, as LCOp. Qm/. Qu˙; : : : ; Qu˙/ could be expressed
from Op. Qm/.L˙ Qu˙; : : : ; Qu˙/; : : : ;Op. Qm/. Qu˙; : : : ; L˙ Qu˙/. Using the boundedness
properties of Op. Qm/, one would then estimate the L2 norm of these quantities by
k Quk

p�1
L1 kL QukL2 . As p � 3, one could then obtain estimate (2.46) by energy inequal-

ity, as in (1.26). Since here Qm does depend on x, there is no exact commutation
relation in the characteristic case between Op. Qm/ and LC, as some commutators of
the form tOp.@x Qm/ have to be taken into account. It turns out that, because @x Qm is
rapidly decaying in x, and because Qu˙ is odd, ktOp. Qm/. Qu˙; : : : ; Qu˙/kL2 may be also
estimate by the right-hand side of (1.26). Actually, the kind of expressions one has to
cope with is morally of the form

tZ.x/
�
hDxi

�1
Qu˙
�3
; (2.64)

where Z is in �.R/ (This reflects the fact that @x Qm is rapidly decaying in x). Since
QuC is odd, we may write using the definition of LC D x C t DxhDxi

hDxi
�1
QuC D ix

Z 1

�1

� Dx
hDxi

QuC

�
.�x/ d�

D i
x

t

Z 1

�1

�
.LC QuC/.�x/ � �x QuC.�x/

�
d�:

(2.65)

The rapid decay of Z.x/ allows one to absorb the powers of x on the right-hand side
of (2.65), and to estimate the L2 norm of (2.64) by

C
�
kLC QuCkL2 C k QuCkL2

�
k QuCk

2
L1 ;

i.e. by the right-hand side of (1.26) with p D 1. Similar arguments apply when the
factors Qu˙ are replaced by uapp

˙
.

The above reasoning disposes of the characteristic components in Mj . Qu; u
app/ in

(2.62). The non-characteristic ones are for instance of the form Op. Qm/. QuC; : : : ; QuC/
and we no longer have an approximate commutation property of LC with such oper-
ators. These terms have thus to be eliminated by a space-time normal form. We con-
struct in Proposition 6.2.1, using the results of Appendix F, operators OMj , j D 3; 4,
such that

.Dt � P0/ OMj . Qu; u
app/ DMj . Qu; u

app/nch C remainder; (2.66)
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where Mj . Qu; u
app/nch denotes the non-characteristic contributions to Mj . Qu; u

app/ on
the right-hand side of (2.62). Actually, M4. Qu; u

app/nch DM4. Qu; u
app/ as only M3

contains characteristic components. In that way, we deduce from (2.62) that

.Dt � P0/
�
C.t/

�
Qu � OM3. Qu; u

app/ � OM4. Qu; u
app/

��
D C.t/M02. Qu; u

0app;1/CR;
(2.67)

where the remainder R satisfies bounds of the form

kLCRkL2 D O
�
k QuCk

2
L1kLC QuCkL2

�
as on the right-hand side of (1.26) with p D 1. Notice that to deduce (2.67) from
(2.66), we have to compare .Dt � P0/C.t/ OMj and C.t/.Dt � P0/ OMj which by
(2.61) makes appear a term C.t/V OMj , but the time and space decay of operator V

allows one to show that such errors form part of the remainder R in (2.67).
One has still on the right-hand side of (2.67) term C.t/M02. Qu; u

0app;1/. Again M02
may be expressed in terms of quantities Op.m0/. Qu˙; Qu˙/ (and similar ones with Qu˙
replaced by u0app;1

˙
), so that one may gain some time decay using expressions of the

form (2.65), but as this term is just quadratic, this gain is not sufficient to include
C.t/M02 into R in (2.67). As C.t/ � Id has some time decay, one may prove though
that .C.t/ � Id/M02 is a remainder, but the expression M02. Qu; u

0app;1/ still needs to
be eliminated from the right-hand side of (2.67). We do that in Proposition 6.2.4 of
Chapter 6, using results of Appendix F. Actually, a quantity like Op.m0/. Qu˙; Qu˙/
may be expressed, using the x-rapid decay of m0 and the oddness of Qu˙, as a sum of
expressions of the form

t�2K
�
L
`1
˙
Qu˙; L

`2
˙
Qu˙/; 0 � `1; `2 � 1; (2.68)

where K is an operator of form

3K.f1; f2/.�0/ D
Z
k.�0; �1; �2/ Of1.�1/ Of .�2/ d�1 d�2; (2.69)

where the kernel k has rapid decay in h�0 � �1 � �2i. An operator of form (2.68)
slightly misses bounds in O.t�1kLC QuCkL2/ when we make act on it L˙ and take
the L2 norm. But it does satisfy such estimates if we cut-off k in (2.69) on a domain
j˙h�0i ˙ h�1i ˙ h�2ij � ct

� 12 . Consequently, one may assume that in (2.69), k is
supported for j˙h�0i ˙ h�1i ˙ h�2ij � ct�

1
2 . This extra cut-off allows to construct by

normal forms a quadratic term OM02. Qu; u
0app;1/ such that

.Dt � P0/ OM
0
2. Qu; u

0app;1/ DM02. Qu; u
0app;1/C remainder:

Subtracting this equation from (2.67), one gets finally

.Dt � P0/ Vu D OR (2.70)
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where

Vu D C.t/

�
Qu �

4X
jD3

OMj . Qu; u
app/

�
� OM02. Qu; u

0app;1/: (2.71)

and where OR will satisfy among other things essentially

kL OR.t; � /kL2 D O.t
�1
kLC QuCkL2/: (2.72)

2.8 Step 6: Bootstrap of L2 estimates

As seen above, the conclusion of the main theorem follows from the bootstrap of
estimates (2.45)–(2.47). In Chapter 7, we perform the bootstrap of (2.45) and (2.46),
assuming that (2.45)–(2.47) hold on some interval Œ1; T � with T � "�4Cc and show-
ing that (2.45)–(2.46) then actually hold with the implicit constant on the right-hand
side divided by 2 for instance. As we have seen, estimate (2.46) cannot be obtained
making act L directly on (2.59), as the action of L on the right-hand side of this
equation has bad upper bounds in L2. On the other hand, making act L on (2.70),
commuting it to Dt � P0 and using (2.72), one may obtain a bound of the form
(2.46) for kLC VuC.t; � /kL2 . Actually, to do so with an improved implicit constant,
one has to show that the right-hand side of (2.72) is o.t�1kLC QuCkL2/ instead of
just O.t�1kLC QuCkL2/, but this follows from the estimates we get if t � "�4Cc and
"� 1. The remaining thing to do is then to relate estimates for LC VuC in L2 and
estimates for LC QuC, i.e. to show that the action of LC on the OMj ; OM

0
2 terms in (2.71)

do not perturb significantly the a priori bound of the left-hand side. We do that in
Section 7.1 for OMj , j D 3; 4 and in Section 7.2 for OM02. In this Chapter 7, we also
check that the remainder OR in (2.70) satisfies (2.72). These estimates heavily rely
on the boundedness properties of the different multilinear operators we use, that are
discussed in Appendix D. Putting all of that together, we conclude the bootstrap for
estimates (2.45)–(2.46) in Proposition 7.3.7.

2.9 Step 7: Bootstrap of L1 estimates and end of proof

The only remaining step in order to conclude the proof of the main theorem is to
bootstrap bound (2.47). We do that in Chapter 8. We deduce from equation (2.56) sat-
isfied by QuC an ordinary differential equation. We proceed as in [1] for water waves,
with simplifications inspired by Ifrim and Tataru [45] (see also [20, 82]). If we write
equation (2.56) as .Dt � p.Dx// QuC D fC and if we define QuC; f C by

QuC.t; x/ D
1
p
t
QuC

�
t;
x

t

�
; fC.t; x/ D

1
p
t
f
C

�
t;
x

t

�
; (2.73)

we obtain �
Dt � OpW

h

�
x� C

p
1C �2

��
QuC D f C

; (2.74)
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where we used a Weyl semiclassical quantization, depending on the parameter h D 1
t
,

defined in general by

OpW
h .a.x; �// D

1

2�h

Z
ei.x�y/

�
h a
�x C y

2
; �
�
u.y/ dy d�: (2.75)

We decompose then QuC D Quƒ C Quƒc , where

Quƒ D OpW
h

�


�x C p0.�/
p
h

��
QuC (2.76)

with 
 in C10 .R/, equal to one close to zero and with small enough support. Then
Quƒ is localized close to the setƒ D ¹.x; �/ W x D �p0.�/º, i.e. close to ¹� D d'.x/º
if '.x/ D

p
1 � x2 is the phase of oscillations of solutions to linear Klein–Gordon

equations (after rescaling (2.73)). One sees that the L2 estimates (2.45)–(2.46) allow
one to get wanted bounds for the component Quƒc (see Proposition 8.1.1). On the other
hand, since Quƒ is microlocalized close to ƒ, in the term OpW

h .x� C
p
1C �2/ Quƒ

one may replace the symbol by its restriction to ƒ, up to remainders that are well
controlled thanks to the L2 estimates (2.45)–(2.46). This brings an ODE for Quƒ that
implies by integration the wanted bound (2.47). The end of Chapter 8 (Section 8.2)
puts together these estimates and those obtained in Section 4.2 for a.t/ in order to
close the bootstrap argument and prove the main conclusions (2.13) and (2.14).

2.10 Further comments

In the last section of the present chapter, we shall explain what is the difficulty in
order to go beyond the time limit "�4. Since this is much related to a phenomenon
extensively discussed in the two papers of Lindblad, Lührmann and Soffer [60] and
Lindblad, Lührmann, Schlag and Soffer [59], as well as in the work of Germain and
Pusateri [33], let us first recall some of the results of [60].

The authors of that paper consider an equation of the form�
Dt �

q
1CD2

x

�
u D �

1

2
hDxi

�1
�
˛. � /.uC Nu/2

�
(2.77)

on R�R, where ˛ is a smooth decaying function (say ˛ 2 �.R/, even if their assump-
tions are weaker), satisfying Ǫ .

p
3/ ¤ 0 or Ǫ .�

p
3/ ¤ 0. They prove that if (2.77) is

supplemented by an initial data u0 satisfying " D khxi2u0kH4 � 1, then the solution
to (2.77) may be decomposed as a sum

u.t; � / D ufree.t; x/C umod.t; x/; (2.78)

where ufree satisfies the same dispersive estimates as a solution a linear Klein–Gordon
equation, namely kufree.t; � /kL1 D O."t

� 12 / when t goes to C1, and where umod

obeys only the weaker dispersive estimate

kumod.t; � /kL1 D O
�
"2

log t
p
t

�
(2.79)
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(see [60, Theorem 1.1] and in particular formulas (1.12) and (1.15)). Moreover, the
logarithmic loss that appears on the right-hand side of (2.79), in comparison with the
decay of linear solution, in unavoidable. Actually, Lindblad, Lührmann and Soffer
show that along the rays xD˙

p
3t=2, umod.t;˙

p
3t=2/ behaves when t goes toC1

as
a20
p
8
ei
�
4 ei

t
2 Ǫ .�

p
3/

log t
p
t

(2.80)

for some complex coefficient a0 D O."/. (See [60, (1.15)] and (1.16) of the same
paper for an explicit expression of a0 in terms of the solution u to (2.77)). On the
other hand, outside a conical neighborhood of these two rays, umod has an "2t�

1
2

bound, without any logarithmic loss. In order to relate this with the obstacle that pre-
vents us from going above time "�4 in our own result, let us recall the argument of
the introduction of [60] that explains heuristically the appearance of the logarithmic
factor in (2.80). The idea is that, since ˛.x/ on the right-hand side of (2.77) is decay-
ing when x goes to infinity, one may replace there u.t; x/ by u.t; 0/, up to terms that
are expected to have a stronger time decay. In that way, an approximation of (2.77) is�

Dt �

q
1CD2

x

�
u D �

1

2
hDxi

�1
�
˛.x/

�
u.t; 0/C Nu.t; 0/

�2�
: (2.81)

A second approximation (that is justified a posteriori) is to assume that u.t; 0/ will
have the same asymptotic behavior as a solution to a linear Klein–Gordon equation
restricted to x D 0 when t goes to infinity. This allows one to replace in (2.81) u.t; 0/
by " e

it
p
t
, so that umod will be essentially the solution to�
Dt �

q
1CD2

x

�
umod D �

"2

2t

�
hDxi

�1˛
��
e2it C 2C e�2it

�
: (2.82)

If more generally one considers an equation of the form�
Dt �

q
1CD2

x

�
u D

1

t
Y.x/ei�t (2.83)

with Y in �.R/ (or at least smooth enough and decaying enough at infinity), one may
rewrite (2.83) as an equation for u�.t; x/ D e�i�tu.t; x/ of the form�

Dt C � �

q
1CD2

x

�
u� D

1

t
Y.x/: (2.84)

If � < 1, the operator
p
1CD2

x � � is elliptic and the solution to (2.84) will be
O.t�

1
2 / in L1 when t goes to infinity: This may be seen using Duhamel formula and

integrating by parts, or equivalently defining

w� D u� C
�q
1CD2

x � �
��1

.t�1Y.x// (2.85)

that satisfies a new equation�
Dt C � �

q
1CD2

x

�
w� D

1

t2
QY .x/; (2.86)
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where QY is some new �.R/ function and the new right-hand side is time integrable.
Because of that, the solution to (2.86) will have the same dispersive time decay rate
as a solution to a linear Klein–Gordon equation, i.e. will be O.t�

1
2 / in L1. This is

what happens for the last two terms on the right-hand side of (2.82). On the other
hand, for the first one, one gets an equation of the form (2.83), (2.84) with � D 2, so
that the symbol

p
1C �2 � 2 vanishes at � D ˙

p
3. In this case, the analysis of the

solution to (2.86) expressed from Duhamel formula and Fourier transform shows that
an asymptotic behavior of the form (2.80) holds along the two rays x D ˙t

p
3
2

.
The logarithmic loss displayed in (2.80) seems incompatible with the known

methods used to study global existence and asymptotic behavior for Klein–Gordon
equations of the form (1.21) or (2.77) if we no longer assume that ˛. � / is decaying at
infinity. Actually, [60, Theorem 1.1] as well as [59, Theorem 1.1], uses in an essential
way the fact that the space decay of this coefficient will provide, along the rays over
which (2.80) holds, a time decay that will compensate the logarithmic loss.

Another situation when asymptotic behavior may be obtained for the solution
of a problem of the form (2.77), including with nonlinearities involving terms like
.uC Nu/2, .uC Nu/3 (without space decaying pre-factors), appears if the bad term (2.80)
vanishes. This happens for the non-resonant case Ǫ .

p
3/ D Ǫ .�

p
3/ D 0 treated in

[60, Theorem 1.6] and [59, Theorem 1.1], when one recovers the same asymptotics
as those holding true for equations of the form (2.77) with the function ˛ replaced by
a constant.

The second case when (2.80) vanishes is when a0 D 0. This happens for instance
when ˛ is an odd function and the initial condition in (2.77) is also odd (see (2.81)
where the right-hand side vanishes for odd functions u, so that the contributions
coming from (2.82) that were responsible of the bad term (2.80) disappear). Such
a situation is studied by Germain and Pusateri [33], in a more general framework.
They consider equations of the form�

@2t � @
2
x C V.x/Cm

2
�
u D a.x/u2; (2.87)

where a.x/ is a smooth function that has different limits at C1 and �1 and V.x/
an �.R/ potential that has no bound state. They prove a decay estimate for the solu-
tion in O.t�

1
2 / when time goes to infinity, under some orthogonality assumption on

the solution. This assumption always holds for generic potentials, and in the case
of exceptional ones (like the zero potential), it holds under evenness or oddness
conditions on V; a and the initial data. One of the key ingredients in the proof of
[33, Theorem 1.1] is again related to the fact that a bad frequency ˙

p
3 appears.

Actually, it shows up when one tries to perform a variable coefficients normal form.
In order to overcome this difficulty, the authors introduce functional spaces, involv-
ing dyadic Fourier cut-offs close to the bad frequencies, and measuring the (distorted)
Fourier transform of the solution in such spaces.

Let us go back to the problem we study in this book, and in particular to the lim-
itation of our result to times O."�4/. We already discussed this issue in Section 2.5
after the introduction of the approximate solution in (2.49). Here, we want to explain
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how the problem we encounter to go beyond time "�4 might be related to some of
the works we just described, namely the possible appearance of some extra logarithm
in pointwise estimates of the solution along two rays, as in (2.80). Remark first that
we are dealing only with odd solutions. As already noticed, this implies that the coef-
ficient a0 in (2.80) vanishes, so that a solution of a problem of the form (2.77) has
O.t�

1
2 / L1 estimates. The point is that, in our problem, we do not study an equation

of the form (2.77) or (2.87), but a coupling between a PDE and an ODE, namely sys-
tem (2.11) or equivalently, a coupling between the PDE (2.27) and the ODE (2.34).
Because of that, our PDE contains a source term given by (2.28), involving expres-
sions of the form

a.t/2Y2.x/; a.t/
3Y3.x/; (2.88)

where Y2; Y3 are �.R/ functions and a.t/, solution of the ODE, has an oscillatory
behavior of the form

"
p
1C t "2

e˙it
p
3
2 : (2.89)

When plugged in (2.88), this shows that our PDE will contain a source term that
has a similar structure as the right-hand side of (2.82), with oscillating terms e˙it

p
3

instead of e˙2it and pre-factor "2

1Ct"2
instead of "2

t
(for the quadratic contribution

coming from (2.88)). Because of that, and by analogy with the study of [60], we may
expect that the solution to our PDE contains contributions that might grow as log t

p
t

when t goes to infinity.
In this book, we prove that such a possible growth does not happen before at least

time "�4C0. Let us return to the discussion on that issue that we started in Section 2.5.
We introduced in (2.49) a solution uapp

C of a linear equation with source terms that
are essentially of the form (2.88) (forgetting the second line of the first equation
in (2.49)). If we retain only the quadratic term a.t/2Y2 in (2.88), and use (2.89),
this means that we have to solve essentially an equation of the form�

Dt �

q
1CD2

x

�
U D

"2

1C t "2
e˙it

p
3M.x/ (2.90)

for some function M in �.R/ and zero initial data at t D 1. This is an equation
of the form (2.83), and as we have seen after (2.84), the delicate case is the one
corresponding to the phase t

p
3 in the exponential, so that in the sequel we discuss

only (2.90) with signC. ThenU is one of the contribution to the approximate solution
u

app
C of (2.49), and we decompose it as U D U 0 C U 00 with essentially

U 0.t; x/ D i

Z pt
1

ei.t��/
p
1CD2xCit

p
3M. � /

"2 d�

1C �"2
; (2.91)

U 00.t; x/ D i

Z t

p
t

ei.t��/
p
1CD2xCit

p
3M. � /

"2 d�

1C �"2
: (2.92)

This decomposition corresponds to uapp
C D u

0app
C C u

00app
C introduced before (2.50) in

Section 2.5, and we may prove some good L1 estimate for LCU 00 (see (2.50)) and
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some good L2 estimate for LCU 0 (of the form (2.46)) for times t D O."�4C0/. This
last L2 bound degenerates when t goes to "�4, and actually so does the pointwise
estimate of U 0 that is obtained in Appendix C (see (C.40) with ! D 1). We obtain
there for U 0 a pointwise bound in

."2
p
t /

p
t

�
t
1
2

�x
t
˙

r
2

3

���1
: (2.93)

Outside a conical neighborhood of the rays x D �t
p
2=3, (2.93) reduces to an "2t�

1
2

decay (whatever the value of t ). On the other hand, along the lines x D �t
p
2=3, we

just get a bound in ."2
p
t /=
p
t , that provides an O.t�

1
2 / decay only for t D O."�4/.

Past such a time, estimate (2.93) will no longer remain valid and, at the light of the
results of [60] concerning (2.77) and [59], one may not exclude that some log t=

p
t

behavior might hold along the two preceding rays. Since, unlike in (2.77), we no not
have just nonlinearities involving rapidly space decaying coefficients, we do not know
how such contributions might be handled in the nonlinear problem.


