
Chapter 3

First quadratic normal form

In Section 2.2 of the preceding chapter, we have introduced an evolution equation
(2.27) for a function uC. This equation is of the type of (1.58) in the introduction,
except that its nonlinearity is non-local (see (2.31) and (2.32)). In this chapter, we
shall express these nonlinearities in terms of multilinear operators, that are a special
case of classes introduced in Appendix B. This will give us a general framework that
will be stable under the reductions we shall have to perform.

The nonlinearity in our equation contains quadratic terms. We have already
explained in Section 1.6 of the introduction that such terms have to be eliminated
by normal form. This is the goal of Section 3.2 of this chapter, following the guide-
lines explained in Section 2.4 of Chapter 2.

3.1 Expression of the equation from multilinear operators

Let us define the classes of multilinear operators we shall use. They are special cases
of the operators introduced in Appendix B, that will be useful in the rest of the paper.
We introduce in this section only the subclasses we need in Chapter 3.

In this chapter, an order function on Rp is a function from Rp to RC such that
there is some N0 2 N so that, for any .�1; : : : ; �p/; .� 01; : : : ; �
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(In Appendix B, we shall allow order functions depending also on a space variable x.)

Definition 3.1.1. LetM be an order function on Rp , with p 2 N�, � 2 N. We denote
by QS�;0.M; p/ the space of smooth functions
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and is equivalent to 1Cmax2.j�1j; : : : ; j�pj/, max2 standing for the second largest of
the arguments.

We denote by QS 0�;0.M; p/ the subspace of QS�;0.M; p/ of those a for which (3.4)
holds including for ˛00 D 0.

The symbols of Definition 3.1.1 are the special case of those defined in Defini-
tion B.1.2 of Appendix B when there is no x dependence in (B.11). We associate to
them operators through the quantization rule
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(3.6)

for any a 2 QS�;0.M; p/, any test functions v1; : : : ; vp . This is the rule defined in
(B.17) of the appendix in the case of general symbols a.y; x; �/, specialized to the
subclass of symbols that do not depend on x, as in Definition 3.1.1. We shall also
impose on our symbols the extra condition

a.�y;��1; : : : ;��p/ D .�1/
p�1a.y; �1; : : : ; �p/: (3.7)

Under this condition, the operator Op.a/ sends a p-tuple of odd functions to an odd
function.

Let us state the symbolic calculus result that is proved in Appendix B (see Corol-
lary B.2.6, (B.42), (B.43)) and that we shall use below.

Proposition 3.1.2. The following statements hold.

(i) Let n0; n00 2 N�, n D n0 C n00 � 1, let M 0.�1; : : : ; �n0/, M 00.�n0 ; : : : ; �n/ be
two order functions. Let a (resp. b) be in QS�;0.M 0; n0/ (resp. QS�;0.M 00; n00/).
Define

M.�1; : : : ; �n/ DM
0.�1; : : : ; �n0�1; �n0 C � � � C �n/M

00.�n0 ; : : : ; �n/: (3.8)

There are � 2 N, depending only on the order functions M 0 and M 00, and
a symbol c01 in QS 0�;0.MM

��
0 ; n/ such that if

c.y; �1; : : : ; �n/ D a.y; �1; : : : ; �n0�1; �n0C� � �C�n/b.y; �n0 ; : : : ; �n/

C c01.y; �1; : : : ; �n/;
(3.9)

then for all test functions v1; : : : ; vn,

Op.a/Œv1; : : : ; vn0�1;Op.b/.vn0 ; : : : ; vn/� D Op.c/Œv1; : : : ; vn�: (3.10)

Moreover, if a and b satisfy (3.7), so do c and c01.

(ii) If a is in QS0;0.M; 1/, there is a symbol a� in QS0;0.M; 1/ such that Op.a�/ D
Op.a/�. Moreover, if a satisfies (3.7), so does a�.
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We shall use the above class of symbols to re-express equation (2.27).

Proposition 3.1.3. For any multiindex I D .i1; : : : ; ip/ 2 ¹�;Cºp with 2 � jI j D
p � 3, one may find symbolsm0;I in QS0;0.

Qp
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�1; p/ satisfying condition (3.7),
and for any multiindex I D .i1; : : : ; ip/ 2 ¹�;Cºp with 1 � jI j D p � 2, one may
find symbols m01;I in QS 00;0.
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�1; p/ satisfying condition (3.7), such that equa-
tion (2.27) may be written�
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(3.11)

where uI is defined in (2.25) and (2.26).

Proof. Consider first the terms on the right-hand side of equation (2.27) that do
not depend on a, i.e. with notation (2.29)

P
jI jD2 F

2
2;I ŒuI � and

P
jI jD3 F

3
3;I ŒuI �.

These terms are given by the first equality in (2.31) and (2.32). A symbol of the
form �.y/

Q2
`D1 b.y; �j /p.�j /

�1 or
Q3
`D1 b.y; �j /p.�j /

�1 belongs respectively to
QS0;0.

Q2
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�1; 2/ and QS0;0.
Q3
`D1h�j i

�1; 3/ and because of property (A.9) sat-
isfied by b and the oddness of �, condition (3.7) holds. If we apply the results of
Proposition 3.1.2, we conclude that the contributions to (2.27) that do not depend
on a have the structure of the first sum on the right-hand side of (3.11).

Consider next terms of the form a.t/F 21;I ŒuI �, jI j D 1 or a.t/F 32;I ŒuI �, jI j D 2
in equation (2.29). They may be expressed from the first line in (2.30) and the second
line in (2.31). Since Y is rapidly decaying, the symbols Y.y/�.y/b.y; �/p.�/�1 and
Y.y/

Q2
`D1 b.y; �j /p.�j /

�1 are in QS 00;0.h�i
�1; 1/ and QS 00;0.

Q2
jD1h�j i

�1; 2/. Because
of the oddness of Y; � and (A.9), they satisfy (3.7). Using again the composition result
of Proposition 3.1.2, and noticing that as soon as at least one of the symbols a and b
in (3.9) is in the QS 0 class, so is the composed symbol c, we conclude that the linear
term in a.t/ on the right-hand side of (2.27) is given by the second sum in (3.11).

In the same way, the contributions a.t/2F 31;I ŒuI � coming from the second line
(2.29) with j D 1, with F 31;I given by (2.30), provide the last sum in (3.11). This
concludes the proof.

On the right-hand side of equation (3.11), terms with higher degree of homogene-
ity in .a; u˙/ will have better decay estimates. Moreover, an expression of the form
Op.m0/ŒuI � with jI j D p and a symbol m0 in QS 00;0.M; p/, i.e. with rapid decay in y,
will have better time decay than a term Op.m/ŒuI � with jI j D p and a symbol m
in QS0;0.M; p/. Consequently, we expect that the terms in

P
jI jD2 Op.m0;I /ŒuI � will

be, among all u˙-dependent terms on the right-hand side of (3.11), those having the
worst time decay. In next section, we shall get rid of these terms by normal form.
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3.2 First quadratic normal form

Proposition 3.2.1. Define from the symbols m0;I , jI j D 2 of Proposition 3.1.3 new
functions

Qm0;I .y; �1; �2/ D m0;I .y; �1; �2/
�
�p.�1 C �2/C i1p.�1/C i2p.�2/

��1 (3.12)

if I D .i1; i2/. Then Qm0;I belongs to QS1;0.
Q2
jD1h�j i

�1M0.�1; �2/;2/. Moreover, there
are new symbols
� .m00;I /jI jD2 belonging to QS 01;0.
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� .m0j;I /1�jI j�4�j , 1 � j � 3, in QS 01;0.
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such that�
Dt � p.Dx/

��
uC �

X
jI jD2

Op. Qm0;I /ŒuI �
�

D F 20 Œa�C F
3
0 Œa�C

X
3�jI j�4

Op.m0;I /ŒuI �C
X
jI jD2

Op.m00;I /ŒuI �

C

3X
jD1

a.t/j
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(3.13)

Finally, all above symbols satisfy (3.7).

Proof. We notice first that

h�1i C h�2i � h�1 C �2i D
1C 2.h�1ih�2i � �1�2/

h�1i C h�2i C h�1 C �2i

� c
�
1Cmax2.j�1j; j�2j/

��1
� cM0.�1; �2/

�1:

(3.14)

This implies that

h�1 C �2i C h�2i � h�1i � c
�
1Cmax2.j�1 C �2j; j�2j/

��1
which is larger than the right-hand side of (3.14), except when j�2j � j�1j. But then
the left-hand side is larger than one. Consequently, we deduce from these inequalities
that, for any sign i1; i2, we have for any ˛ 2 N2,ˇ̌̌

@˛�
�
h�1 C �2i C i1h�1i C i2h�2i

��1 ˇ̌̌
� C˛M0.�1; �2/

1Cj˛j: (3.15)

This implies that Qm0;I belongs to the wanted class of symbols. It obeys trivially (3.7)
since m0;I does.
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Denoting for jI j D 2, uI D .ui1 ; ui2/ as in (2.25), we compute�
Dt � p.Dx/

��
Op. Qm0;I /ŒuI �

�
D �Op.p.�// ı Op. Qm0;I /ŒuI �C Op. Qm0;I /Œi1Op.p.�//ui1 ; ui2 �

C Op. Qm0;I /Œui1 ; i2Op.p.�//ui2 �

C Op. Qm0;I /Œ.Dt � i1p.Dx//ui1 ; ui2 �

C Op. Qm0;I /Œui1 ; .Dt � i2p.Dx//ui2 �:

(3.16)

By Corollary B.2.7, the sum of the first three terms on the right-hand side may be
written as a contribution to

P
jI jD2 Op.m00;I /ŒuI � in (3.13) plus the expression

Op
�
.�p.�1 C �2/C i1p.�1/C i2p.�2// Qm0;I

�
ŒuI �: (3.17)

By (3.12), (3.17) will cancel the term
P
jI jD2 Op.m0;I /ŒuI � in (3.11). Since the other

terms on the right-hand side of (3.11) are still present in (3.13), we see that to con-
clude the proof, we just need to show that the last two terms in (3.16) provide as
well contributions to the three sums on the right-hand side of (3.13). We express
.Dt � p.Dx//u˙ from (3.11) (or its conjugate). To fix ideas, consider for instance

Op. Qm0;.C;i2//Œ.Dt � p.Dx//uC; ui2 �: (3.18)

If we replace .Dt � p.Dx//uC by the contribution F 20 Œa�C F
3
0 Œa�, which by (2.28)

may be written a.t/2Y2 C a.t/3Y3, with odd functions Y2; Y3 in �.R/, we see apply-
ing Corollary B.2.8 of Appendix B that expression (3.18) will provide contributions
to the

P3
jD2 a.t/

j
P
jI jD1 Op.m0j;I /ŒuI � term in (3.13).

We replace next .Dt � p.Dx//uC in (3.18) by the a.t/ or a.t/2 terms in (3.11).
We use (i) of Proposition 3.1.2, noticing that if in (3.9), either a is in QS 0�;0.M

0; n0/ or
b is in QS 0�;0.M

00; n00/, then c is in QS 0�;0.M; n/. Consequently, we get contributions to
a.t/

P
2�jI j�3 Op.m01;I /ŒuI � and a.t/2

P
jI jD2 Op.m01;I /ŒuI � in (3.13). Finally, if we

replace in (3.18) .Dt � p.Dx//uC by the first sum on the right-hand side of (3.11),
we obtain contributions to

P
3�jI j�4 Op.m0;I ŒuI �/ in (3.13) using again (i) of Propo-

sition 3.1.2. This concludes the proof as property (3.7) of the symbols is preserved
under composition.


