
Chapter 4

Construction of approximate solutions

In the preceding chapter, we have performed a quadratic normal form in order to
reduce ourselves to an equation of the form (3.13). The right-hand side of this equa-
tion contains a source term and in Section 4.1 below, we construct an approximate
solution solving the linear equation whose right-hand side is essentially this source
term. We explained this part of the proof in Section 2.5, see equations (2.48)–(2.49).
The construction of the approximate solution relies on Appendix C below.

On the other hand, because of the coupling between a dispersive equation and
the evolution equation for the bound state, we have seen in Section 2.2 that we have
also to study an ordinary differential equation (2.34), which is equivalent to the first
equation in (2.9). We have explained at the end of Section 2.5 what is the form of
that ODE, and how we can show that its solutions are global and decaying using
Fermi’s golden rule. Section 4.2 below is devoted to the asymptotic analysis of this
ODE. Of course, the study is more technical than in the presentation in Chapter 2
since we have to fully take into account those terms on the right-hand side that come
from the interaction between the bound state and the dispersive part of our problem.

4.1 Approximate solution to the dispersive equation

The proof of our main theorem being done by bootstrap, we shall assume that we
know, on some interval Œ1; T �, an approximation of the function t 7! a.t/ that is
present on the right-hand side of (3.13).
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Moreover, we assume given eW a neighborhood of ¹�1; 1º in R and for any � in
R � eW , two functions

t 7! '˙.�; t/; t 7!  ˙.�; t/ (4.5)
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and solving the equation

.Dt � �/'˙.�; t/ D hZ; Qu˙i C  ˙.�; t/: (4.7)
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where !0; !2; !�2 are given complex constants. We set
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We assume given, as in the statement of Proposition 3.2.1, symbols m01;I for jI j D 1
(i.e. I D C or �) belonging to the class QS 01;0.h�i

�1; 1/ satisfying (3.7). We want to
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that is deduced from (3.13) computing the source terms F 20 ; F
3
0 at aapp, and retaining

from the other terms on the right-hand side only those that are linear both in a and u˙.
Before stating the main proposition, let us re-express the source term in (4.10).

Lemma 4.1.1. Under the preceding assumptions on aapp, one may rewrite
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where
I1.t; x/ D

X
j2¹�2;0;2º

eijt
p
3
2 Mj .t; x/ (4.12)
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with constants C˛;N depending on A;A0 in (4.3)–(4.4), where
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for smooth odd functions of x satisfying
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and where I3 is a sum of terms
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Moreover, for j D 1, and when � is a point in a small neighborhood W of the set
¹� W
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A similar decomposition holds for xM 3
1 instead of M 3

1 .
Finally, the remainder R in (4.11) satisfies for any ˛;N 2 N,
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and we have for Mj .t; x/ in (4.12) the following explicit expressions:
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where Y2 is given by

Y2.x/ D b.x;Dx/
�.�.x/Y.x/2/ 2 �.R/: (4.22)

Moreover, the constants in all above inequalities depend only on A;A0 in (4.3)–(4.4).
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We replace aapp
C by its expansion (4.8). We get terms of the following form (up to

irrelevant multiplicative constants):
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with g2j ; j D �1; 0; 1 satisfying, according to (4.3), the bounds
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and expressions that are, according to conditions (4.3) and (4.6), O.t
� 32
" t�

1
2 hxi�N /

or O.t�1" t�1hxi�N / for any N , as well as their @x derivatives, so that they will
satisfy (4.20). Terms (4.23) give I1 with actually the explicit expression (4.21) for
M2;M0;M�2. Terms (4.24) provide contributions to I2 in (4.14).

To study terms in (4.25) that will provide I3, let us define
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By (4.7), we have
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Then all contributions in (4.25) may be written under the form eijt
p
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j D �1; 0; 1, with M˙j given by linear combinations of expressions
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for � in the neighborhood W of ¹�
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uniformly for � in W . Define
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On the other hand, (4.30), (4.28), (4.6) and (4.26) imply that
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for any N . Making the difference between (4.34) and (4.35), and using (4.3) and
(4.6), we obtain that (4.31) holds, with functions ˆ˙
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.t; x/ is also of the form (4.30), with Y2 replaced by xY2, the same

reasoning applies to that function and shows that (4.19) holds as well for xM 3
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different functions Q̂ 1; Q‰1 on the right-hand side).
We have thus obtained that the first term F 20 Œa

app� in (4.11) has the wanted struc-
ture.
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To study F 30 Œa
app�, we notice that by (2.28), (4.9), (4.8), it may be written as

a linear combination of expressions of the form (4.24) (with Y2 replaced by another
function in �.R/), that have been already treated, and of products of an �.R/ func-
tion by expressions that are, by (4.3) and (4.6), O.t�1" t�1/, so that form part of the
remainder term (4.20).

We may now state the main proposition of this section.

Proposition 4.1.2. Assume that properties (4.3)–(4.7) hold. One may construct
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Dt � p.Dx/

�
u

app
C D F

2
0 .a

app/C F 30 .a
app/

C aapp
X
jI jD1

Op.m01;I /.u
app
I /CR.t; x/;

u
app
C jtD1 D 0;

(4.37)

where m01;I is the symbol in the last sum of (3.13), where the remainder R satisfies
bounds
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for any ˛;N in N, with constants C˛;N .A;A0/ depending on the constants A;A0

in (4.3), and where uapp
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For the action of the half-Klein–Gordon operator on u0app
C , we have estimates
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Moreover, we may write also another decomposition of uapp
C , of the form

u
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C .t; x/C†C.t; x/; (4.48)

where uapp;1
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with source term Mj given by (4.21). The second contribution †C on the right-hand
side of (4.48) may be also written as a sum

3X
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Uj .t; x/;

with Uj solving an equation of the form (4.50), with source terms eijt
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and for any symbol m0 in the class QS 00;0.h�i
�1; 1/ of Definition 3.1.1, one has for any
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In addition, all constants C.A;A0/ in the above inequality depend only on A and A0

in (4.3) and (4.4).
Moreover, uapp;1

C may be decomposed as uapp;1
C D u0

app;1
C C u00

app;1
C , with u0app;1

C

(resp. u00app;1
C ) satisfying (4.39)–(4.41) and (4.46), (4.47) (resp. (4.43)–(4.45)).

Finally, all functions above are odd.

Proof. The proof of the proposition will be divided in several steps, and use the results
of Appendix C below.

First step. We have decomposed in equation (4.11) the source term of (4.37), i.e.
F 20 Œa

app�C F 30 Œa
app�. In this first step, we construct a first contribution uapp;1

C to the
solution of (4.37) taking as forcing term the contribution I1 given by (4.12) to (4.11),
i.e. we solve, with the notation (4.12)�
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The functions Mj on the right-hand side are given by (4.21), satisfy (4.13), and one
may thus write uapp;1

C under the form (4.49), with Uj;C given as the solution of (4.50).
We apply Appendix C. The solution of (4.50) is given by (C.3) with � D j

p
3=2 and

may be decomposed according to (C.4) in U 0j;C C U
00
j;C. We define
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and check that they give contributions to u0app
C ; u

00app
C that satisfy (4.39)–(4.41) and

(4.43)–(4.45). By (4.13), the functions Mj on the right-hand side of (4.53) satisfy
(C.7) with ! D 1, i.e. Assumption (H1)1 holds. By (i) of Proposition C.1.1, we
thus get bounds of the form (4.39)–(4.41), and by (i) of Proposition C.1.2, we have
(4.43)–(4.45). We shall define the contribution uapp;1

C in (4.48) by

u
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C C u00
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C ; (4.55)

i.e. by the right-hand side of (4.49). Moreover, as Mj is odd in x, so are Uj;C, U 0j;C
and U 00j;C.

Second step. We consider now the term involving Op.m01;I / on the right-hand side
of (4.37), where we replace uapp

˙
by uapp;1

˙
given by (4.49) (with uapp;1

� D �u
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i.e.
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with Uj;� D �Uj;C. Recall that we decomposed Uj;C D U 0j;C C U
00
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(C.4). Let us examine first the contribution coming from Op.m01;I /.U
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j;I / to (4.56).
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�1M �

0 ; 1/, which is contained in QS 00;0.1; 1/ (recall
that M0 � 1 when there is only one � variable), and it satisfies (3.7). Since U 00j;C
is defined by (C.4) with � D j

p
3=2 from some odd Mj , we may apply Proposi-

tion C.2.1, with Mj satisfying Assumption (H1)1, i.e. (C.7) with ! D 1 according
to (4.13). We shall thus get from (C.89)
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By conjugation, we shall have also
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with M .1/
j;� (resp. r�) satisfying also (4.59) (resp. (4.58)). We plug (4.57) and (4.60)

in (4.56) and use the expression (4.8)–(4.9) of aapp. We get that (4.56) is a sum of
quantities of the following form:
� Terms of the form
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coming from the product of the first term in (4.8) (or its conjugate) and of the
M
.1/
j;˙ terms in (4.57) and (4.60). One gets thus smooth odd functions of x, that

satisfy by (4.59) and (4.3) estimates

j@˛xM
.1/
j 0 .t; x/j � C˛;N t

� 32
" hxi

�N ;

j@˛x@tM
.1/
j 0 .t; x/j � C˛;N t

�1
"

�
t
� 32
" C t�

3
2 ."2
p
t /
3
2 �
0�
hxi�N :

(4.62)

� Terms satisfying (4.38) and thus contributing to R in (4.37). These terms come
from the product of (4.57) or (4.60) with all terms on the right-hand side of (4.8),
except eit

p
3=2g.t/ (and its conjugate), and from the product of aapp with r˙ in

(4.57) and (4.60). As

"2t�1t
� 12
" � Ct�1t�1"

if t � "�4, we do get that these terms satisfy (4.38).
� Terms of the form

aapp.t/
X
jI jD1

X
j2¹�2;0;2º

Op.m01;I /.U
0
j;I /; (4.63)

where U 0j;I is given by (C.4) in terms of Mj satisfying Assumption (H1)! with
! D 1. We shall see in fifth step below that (4.63) satisfies also (4.38) and thus
contributes to R.

It follows thus from (4.53) and the fact that (4.56) is given by (4.61) up to remainders,
that�
Dt �p.Dx/

�
u

app;1
C � aapp.t/

X
jI jD1

Op.m01;I /.u
app;1
I /D I1 � I

.1/
2 CR.t;x/; (4.64)

where I1 is given by (4.12), I .1/2 is the sum of terms (4.61) and R satisfies (4.38).
Making the difference between (4.37) and (4.64), we get, taking (4.11) into account�

Dt � p.Dx/
�
.u

app
C � u

app;1
C /

D I2 C I3 C I
.1/
2 C a

app.t/
X
jI jD1

Op.m01;I /.u
app
I � u

app;1
I /CR.t; x/; (4.65)

with R satisfying (4.38). Notice that by (4.62), I .1/2 has the same form as I2 given by
(4.14) and (4.15) so that we shall be able to treat both terms altogether.
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Third step. We now construct an approximate solution in order to eliminate I2CI
.1/
2

on the right-hand side of (4.65). Define uapp;2
C as the solution to the linear equation�

Dt � p.Dx/
�
u

app;2
C D I2 C I

.1/
2 ;

u
app;2
C jtD1 D 0:

(4.66)

As the right-hand side has structure (4.14) withMj satisfying (4.15), we may express
the solution as a sum

P
j2¹�3;�1;1;3º Uj;C.t; x/, where Uj;C is obtained from the j -th

term in (4.14) and expressed under form (C.3) with � D j
p
3=2. By (C.4),

Uj;C D U
0
j;C C U

00
j;C

and since (4.15) shows that (C.7) holds with ! D 3=2, Assumption (H1)3=2 holds.
By Proposition C.1.1, bounds (C.18)–(C.20) with ! D 3=2 hold for U 0j;C, and by
Proposition C.1.2, (C.24), (C.25) and (C.27) are true. If we set

u0C
app;2
D

X
j2¹�3;�1;1;3º

U 0j;C; u
00
C

app;2
D

X
j2¹�3;�1;1;3º

U 00j;C; (4.67)

this shows that these functions provide to u0app
C ; u

00app
C contributions satisfying esti-

mates (4.39)–(4.41) and (4.43)–(4.45).
Let us study

aapp.t/
X
jI jD1

Op.m01;I /.u
app;2
I /: (4.68)

If we apply Proposition C.2.1, using that Assumption (H1)3=2 holds, we get from
(C.89), (C.90), (C.91) and the fact that aapp.t/ is O.t�1=2" /, that the contribution of
u00C

app;2 to (4.68) is O.t�1" t�1hxi�N /, i.e. may be included in R satisfying (4.38).
On the other hand, if we replace in (4.68) uapp;2

C by u0C
app;2, we shall get terms of

the form (4.63), withU 0j;I given by (C.4) in terms ofMj satisfying Assumption (H1)!
with ! D 3

2
. These terms are thus better than those in (4.63) and the fact that they

fulfill remainder estimates (4.38) will be seen in Step 5 below.
Consequently, we have shown that�
Dt � p.Dx/

�
u

app;2
C � aapp.t/

X
jI jD1

Op.m01;I /.u
app;2
I /D I2C I

.1/
2 CR.t; x/ (4.69)

with R satisfying (4.38). Making the difference between (4.65) and (4.69), we get�
Dt � p.Dx/

��
u

app
C � u

app;1
C � u

app;2
C

�
D I3 C a

app.t/
�X
jI jD1

Op.m01;I /.u
app
I � u

app;1
I � u

app;2
I /

�
CR.t; x/: (4.70)

Fourth step. We construct an approximate solution in order to eliminate I3 in (4.70),
i.e. we solve �

Dt � p.Dx/
�
u

app;3
C D I3;

u
app;3
C jtD1 D 0

(4.71)
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with I3 given by equation (4.16). For each contribution eijt
p
3M 3

j .t; x/ to (4.16),
with �1 � j � 1, we get an equation of the form (C.2) with � D j

p
3. Moreover,

by (4.17)–(4.19) assumptions (C.8)–(C.10) hold (the last two ones being empty if
� D j

p
3 with j D 0 or �1), i.e. Assumption (H2) of section (C.2) holds. We may

thus apply (ii) of Proposition C.1.1 and Proposition C.1.2 that allow to write uapp;3
C as

a sum

u
app;3
C D

1X
jD�1

Uj;C.t; x/; Uj;C D U
0
j;C C U

00
j;C (4.72)

with U 0j;C satisfying (C.21)–(C.23) and U 00j;C satisfying (C.28)–(C.30). If we now set
u

app;3
C D u0C

app;3 C u00C
app;3 with

u0C
app;3
D

1X
jD�1

U 0j;C.t; x/; u00C
app;3
D

1X
jD�1

U 00j;C.t; x/; (4.73)

it follows that (4.39)–(4.41) and (4.43)–(4.45) hold true. Let us check that

aapp.t/
X
jI jD1

Op.m01;I /.u
app;3
C / (4.74)

is a remainder satisfying (4.38). Since we are here under Assumption (H2), we shall
apply Proposition C.2.4 splitting each Uj;C in (4.72) as

Uj;C D U
0
j;C;1 C U

00
j;C;1 (4.75)

according to (C.110). Then by (C.111), and the fact that aapp D O.t
� 12
" /, the contri-

bution coming from U 00j;C;1 obeys remainder estimates (4.38), so that (4.74) may be
written as a contribution to R in (4.37) and as

aapp.t/
X
jI jD1

Op.m01;I /.u
0app;3
C;1 / (4.76)

with

u0
app;3
C;1 D

1X
jD�1

U 0j;C;1.t; x/: (4.77)

We shall see in Step 5 below that (4.76) provides also a contribution to R. Conse-
quently, we have obtained that�

Dt � p.Dx/
�
u

app;3
C � aapp.t/

X
jI jD1

Op.m01;I /.u
app;3
I / D I3 CR.t; x/:

Making the difference with (4.70), we conclude that uapp
C will solve (4.37) if and only

if �
Dt � p.Dx/

��
u

app
C �

3X
`D1

u
app;`
C

�
� aapp.t/

X
jI jD1

Op.m01;I /
�
u

app
I �

3X
`D1

u
app;`
I

�
D R.t; x/:



Construction of approximate solutions 70

Consequently, we just have to take uapp
C D u

app;1
C C u

app;2
C C u

app;3
C . We have checked

that then estimates (4.39)–(4.41) and (4.43)–(4.45) hold. It remains to check that
terms of the form (4.63) and (4.76) provide remainders, and that estimates (4.46)–
(4.47) hold true, as well as the properties of the decomposition (4.48). This will be
done in the following steps.

Fifth step. Let us show that (4.63) and (4.76) are remainders. Let us use the same
notation U 0j;C for either U 0j;C in (4.63) or U 0j;C;1 in (4.77). Notice that since the func-
tions Mj in (4.12), (4.14), (4.16) are odd in x, so are the U 0j;C defined from them.
Moreover, as m01;I is in QS 01;0.h�i

�1; 1/, we may write

Op.m01;˙/.U
0
j;˙/ D Op. Qm1;˙/.hDxi�1U 0j;˙/ (4.78)

with Qm01;I in QS 01;0.1; 1/. By oddness of U 0j;C

hDxi
�1U 0j;C D

ix

2

Z 1

�1

� Dx
hDxi

U 0j;C

�
.t; �x/ d�

D
ix

2t

Z 1

�1

�
.LCU

0
j;C/.t; �x/ � �xU

0
j;C.t; �x/

�
d�:

(4.79)

As Qm1;I has rapidly decaying coefficients in x, we rewrite (4.78) as a linear combi-
nation of expressions

1

t
Op. Om01;I /

�Z 1

�1

.Lk˙U
0
j;˙/.t; �x/�

1�k d�

�
; k D 0; 1; (4.80)

for new symbols Om01;I in the class QS 01;0.1; 1/. Using (C.92) with ! D 1 or (C.112), we
bound any L1 norm of xˇ@˛x acting on (4.80) by C"2t�1. Taking into account that
aapp.t/ isO.t�1=2" /, we see that (4.63) and (4.76) satisfy (4.38) (using again t � "�4).

Sixth step. We shall prove estimates (4.46) and (4.47). Recall that by definition

u0
app
C D u

0
C

app;1
C u0C

app;2
C u0C

app;3

with u0C
app;1 given by (4.54), u0C

app;2 given by (4.67) and u0C
app;3 given by (4.73).

Consequently, the term .Dt�p.Dx//u
0app
C is a sum of expressions .Dt�p.Dx//U

0
j;C,

where U 0j;C is given by an integral of the form (C.4) (resp. (C.110)) with M replaced
by an Mj satisfying either (4.13) (for those coming from (4.54)) or (4.15) (for those
coming from (4.67)) (resp. satisfying (4.17) for those coming from (4.73)). Conse-
quently, for contributions of the form (C.4),

�
Dt � p.Dx/

�
U 0j;C D �

1

2t

Z C1
1

ei.t��/p.Dx/Ci�j � Q�
� �
p
t

�
Mj .�; � / d�; (4.81)

where Q�.�/ D ��0.�/ and �j is some integer multiple of
p
3
2

. In other words, we
obtain still an expression of the form of the first line in (C.4), but with a gain of a fac-
tor t�1. Estimates (4.39) and (4.41) that we have already obtained for u0app

C furnish
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thus (4.46) and (4.47) multiplying them by t�1 (the change of cut-off Q� does not
matter, as it has support contained in the one of �). This shows also that (4.46) and
(4.47) hold for u0app;1 C u0app;2. The case of u0app;3 is similar, using (C.110) to get an
expression of the form (4.81), but with Q�. �p

t
/ replaced by Q�. �

t
/, i.e. again an integral

of form (C.110) with the gain of a pre-factor t�1.

Seventh step. We have to establish still (4.48). The contribution uapp;1
C on the right-

hand side is the one that has been defined in the first step by (4.53), with right-hand
side given in terms of Mj defined in (4.21). The term †C in (4.48) is thus given
by uapp;2

C C u
app;3
C introduced in (4.67) and (4.72). These functions are constructed as

sums of contributions Uj that satisfy equations of the form (4.50), where the source
term satisfies (4.15) or (4.17) and thus (4.51). It remains to show (4.52). As m0 has
rapidly decaying coefficients in x, we may forget the xN factor in (4.52), and are thus
reduced to the study of @˛xOp.m0/.uapp;2

C / and @˛xOp.m0/.uapp;3
C /.

Consider first @˛xOp.m0/.uapp;2
C /. By (4.67), we express that from

@˛xOp.m0/.U 0j;C/; @
˛
xOp.m0/.U 00j;C/: (4.82)

As Assumption (H1)! holds with ! D 3
2

, according to (4.15), the second term above
is given by (C.89) of Proposition C.2.1. It follows from (C.90) and (C.91) that its
modulus is smaller than

t
� 32
" C "3t�1 log.1C t /;

so than the right-hand side of (4.52). On the other hand, Op.m0/.U 0j;C/ has been
expressed in fifth step under the form (4.80). If we plug there estimates (C.92), we
see that the modulus of the first term in (4.82) is O."3t�1/, so better than the right-
hand side of (4.52).

Consider next @˛xOp.m0/.uapp;3
C /. Solving (4.71), we have written uapp;3

C under the
form

P1
jD�1.U

0
j;C;1 C U

00
j;C;1/ according to (4.75). If we plug this decomposition

in @˛xOp.m0/. � /, we get on the one hand expressions of the form (C.111), that are
bounded by the right-hand side of (4.52). For the contribution @˛xOp.m0/.U 0j;C;1/, we
use again that we can write an expression of the form (4.80) and bounds (C.112).
We get an estimate in O."2t�1/ that is better than the right-hand side of (4.52). This
concludes the proof.

To conclude this section, let us compute some integrals that will be useful in
the sequel.

Proposition 4.1.3. Let Y2 be the function defined in (4.22). The functions Uj;C,
j D �2; 0; 2, on the right-hand side of (4.49) satisfy the following:Z

U2;C.t; x/p.Dx/
�1Y2 dx D .˛2 C iˇ2/e

it
p
3g.t/2 C r.t/; (4.83)

where ˛2 is real,

ˇ2 D �

p
2

6
OY2.
p
2/2 (4.84)
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for the function Y2 defined in (2.6), and where r.t/ satisfies

jr.t/j � C.A;A0/
�
"2t�

3
2 C t�2" C "t

� 32 ."2
p
t /
3
2 �
0
�
� C.A;A0/t�1" : (4.85)

Moreover, Z
U0;C.t; x/p.Dx/

�1Y2 dx D ˛0jg.t/j
2
C r.t/; (4.86)Z

U2;�.t; x/p.Dx/
�1Y2 dx D ˛�2g.t/

2
e�it

p
3
C r.t/; (4.87)

where ˛0; ˛�2 are real constants, and where r satisfies (4.85). Finally, the function
†C in (4.48) satisfiesˇ̌̌ Z

†C.t; x/p.Dx/
�1Y2 dx

ˇ̌̌
� C.A;A0/

�
t
� 32
" C "2t�1" C t

�1t
� 12
"

�
log.1C t /:

(4.88)

Proof. Let us establish (4.83). The function U2;C is defined as the solution of (4.50)
with j D 2 and M2 on the right-hand side given by (4.21). We write (4.83) as

1

2�

Z
OU2;C.t; �/p.�/

�1 OY2.��/ d�:

Since Y2 is odd, we get from equation (C.124) applied with OZ.�/ D �p.�/�1 OY2.�/,
OM.t; �/ D OM2.t; �/, � D

p
3, a contribution to r and two integral terms. By (4.21),

the second one is

�
eit
p
3

6�

Z
.1 � �p3/.�/
p
3 �

p
1C �2

OY2.�/
2p

1C �2
d�g.t/2 (4.89)

which may be written since Y2 is real and odd, under the form ˛02e
it
p
3g.t/2 for some

real ˛02.
Using the definition (C.123) of ��, and the fact that OY2.�/2 is even, the first term

on the right-hand side of (C.124) brings the contribution

�
i

3�
eit
p
3g.t/2 lim

�!0C

Z C1
0

Z
ei�.
p
1C�2�

p
3/����.� �

p
2/

�
OY2.�/

2p
1C �2

d� d�:

(4.90)

Denote by �.�/ the reciprocal of the change of variables � 7! � D
p
3 �

p
1C �2

defined from a neighborhood of � D
p
2 to a neighborhood of � D 0. We rewrite

(4.90) as

�
i

3�
eit
p
3g.t/2 lim

�!0C

Z C1
0

Z
e�i������.�.�/ �

p
2/ OY2.�.�//

2 d�

j�.�/j
d�: (4.91)
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Notice that

lim
�!0C

Z C1
0

e�i����� d� D �i.� � i0/�1 D �ı0 � ip:v:
1

�
:

Plugging in (4.91), we obtain an expression ˛02 C iˇ2 with ˛02 real and ˇ2 given
by (4.84).

To obtain (4.86) and (4.87), we apply again Proposition C.3.1 but with � D 0 or
� D �

p
3 so that �� D 0 and in (C.124) the first term on the right-hand side disap-

pears. Only the second one and r remain, so that one gets no imaginary contribution
to (4.86) and (4.87).

Finally, let us prove (4.88). As Y2 is in �.R/, the integral may be expressed as an
integral of Op.m0/.†C/ for the symbol m0 D Y2.x/p.�/�1, so that (4.52) brings the
conclusion.

4.2 Asymptotic analysis of the ODE

In this section, we shall prove that solutions of the ordinary differential equation
(2.34) have a certain asymptotic expansion by a bootstrap argument.

We make some a priori assumptions on the functions ĵ and �j on the right-hand
side of (2.34).

Assumption (H01). Assume that uC is a solution to equation (2.27) defined on the set
Œ1; T � �R for some T � "�4 such that the functions ˆ2 and �j , j D 1; 2; 3, defined
on (2.36) satisfy the inequality

jˆ2.uC.t; � /; u�.t; � //j C

3X
jD1

t
� 32C

j
2

" j�j .uC.t; � /; u�.t; � //j

� B 0t�
3
2 ."2
p
t /2�

0

(4.92)

for some constant B 0, some � 0 2 �0; 1
2
Œ (close to 1

2
), all t 2 Œ1; T �, and assume that the

function ˆ1 given by (2.36) satisfies for any t 2 Œ1; T �,ˇ̌̌
ˆ1.uC.t; � /; u�.t; � // �

p
3

3
hY; Y�.x/b.x;Dx/p.Dx/

�1
�
u

app
C � u

app
�

�
i

�
�
hZ; QuCi � hZ; Qu�i

�ˇ̌̌
� B 0t�

3
2 ."2
p
t /2�

0

;

(4.93)

where uapp
C is the approximate solution constructed in Section 4.1, Z is a function

in �.R/, Qu˙ are functions verifying inequality (4.4) such that for any � in R�¹�1; 1º,
one may find functions '˙.�; t/ and  ˙.�; t/ as in (4.5), solving equation (4.7) and
such that estimates (4.6) hold true, for � outside a given neighborhood eW of ¹�1; 1º
in R.
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We consider on the interval Œ1; T � the solution aC of equation (2.34), namely�
Dt �

p
3

2

�
aC D

2X
jD0

.aC � a�/
2�j

ĵ ŒuC; u��

C

3X
jD0

.aC � a�/
3�j�j ŒuC; u��

(4.94)

with an initial condition at t D 1 satisfying

jaC.1/j � A0" (4.95)

for some constant A0. We introduce as a second assumption an estimate on aC, that
we give in terms of upper bounds (4.99) below:

Assumption (H02). The solution of equation (4.94) with initial condition (4.95) exists
on some interval Œ1; T � with T � "�4 and satisfies on that interval the following
requirements: One may write

aC.t/ D a
app
C .t/C S.t/; (4.96)

where aapp
C .t/ has the structure

a
app
C .t/ D e

it
p
3
2 g.t/C !2g.t/

2eit
p
3
C !0jg.t/j

2
C !�2g.t/

2
e�it

p
3

C eit
p
3
2 g.t/

�
'C.0; t/ � '�.0; t//

C e�it
p
3
2 g.t/

�
'C.
p
3; t/ � '�.

p
3; t//

(4.97)

and where

S.t/ D !3g.t/
3e3it

p
3
2 C !�1jg.t/j

2g.t/e�it
p
3
2 C !�3g.t/

3
e�3it

p
3
2 (4.98)

with the following notation:
� The coefficients !j in (4.97) (resp. (4.98)) are real (resp. complex) constants that

will be chosen below.
� The function g satisfies, for some constants A;A0 and t 2 Œ1; T �,

jg.t/j � At
� 12
" ; j@tg.t/j � A

0.t
� 32
" C t�

3
2 ."2
p
t /
3
2 �
0

/; (4.99)

where � 0 2 �0; 1
2
Œ is close to 1

2
and has been introduced in .H 01/.

� The functions '˙.0; t/, '˙.
p
3; t/ satisfy conditions (4.5)–(4.7) with Z and Qu˙

introduced in (4.93), i.e. one has estimates

j'˙.�; t/j � ."
2
p
t /�
0

t�
1
2 ; j ˙.�; t/j � ."

2
p
t /�
0

t�1

jhZ; Qu˙.t; � /ij � ."
2
p
t /�
0

t�
3
4

(4.100)

(when " is small enough) and one has the equation

.Dt � �/'˙.�; t/ D hZ; Qu˙.t; � /i C  ˙.�; t/ (4.101)

for � D 0 or
p
3.
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We shall bootstrap Assumption (H02), i.e. estimates (4.99) assuming that (H01)
holds:

Proposition 4.2.1. Let c 2 �0; 1Œ and � 0 2 �0; 1
2
Œ, � 0 close to 1

2
. There are constants

A;A0; "0 > 0 such that if Assumption (H01) holds and if the solution aC of (4.94)
exists on Œ1; T � and has structure (4.96) with g satisfying (4.99) on Œ1; T �, then if
" 2 �0; "0Œ, T � "�4Cc , one has actually, for any t 2 Œ1; T �,

jg.t/j �
1

2
At
� 12
" ; j@tg.t/j �

1

2
A0
�
t
� 32
" C t�

3
2 ."2
p
t /
3
2 �
0
�
: (4.102)

As a first step towards the proof of the proposition, let us rewrite equation (4.94).

Lemma 4.2.2. There are a real constant 
1 and complex constants 
3; 
�1; 
�3 such
that, under the assumptions of the proposition,�

Dt �

p
3

2

�
aC D e

it
p
3
2 jg.t/j2g.t/

�

1 � i

p
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p
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p
3
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3 C e
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p
3
2 jg.t/j2g.t/
�1

C e�3it
p
3
2 g.t/

3

�3

C .aC � a�/
2ˆ0 C .aC � a�/

3�0

C .aC � a�/.hZ; QuCi � hZ; Qu�i/C r.t/;

(4.103)

where r.t/ satisfies
jr.t/j � C.A;A0; B 0/t�

3
2 ."2
p
t /2�

0

(4.104)

for a constant depending only on the constants A;A0; B 0 of (4.99), (4.92), (4.93).

Proof. Consider the right-hand side of equation (4.94). By (4.92), theˆ2 contribution
is bounded by B 0t�

3
2 ."2
p
t /2�

0

, so satisfies (4.104). By (4.96), (4.97), (4.99), (4.100)

jaC.t/j C ja�.t/j � C.A/t
� 12
" (4.105)

so that (4.92) implies that the contributions .aC � a�/3�j�j , j D 1; 2; 3, to (4.94)
satisfy (4.104). We are thus left with studying

ˆ0.aC � a�/
2
Cˆ1ŒuC; u��.aC � a�/C �0.aC � a�/

3: (4.106)

The first and last terms in (4.106) are present on the right-hand side of (4.103). Con-
sider .aC � a�/ˆ1. By (4.93), up to another contribution to r , we get on the one hand
the last but one term on the right-hand side of (4.103) and the quantity

p
3

3
.aC � a�/hY; Y�.x/b.x;Dx/p.Dx/

�1.u
app
C � u

app
� /i

that, according to the definition (4.22) of Y2, may be written
p
3

3
.aC � a�/hY2; p.Dx/

�1.u
app
C � u

app
� /i: (4.107)
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We replace above uapp
C by expansion (4.48). According to (4.88),

jhY2; p.Dx/
�1†Cij � C.A;A

0/
�
t
� 32
" C t�1"2 C t�1t

� 12
"

�
log.1C t /:

If we use also (4.105) and (4.1), we conclude, since

t�2" � Ct
� 32 ."2

p
t /; t

� 12
" t�1"2 � Ct�

3
2 ."2
p
t /; t�1t�1" � Ct

� 32 ."2
p
t /;

that (4.107) satisfies inequality (4.104) (if we absorb the logarithm using that we
assume "2

p
t � "

c
2 , � 0 < 1

2
, and that we take " small). We are thus left with the

contribution to (4.107) of
p
3

3
.aC � a�/hY2; p.Dx/

�1.u
app;1
C � uapp;1

� /i (4.108)

with uapp;1
C given by (4.49). The bracket above has been computed in (4.83), (4.86)

and (4.87). It is in particular O.C.A;A0/t�1" /. By equations (4.96)–(4.100) the diffe-
rence aC � eit

p
3=2g is bounded by C.A/.t�1" C t

�1=2
" t�1=2."2

p
t /�
0

/, so that if we
replace in (4.108) aC by eit

p
3=2g, we get an error bounded by

C.A;A0/
�
t�2" C t

� 32
" t�

1
2 ."2
p
t /�
0
�
� C.A;A0/t�

3
2 ."2
p
t /2�
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; (4.109)

so that we get a remainder. Consequently, using again (4.49), we have reduced (4.108)
to
p
3

3

�
g.t/eit

p
3
2 C g.t/e�it

p
3
2

�h X
j2¹�2;0;2º

hY2; p.Dx/
�1.Uj;C C Uj;C/i

i
(4.110)

up to remainders. We have computed the bracket above in (4.83), (4.86) and (4.87).
Up to terms bounded by the product of (4.85) with t�1=2" , which still provides remain-
ders satisfying (4.104), we get that (4.110) is given by

e3it
p
3
2 
3g.t/

3
C eit

p
3
2 Q
1jg.t/j

2g.t/C e�it
p
3
2 
�1jg.t/j

2g.t/C e�3it
p
3
2 
�3g.t/

3
;

where 
j are complex constants, with Q
1 D
p
3
3
.2˛0 C ˛2 C ˛�2 C iˇ2/, where ˛0,

˛2, ˛�2 are real and ˇ2 is given by (4.84). We obtain thus the first four terms on the
right-hand side of (4.103). This concludes the proof.

We shall next compute from expression (4.96) of aC and from (4.103) an equation
satisfied by g.

Lemma 4.2.3. One may choose the coefficients !j , �3 � j � 3, j ¤ 1, in (4.97)
and (4.98) such that if aC is given by (4.96) and satisfies (4.103), then g solves

Dtg.t/ D
�
˛ � i

p
6

18
OY2.
p
2/2
�
jg.t/j2g.t/C r1.t/; (4.111)
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where ˛ is real, OY2.
p
2/2 is negative and r1.t/ satisfies

jr1.t/j � C.A/t
� 12
" t�1."2

p
t /�
0

C C.A;A0; B 0/
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t�2" C t

�1
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p
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p
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p
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3
2 �
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p
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5
2 �
0
�
;

(4.112)

where C. � / are constants depending only on the indicated quantities.

Proof. Let us express in a more explicit way the right-hand side of (4.103). By equa-
tions (4.96)–(4.100),ˇ̌̌̌
aC.t/ �

�
eit
p
3
2 g.t/C !2g.t/

2eit
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(4.113)

for constants C.A/ depending only on A.
It follows that

.aC.t/ � a�.t//
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p
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p
3g.t/

2

C 2e3it
p
3
2 g.t/3.!2 C !�2/

C 2eit
p
3
2 jg.t/j2g.t/.2!0 C !2 C !�2/

C 2e�it
p
3
2 jg.t/j2g.t/.2!0 C !2 C !�2/

C 2e�3it
p
3
2 g.t/

3
.!2 C !�2/C r.t/;

(4.114)

where r satisfies (4.112).
In the same way

.aC.t/ � a�.t//
3
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p
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3
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(4.115)

where r satisfies (4.112). We plug (4.114)–(4.115) in the right-hand side of (4.103).
We get, as ˆ0, �0 given by (2.35) are real constants, the expression
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p
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2 g.t/.hZ; QuCi � hZ; Qu�i/C r.t/;

(4.116)

where 

j

, j D �3;�1; 1; 3, are new constants with 

1

real, 

�3
; 

�1
; 

3

depending
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on!�2; !0; !2 but not on!�3; !�1; !3, and where r.t/ satisfies (4.112), and contains
in particular the product of hZ; Qu˙i with aC.t/ � eit

p
3=2g.t/, a�.t/C eit

p
3=2g.t/,

according to estimates (4.113) and (4.100).
On the other hand, we may compute the left-hand side of (4.103) replacing aC by

its expression (4.96). We get, using (4.101) with � D 0 or
p
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(4.117)

where r1.t/ is made of terms of the form

O.jgDtgj/; O.jDtg'˙.0; t/j/; O.jDtg'˙.
p
3; t/j/;

O.jg ˙.0; t/j/; O.jg ˙.
p
3; t/j/; O.jg2Dtgj/:

(4.118)

By a priori estimate (4.99) and (4.100), these terms are bounded by

C.A;A0/
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(4.119)

the last contribution coming from the first two terms in the second line of (4.118). We
choose now the free parameters !j , j 2 ¹�3; : : : ; 3º � ¹1º setting

!3 D

p
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3


3
; !2 D

2
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ˆ0; !0 D �
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ˆ0;

!�1 D �
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9
ˆ0; !�3 D �

p
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�3

(which is possible as 

�3
; 

�1
; 

3

do not depend on !�3; !�1; !3). In that way,
when we make the difference between the two expressions (4.116) and (4.117) of
.Dt �

p
3
2
/, we obtain equation (4.111) with a remainder satisfying (4.119). This

concludes the proof, as OY2.
p
2/ being purely imaginary (since Y2 is real and odd),

OY2.
p
2/2 � 0 and moreover, by Proposition G.1.2, OY2.

p
2/ ¤ 0.

Proof of Proposition 4.2.1. Let us show first that under the assumptions of the propo-
sition, the first inequality of (4.102) holds if A has been chosen large enough, " small
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enough and t � "�4Cc . In a first step, consider the case when "2t is small, i.e. let us
show that there is �0 2 �0; 1� such that if 1 � t � �0

"2
, and " is small enough,

jg.t/j �
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4
t
� 12
" : (4.120)

Since for these t one has "2

2
� t�1" � "

2, the a priori bound (4.99), equation (4.111)
and estimates (4.112) imply that, for any such t ,

jg.t/j � jg.1/j CKA3"3t C C.A;A0; B 0/."1C�
0

C "4�
0

/;
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p
6
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2/2j and C. � / is a new constant depending on A;A0; B 0

(and �0). If A is taken such that
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;

and �0 small enough so that

KA2�0 <
1

16
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;

and if we take " small enough, we get, using that � 0 is close to 1
2

, that
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i.e. (4.120).
We shall thus study from now on equation (4.111) for t � �0

"2
and initial condition

at �0
"2

bounded by A

4
p
2
". In this regime, for some new constant C.A;A0; B 0/, (4.112)

implies
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remembering that t stays in Œ�0"�2; "�4Cc�. For t in Œ�0; "�2Cc�, set

e.t/ D "�1.1C t /
1
2g
� t
"2

�
: (4.122)

We deduce from (4.111) and (4.121) that if ˇ D �
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Denote w.t/ D je.t/j2. Then
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1

1C t
.w.t/ � 2ˇw.t/2 CQ.t//; (4.125)

where according to (4.124), for t 2 Œ�0; "�2Cc�,
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for some constant depending on A;A0; B 0; �0. Moreover, we have
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: (4.127)

We fix A large enough so that .A
2
/2 � 2ˇ.A

2
/4 � �A

2
and then take " < "0 small

enough (in function of A;A0; B 0; �0) such that (4.126) implies jQ.t/j � 1
2
jw.t/j1=2.

Then it follows that if, at some time t�, w.t�/ reaches .A
2
/2, the right-hand side

of (4.125) is strictly negative. Consequently, taking (4.127) into account, we get
w.t/ � .A

2
/2 for any t in Œ�0; "�2Cc�. Using (4.122), we conclude that
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; "�4Cc�. This gives the first inequality of (4.102).

To get the second one, we notice that we may bound the right-hand side of (4.112)
by
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for new constants C.A/; C.A;A0; B 0/, depending only on the indicated arguments.
Plugging this in (4.111), we get
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If we plug there the first inequality of (4.102), choose A0 large enough relatively to
A, so that

K
�A
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C C.A/ �
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4

and then take " small enough relatively to A;A0; B 0, we get the second inequality
of (4.102). This concludes the proof.


