Chapter 5

Reduced form of dispersive equation

In Section 3.2, we performed a quadratic normal form on equation (3.11) satisfied by
u 4 in order to get equation (3.13). On the other hand, in Section 4.1, we constructed
some approximate solution solving equation (4.37). Making the difference between
(3.13) and (4.37), we shall get an equation for the action of D; — p(Dx) on

iy =uy— Y Op(ior)ur) —uf’.
=

The goal of this chapter is to invert in convenient spaces the map u 4 — i, to obtain
an expression for u 4 in terms of 4+ and to write down the equation satisfied by 7
in closed form.

5.1 A fixed point theorem

We establish first some abstract theorem. We consider E, F' two Bgnach spaces witl~1
norms || - || £, || - [| 7. We consider also two other normed spaces E, F suchthat E N E
(resp. F' N F) is also a Banach space. We set Br(r), Bg(r) for the closed ball of
center zero, radius r in F, E. We assume given a function
P (ENF)x(ENF)— ENF,
W", )= @W", f)

satisfying the following estimates: There are C > 0,0 > 0 such that for any parame-
ter A > 1, any u”, f, f1, f> in E N F, one has

le@”, Hlle < C(l"Ir + 1) (1" + 1 f1lE). (5.2)

D", Hlr < CA(|u"lF + 1 f1F)?
+CA (e + 1A 1F) (2 + 11 f 1l
1D@”, f1) — D", f)ll £
<C(u’IF + I filr + 1L1F) A = flE (5.4)
+C(l"le + 1 file + | AlE) A~ fllF,
D", f1) — D", f2)llF
<CA(lu"IF + IAilr + 1 L2l F)
+ 27 (e + A llE + 1 AIENIA - flF
+ CAY (W + 1 ALE + 1 AIENIA = fllE

5.1

(5.3)

(5.5)
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We assume also that if, in addition to preceding assumptions, u” is in F and fis
in E, then ®(u”, f) is in E, with estimate

1", Nz = CUlu"llzlu"Ie + (Iu"le + 1 £11F)1S 1 5) (5.6)

and if f1, f> are in E,

[o@”, fi) = @W”, )z < C(Iu"lIlr + I Aillr + I LlF) A = faollg. (5.7)

Lemma 5.1.1. There is ro > 0 such that for any r in]0, ro[, any A > 1, any u’,u”, it
in BE(rA) N Br(rA=9), the fixed point problem

f=u+u+ou", f) (5.8)

has a unique solution f in B (3rA) N Br(3rA™%). Moreover, if one defines induc-
tively

" a,g) =a+ P, g),

5.9
" (' a,g) = " a, ' " a,g) = @' (', a,®" (", a,g)),

and if one sets
€x =27 (Ilu"llr + 1l F + il F) + 27 (" lE + 'l + 7] £),

one has for any N > 1 and a new constant C > 0,

If =N " v +i.u)|E
<NV f =g
+CVTEN T (W e + Il + N e)Lf — oI F (5.10)
If =N " ' + i)l F
<CVHEN|f —u'|lp + CVTENAT f — ||k,

Furthermore, if one assumes that u’, il are also in E and u" is also in F, then fis
in E and one has for any N > 1,

- - N
If =N + @) g < CV (I + il e + 1)V =o'l (5.10)
Proof. We define the usual sequence of approximations

fver =N W a0 =u + 0+ W, fN),
Jo=0

using notation (5.9). By (5.2) and (5.3), we have

Ifn+ille < Ille + llille + C (" IlF + L fnlle) (el + 1 i le)
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and
I fveille < Wlle + llidlle + C A7 (Iu"llF + Il fw ]l F)

+ A7 (e e + 1N IE)) (e + 1L Al ).
It follows that if u’, u”, i are in Bp(rA~%) N Bg (Ar) with r small enough, one has

for any N,

4 - 1
I fn+illE < §(||”/||E + |lill g) + FIlE.

4 - 1
I/N+1llF = g(”“/”F + |l F) + gllu”llF.

In particular, ( fy )y remains bounded in Br (3rA~%) N Bg (3Ar). Moreover, by (5.4)
and (5.5) and the above bounds, for r small enough, ( fy)y converges in E N F to
alimit f satisfying

f=u+a+ow, f)=d W v+, f).

Then (5.10) with N = 1 follows from (5.4) and (5.5). One obtains the general case
by induction, using (5.4) and (5.5). In the same way, (5.11) follows from (5.7). [ ]

We shall apply the preceding lemma with £ = H*(R), F = W»*°(R), s > 0,
A =1t >1, p e N. We define the spaces E, F by

E={fel>R):xf eL’(R)}, F={feWP®R):xf e W ®[R)} (5.12)
and we endow them with norms depending on the parameter ¢:

IA g =tllfll2 + Ixflle2. g =l fllwece + lIxf lwo.co.

The functions u’, u” of (5.8) will be the functions u"*, u”*" of Proposition 4.1.2.

By (4.39)—(4.41) applied with a large enough r, and using (4.42), we get

[P, )llE < C(A, A)e,
[P )| < C(A, A')e?, (5.13)
Pl g < CA, AN + 13 (2 V) Fes),
In particular, for ¢ small, t%[[u"S* (¢, )| F + ¢ 7" P (2, - )| g may be made as small
as we want (uniformly in ¢ < &~#) if & > 0 is small enough. In the same way, by

(4.43)—(4.45)
[, )l < C(A, A)e,

"1, )F < C(A, A)e2(log(1 + 1), G149
Ju"P(, )l 5 < C(A, A)re?(log(l + 1),

Again, for t < &%, we see that 17 |[u”"(¢,-)||F + ¢t~ "} (¢, )| g may be made
as small as we want for ¢ > 0 small.
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We shall take some function 74 in Bg(Ar) N Bp(A~°r) N E, and shall solve
in ¥ the equation

Uy =uq — Z Op(ritg, 1) (ur) —u'§* —u"*f", (5.15)
=

where 719, 1 are symbols in S~1,0(]_[12~=1 ()71 My, 2) defined in Proposition 3.2.1. Set-

ting f4 = uy —u"’, we rewrite (5.15) as

fr=uP i + Q"L f), (5.16)
where
W, fr) = ) Oplio, ) ("™ + f)r). (5.17)
11]=2

Let us check that the assumptions of Lemma 5.1.1 are satisfied by the preceding map.

Lemma 5.1.2. [f we take E = H*(R), F = W"*(R), with s, p large enough and
E ., F defined by (5.12), then inequalities (5.2) to (5.7) are satisfied by the function ®
defined by (5.17).

Proof. To prove (5.2) we have to check that, for any / with |/| = 2,
10pGit0, 1) (" + f)r)llas < C(Ilu" lwoco + 11 f lwese) (1" ls + 11 f llzrs)

which follows from (D.32) if p is large enough, since Proposition D.1.6 applies in
particular to symbols that are independent of x, which is the case of elements of
S1.0 (]_[J2~=1 (£,)"1 My, 2) according to Definition 3.1.1. In the same way, (5.3) may be
written

10p(ito, 1) (" + f)1)llwoce
< C(7(Iu"llwe.co + 11 £ lwe.co)
+ e (e s+ 1S s ) (1" lwoce + 1L f we.ce)
which follows from (D.39) with r = 1 if (s — p)o is large enough. Inequalities (5.4)
and (5.5) are proved in the same way using the bilinearity of Op(s1¢,1).

Let us prove (5.6) and (5.7). To simplify notation, consider for instance the case
1 = (2,0). It is enough to prove the estimates

10p(0, 1) (f1. /)2 = Cllfillwosell f2ll 2. (5.18)
1xOp(io, ) (f1. f)lIL2 = C(tll fillwoeo + lIxfillwooo) |l f2ll 2 (5.19)
1xOpGito, ) (f1. f2)lIL2 = Cll fillweoo (]l f2ll2 + Ix/2ll22) (5.20)

(and the symmetric ones) in order to get (5.6) and (5.7). But (5.18) (resp. (5.19))
follows from (D.33) (resp. (D.37)) if on the right-hand side of the latter inequality we
estimate

ILsvjllweoee < C(Ilxvslweose + tllv; lymo+1.0).
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To get (5.20), one applies instead (D.33) after commuting x to Op(#2¢,7) in order to
put it against the f, argument.
This concludes the proof of the lemma. ]

We may now state the main result of this section, that will show that the implicit
equation (5.16) may be solved in f4, and that we get an expansion for f in terms

/app  /7app ~
of u' ", u" " and uy.

Proposition 5.1.3. Let u"", u""{* be function satisfying (5.13)~(5.14). Let also i
be a function of (t, x) € [1, T] x R, with T < e~*%¢ satisfying for some 0 < 0’ < <
% (0" and 6 being close to % ), some § > 0, some constant D the following estimates

liiy(t.)| g < Det®,

2 o’
4@, )F < D%, (5.21)
iy (2.)]| g < Dt (>V0)P.

Then, if € is small enough, there is a unique function fy in E N F with

2/t 0’
| fllF < 3max(C(A4,A"), D) max(az(log(l +1))2, %), (5.22)
I f+E < 3max(C(4, A), D)et®
such that, setting f- = — f4,
fr=u +ar+ Y Oplito,) ("™ + f)r). (5.23)

|I|=2

Moreover, one may find symbols (my),<|1|<4 in the class St.0 (]_[y=|1 (E) My ))
Sfor some v, such that one may write the solution f to (5.23) under the form

fr=u+iy+ > Opmp)(ir.ufl) + R (5.24)
2<|I<4
I=(I/,I'/)

where R satisfies

09 .o\ 4

IR, )||gs < C'(A, A, D)(W%) et (5.25)
9 .o\ 4

xR, )2 < C'(A, A, D)(W%) t%(ezﬁ)e (5.26)

for some new constants C'(A, A’, D), ¢ > 0 as small as we want.

Proof. Equation (5.23) may be written under the form (5.16) with ® given by (5.17).
We hav~e seen in Lemma 5.1.2 that inequalities (5.2) to (5.7) hold true, with the spaces
E,F,E,F defined in that lemma. By (5.13), (5.14) and (5.21), if t < ¢ % and ¢ is
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smlall inough, we can maz%(e 17" (e, ~)||~p, 1" P, ), t @’ (¢, )| F and
P ) e, T @ ) ey A (2,2 ) || £ as small as we want. We may
thus apply Lemma 5.1.1, that gives the solution f to (5.23) and its uniqueness. This
lemma gives as well the first inequality of (5.22). To get the second one, we deduce
from (5.8) and (5.2) that

Ifele < 1WPle +ldsle +o@ (e + v lE). (5.27)

where o (¢) is controlled by || /|| and [[u”%" || 7, so goes to zero if & goes to zero by
the first inequality of (5.22) and (5.14). Using (5.13), (5.14), (5.21), it follows that,
for & small enough,

| f+llg < 3max(C(A4, A'), D)et®. (5.28)

In the same way, we get from (5.8) and (5.6),
I lg < 15 + il g + Clu"SP 1 # 1" llE + o @l f+l

where o(¢) is controlled by [|[u”$*||F + || f+|lF, so goes to zero with ¢. Plugging
(5.13), (5;14), (5.21) in this inequality, we get for & small enough, and some new
constant C (A, A’, D),

| fellg < C(A. A" Dy (2 V1), (5.29)
We apply next (5.10) with N = 4. We obtain, using (5.13), (5.14), (5.21), (5.22) that

(2/1)9'1°
Ji

with some ¢ > 0. In the same way, by (5.11)

4
| fo = @* " PP + i w | < C'(A A, D)( ) et® (5.30)

since we assume ¢ < g~ 41¢

| fr = @2 i w0

A 5.31
< C’(A,A’,D)(M) 13(2V1)°. (>:31)
NG

The right-hand side of (5.30) (resp. (5.31)) is controlled by (5.25) (resp. (5.26)).
To finish the proof, we have to rewrite ®*(u”*", u’" + 7, u"f") as the main
term on the right-hand side of (5.24), up to remainders. Let us show by induction that

one may write

q)N(u//afP,u/jI_JP iy, u ) =0T i+ Z Op(m}\’)(zz,,, upy) (5.32)
2<|I|=N+1
I=(1/,I”)

for some new symbols mfv in Sl,o(nl.lzll(éj)_lMa’, |7]) for some v. For N =1
this follows from the definition (5.9) of ®! and of (5.17). The general case follows

using (5.9) and Corollary B.2.6, i.e. the stability of operators of the form Op(mfv ) by
composition.
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We apply (5.32) with N = 4, and according to (5.30) and (5.31), equality (5.24)
will be proved if we show that the contribution to the right-hand side of (5.32) given
by I with |/| = 5 forms part of R in (5.24). Using (D.33), we estimate the H* norm
of such a term by

-~ P P 4
C (it llweo-o + U P lweo-co + [[u" P lweo.oo)
X (g llrs + 1w N ers + NP llas ).

so by the right-hand side of (5.25), using (5.13), (5.14), (5.21).
To study the L2 norm of the product of x and of the terms in the sum (5.32) with
|I] = 5, we rewrite the latter, decomposing u®"? = y'*PP 4 y”?PP under the form

> OpEp) PR ") (533)
\1|=>5
I=(I/,I//’I///)
with symbols 772} in 5’1,0(]_[15:1 (&)71MQ,5).
In (5.33), we distinguish the cases || < 5 and |I"’| = 5. In the first one, we use
(D.36), making play the special role to one argument different from u”%". We obtain
a bound in

~ 4 ~
(It llwoo.eo + 1" lweo-oo + [l lweo-o)” (1PNl 5 + i+l 5)

which is controlled by the right-hand side of (5.26). When |[I”’| = 5, we use (D.37),
to obtain a bound in

8
0" [y o 00 1PNl L2 0Pl 7 < C(A, ANt (log(1 + 1)) "¢’

by (5.14). Since ¢t < g~41¢ the last bound is smaller, for & small enough, than

/ ’ (82\/?)9/ 4% 2 0
C(A,A,D)(T) t3(2V1)?,

so than the right-hand side of (5.26). This concludes the proof. ]

5.2 Reduction of the dispersive equation

The goal of this section is to deduce from equation (3.13) satisfied by u 4+ an equation
satisfied by the function # defined in (5.15). More precisely, we shall prove:

Proposition 5.2.1. Wefixc > 0,0 <0’ <6 < % with 0’ close to % and § > 0 small.
We take numbers satisfying s > p > 1 (that may depend on the preceding param-
eters ¢,0,0'). Let € €10,1] and T € [1,e74%¢]. Assume we are given on interval
[1,T] a solution u®l" = u'¥* +u""* of (4.37) satisfying bounds (4.39)~(4.41) and
(4.43)—(4.45). Assume also given a function uy in C([1,T], H*(R)), odd, solution
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of (3.13) and such that, if we define ti4 by (5.15), i.e.
iy =uy— »  Oplio,r)(ur) —u'f" —u", (5.34)
[1]=2
then U4 satisfies for t € [1, T] the bounds

lii4 (¢, )llas < Det?,
y 2. /1)
(2, )lwe.co < D%, (5.35)

~ 1
ILsite ()2 < DEF VD)
or some constant D. Then u 4 solves the equation
+ q

(D¢ = p(Dx))ii+

= > Op(ap)ir.uff)+ Y Oplmy )i upy)
3<|1]<4 17]=2
I=",1") I="1")

+a™ (1) Y Op(m ;)(ir)

[71=1

1 : 3 . 33—
+5(67F 50+ 5®) Y Oplm, () + RG, ),
I1=1

(5.36)

where for some v € N, my are symbols in S~1,0(]_[y=|1(§j)_1M0(§)”, 1)), 3<|1]|<4,
where my, ;i  are in Si,o(nﬂl (£, YMo(§)",|1|), all these symbols satisfying
(3.7), and where

NE]

5 (@) —a™ () (5.37)

with c_ljl_’p(t) being given by the first four terms on the right-hand side of (4.8), namely

a*(t) =

a L3 : _—
aP(t) = 7 g(1) + w28(1)2e" V3 + wolg ()2 + w_2g(1) e Y3 (5.38)

and

a® (1) = —a’* (1),

and where R(t, x) satisfies the following bounds fort € [1, T}]:

IR(t,)las < et®e(t,e), (5.39)
ILLR(t, )2 < 73 VD) e, 0), (5.40)

where
lim sup e(t,e) =0. (5.41)

e—>0+ 1<t<g—4+c
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As a preparation for the proof, let us rewrite equation (3.13) replacing in its left-
hand side u 4 by the expression of that function that follows from (5.34), namely
(De = p(Dx)) (4 + 3" +u"}F)
= F2lal + Flal+ Y. Op(mo.nlurl+ Y Op(mi )ur]

X 3<|I|<4 [1|=2 (5.42)
+Y a@’ Y Opm} ).
j=1 1<|I|<4—j

Recall that we have written in (4.37) an expression for (D; — p(Dx))uzfp. Making
the difference between (5.42) and (4.37), we get that (D; — p(Dy))ti+ is equal to the
sum of the following expressions:

Flla] — F2[a*)] + FJla] — F2[a™]. (5.43)
>~ Op(mo.n)lul. (5.44)

3<|I|=<4
>~ OpOmg lurl. (5.45)

|I|=2
a(r) Y Op(m} Plur]—a*™ (1) Y Op(m} )y, (5.46)

[1]=1 [1|=1
a(t) > Op(mg url, (5.47)
2<|11=<3
a@ty Y OplmyPlurl, j=2.3 (5.48)
1<|I|<4—j

—R(t,x), (5.49)

where R satisfies (4.38).
We shall analyze successively the expressions (5.43) to (5.49), using (5.34), in
order to rewrite their sum as the right-hand side of (5.36) with a new remainder R.
We first write in a lemma some elementary inequalities that we shall refer to in
the sequel.

Lemma 5.2.2. We denote by e(t, x) any real-valued function defined on the interval
[1,e74%€), satisfying (5.41). We have then the following inequalities:

1
1717 = O(ete(t,e)) ify > > (5.50)
\ 1 1
logelr; 717t = 0~ (Vi) ett.e)) ify = 5.0 <.
(7 + (V) 17 etd = O(et5Te(t,e)) if§>0,y >4,y >0, (552
(82\/;)y|10g8|4l‘_%(82«/;)0 = 0(1‘_%(82\/;)06(1,8))

. 1
zfy>0,0<9<§,

(5.51)

(5.53)
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(€2V/1)7 |log 8|t_%_°‘ (I%(szx/f)o) = 0(et’e(t, ¢))

g L 042 0 G5
—_— < — — >

lf2 <v=j3 +26, 0 >0,

1
logeer™2 = O(t~ 3 (2VD)le(t.e)) if0 <6 < 5 (5.55)

_1 1

lloge|?et, 2t = O(st te(t, ) if5 <y <1, (5.56)
21714 = O(ete(t.€)). (5.57)

Proof of Proposition 5.2.1. Since (D; — p(Dy))ti+ is given by (5.43) to (5.49), we
have to write each of these terms as contributions to the right-hand side of (5.36). We
study them successively.

Terms of the form (5.43). Recall thata = f(a+ — a—_) with a_ —a4 (see (2.33))
and that a (¢) is given by (4.96). Since by (4.99), g(¢) is O(tg %), it follows from
(4.96), (4.98) that a4 () — a*™(t) = O(t;>?). The definition (2.28) of FZ[a], F$[a]
implies that for any o, N integers

|92 (Fg [a] — F [a*™]) (1, x)| < Cant 2(x)7N, j =2,3. (5.58)

Thus (5.50) implies that (5.39) holds (even with § = 0) and (5.51) implies that (5.40)
is true for any 6 < % So these terms contribute to R in (5.36).

Terms of the form (5.44). Notice that if 4 satisfies estimates (5.35), then it satis-
fies bounds (5.21) (with a new constant D) in view of the definition of £ = H¥,

F = W*> and (5.12) of E. Moreover, if we set fi = uq —u""", equation (5. %4)
may be written as (5.23). Then Proposition 5.1.3 implies that for & small enough, there
is a unique solution f4 solving equation (5.23), and we have an expansion (5.24) for
f4+ in terms of &, u*PP. We may rewrite this as

wy =ufP +idp+ Y Op(mp)(ir.ufl) + R (5.59)
2<|I1<4
I_(I/ I//)
with symbols m; in S 0(]_[| )~IMY,|I|) and R satisfying (5.25) and (5.26).
We plug expansion (5.59) 1ns1de (5 44) Recall that by Proposition 3.2.1, the symbols
mo,7 in (5.44) belong to S o(ﬂl Y~ My, |I]). By Corollary B.2.6, we shall
get terms of the following form:
Op(mp)(ip . ufy), 3<|I|<4, 1= 1"), (5.60)
where 717 is some new symbol in S; 0(]_[| £/)"'My,|I|) for some new v;
Op(i)(U1,Us, ..., Ur), k=|I| (5.61)

with 717 as above and either

k=5, Up€ {iie, u P u"® (5.62)
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or
k>3, Upe{us, u u"® R} (5.63)

with R satisfying (5.25), (5.26), one of the Uy at least being equal to R.

Terms of the form (5.60) are present on the right-hand side of (5.36). We have to
show that (5.61) contributes to the remainder in that formula. By (D.32), under (5.62),
the H® norm of (5.61) is bounded from above by

~ k—1
C(lliitlweee + P llweoce + [u"3F llwe.co)
X (i llms + 1 Pllas + u" P las).

By (5.35), (5.13), (5.14), and since k > 5, we obtain a bound in

2 o'\ 4
C (82|10g e|* + %) et? (5.64)

so that (5.52) implies that (5.39) holds. On the other hand, consider the action of L4
on (5.61) and let us estimate the L2 norm of the resulting expression by the right-hand
side of (5.40). If we multiply (5.61) by x, we have to study

xop(ml)(Ulv”’ka—lka)' (565)

Consider first the case when among the U,’s in (5.61), at least one of them is
equal to #ix or v’ ifp , say Ux. We apply (D.36) (with j = k) and obtain thus for the
L? norm of the relevant quantity at time 7 a bound in

_ k-1
C(llitllweoe + [P llwe.co + u"Pllwe.ce)

i i (5.66)
< (tlillzz + 1 Ladivllz + Tl SN2 + 1 Lew Pl L2).

By (5.35), (4.40), (4.44), (4.39), (4.41), and the fact that k > 5, we obtain a bound at

time 7 in . o
C (82|log8|2 + %) 3 (2V7)". (5.67)
T

By (5.53) we get a bound of the form (5.40) for (5.66).

Consider next the case when in (5.61), all the Uy are equal to u” jfp. In this case,
we use (D.37) (with p > pg) to estimate the L? norm of (5.65) at time 7. We get
a bound by

C " 2o (e oo + | Lt P lwoce) [P 2. (5.68)
By (4.43)—(4.45) we get an estimate by
Ce(e® V1) logelBr7! + e(2V/7)? |logs|gr_%

to which (5.53) largely applies.
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On the other hand, the L2 norm of the product of (5.61) by 7 is estimated using
(D.33) by (5.66) or (5.68) as well. We thus have obtained that, under condition (5.62),
(5.61) forms part of the remainder in (5.36).

Let us study now case (5.63). If we compute the H* norm of (5.61) applying
(D.32), we obtain a bound in

. , , k—1
C(llarllwooo + WP llwe.co + " lwoco + | RIlwoo)” I R||as

~ k—2
+ C(lisllwoee + WP lwo.co + 1" llwo.co + | Rl|lwoee)”~ (569

X (N lls + 1w Plles + 1" Plles) IR wo.eo.

By (5.25), that allows to bound || R||we.co by Sobolev injection, (4.40), (4.44), (5.35),
the first line is bounded by (5.25), so it satisfies (5.39). The second line of (5.69) is
also estimated in that way. Notice that the assumption k > 3 is not used here, and that
k > 2 suffices.

If we compute instead the L2 norm of the product of (5.61) by x from an expres-
sion of the form (5.65) with Uy, replaced by R and apply (D.36), we obtain an estimate
at time 7 in

~ k—1
C(lillwoee + w3 lwoco + u"Pllwe.co + [|Rllwe.co)

(5.70)
x (I Rl> + xR .2).

The first factor is 0(820/) by (4.40), (4.44), (5.35) and (5.25) (coupled with Sobolev
injection). The last one is bounded from above using (5.25) and (5.26), so that it sat-
isfies (5.40) using (5.53). The L? norm of the product of (5.61) by 7 is also estimated
by (5.70). Again, only k > 2 is used.

Terms of the form (5.45). We plug in (5.45) expansion (5.59). By Corollary B.2.6, we
get terms of the form

Op(mg ) Gip . upy), |I=2.1="1") (5.71)
and terms of higher degree of homogeneity. We may thus write these terms as
Op(my) (U1, ..., Ux), |I| =k, (5.72)
where 772/, is in S{,O(Hﬂl (§,Y"'M,|1]) for some v and where either
k>3, Uge {ﬁi,u’i’p,u”i’p} (5.73)

or
k>2, Upe{ig, u P u"" R} (5.74)

with at least one factor equal to R. Terms (5.72) under condition (5.74) provide
remainders satisfying (5.39) and (5.40), as it has been seen in (5.69) and (5.70). (The
fact that k > 3 there has not been used.)
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Terms (5.71) are present on the right-hand side of (5.36). Let us show that terms
(5.72) under condition (5.73), provide contributions to R in (5.36). To estimate the
H* norm of (5.72), we may first split the symbols in new ones satisfying the support
condition of Corollary D.2.12, i.e. for instance |€1| + -+ + |Exk—1| < K(1 + |&]). We
shall apply estimate (D.78) withn = k,£ = k — 1. Let £ be the number of indices j
between 1 and k — 1 such that in (5.72), U; is equal to 14 or u’jfp. Then by (D.78)

[Op(ip) (U, ..., Ug)llus

—(k— - 4 ~ , Vi
<Ctm® DY Lydig o 4+ 1Ll 2 + i s + [Pl ars)

e (5.75)

1
X (IL4u" P lweo-oe + [u" P llweoee + 172 u"P|lg

< (M llms + T Pllas + 1w las).

Since k > 3, we obtain from (4.39)—(4.41), (4.43)—(4.45) and (5.35) a bound in
Ct"%(t T (£*/1)?|log €|2)2$t‘S < Ct le(t,e)et®

if o is taken small enough, so that (5.39) holds.

We consider next the L? norm of (5.72) multiplied by x or . The rapid decay of
symbols in the S, , class relatively to Mo(§)™|y| given by (B.13) implies that the
product of 771 by x is still a symbol of the form 772, (with a new value of v). We thus

have to estimate just
t|0p(my)(Uy, ..., U L2 (5.76)

with Uy satisfying (5.73). If at least one U; is equal to i+ or u'}”, we use (D.71)
with that value of j. We get a bound of (5.76) in

. k-1
C(li+lweooe + P lweoce + u" P llweo.oe)

- - 5.77)

X (1 Lytiq |2 + 1L Pllze + sl + Pl L2).

If all U; are equal to u”%”, we use (D.72) in order to obtain a bound in
Cllu" PPl 00 (I L 41" PP lweo-oo + " FP w000 ) 1”2 2. (5.78)

By (4.39)-(4.41), (4.43)—(4.45) and (5.35), the sum of (5.77) and (5.78) is estimated
at time t (since k > 3) by

((82«/_)9
NG

By (5.53), the first term is smaller than the right-hand side of (5.40). The same holds
true trivially for the last term in (5.79). This finishes the proof that terms (5.45) con-
tributes to the remainder in (5.36).

+ e2[log e[? ) 13 (2/7) + &3[logel*. (5.79)

Terms of the form (5.46). We need to prove that (5.46) contributes to the remainder
and to the @® ;| Op(7irg ;) (us) terms on the right-hand side of (5.36). Substi-
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tute (5.59) in (5.46). We get the following terms:

(a()—a*™(1)) Y Op(my ™)+ (a(t)—a*™ (@) > Op(m} [)(ir). (5.80)

[7]=1 |I|=1
a®™(t) Y Op(m} (), (5.81)
[Il=1
a(t) Y Y Op(my )Op(mp) iz, ufy), (5.82)
1I1=1 2<|]|<4
i=(i’,i”)
a(t) ) Op(m} )(R), (5.83)
[I]=1

where R satisfies (5.25), (5.26).
By (5.38), (4.8), (4.6), (4.3) and (4.96), (4.98),

_1 /
a*P (1) — a*P(t) = 0(,8 21_%(82«/;)9 )
and s )
a(t) —a™ (1) = 0(t; 2) = 0(t; 2172 (2VD)).
By (D.31), the H® norm of (5.80) is thus bounded from above at time 7 by

1 1 , N _ ’
Cr. 2t 2(2V0) (WPl as + " las + g ms) < Co (€2 v0) e

using (4.39), (4.43), (5.35). This quantity satisfies (5.39). If we make act L+ on (5.80)
and use (D.71) to estimate the L2 norm, we obtain a bound in

1 2 o’ 5 5
Cre >t 2(*VO) (IL+u' N2 + 1 Ltiig 2 + 5P 2 + i+ ]l.2)

for the contribution of u’jfp and 74 to (5.80). Using (5.35) and (4.39), (4.41), we get
by (5.53) the wanted estimate of the form (5.40). On the other hand, if we consider
the contribution (a() — a*®(t))Op(m} Ju"}" to (5.80) on which acts L, we may
estimate the L2 norm from the L one, as m’ ;(x,§) is rapidly decaying in x. Then,
by (D.77) with £ = n = 1, we obtain a bound in

p 1
Ctla = (e~ ([ e + 1= [u"P ] 5)

—1+40 /7app L 17app (584)
+1 (I llweo.co + | Lyu” PP lwoo.c)).

_3
Asa —a® = O(t, ), it follows, taking for instance r = 1, and using (4.43), (4.44),
(4.45) that (5.84) at time T may be estimated, if o is small enough, from

_3
2

_1 1
Ct, 21|logel® < Cr, 2t 2729 log ¢

By (5.51), (5.40) will hold largely. We have thus obtained that (5.80) is a remainder.
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Term (5.81) is present on the right-hand side of (5.36).
Consider next (5.82). By Corollary B.2.6, the composition Op(m ;) o Op(m )
may be written under the form Op(m’1 i) for new symbols m’1 7 in

1]
51,0(1'[<s,->—1M0“,|i|)

Jj=1

for some v and 2 < |7| < 4. Consequently, we write (5.82) under the form

a(ty Y, Op(m . uf). (5.85)
2=<|I|=4
I=I"1")
Since such expressions will appear also in the study of terms of the form (5.47), we
postpone their study.

Finally, let us study (5.83). As Op(m ;) is bounded on H?, the Sobolev norm
of (5.83) is O(ts_l/2||R(t, )lzs). Using (5.25), it satisfies (5.39). If we make act
L4 on (5.83), the rapid decay of m’l,l and (5.25), show that we obtain at time 7 an
expression whose L? norm is bounded from above by

1
Cl'g 2(82\/?)40/T_l+40(€‘f8)

that trivially satisfies (5.40).
This concludes the study of terms of the form (5.46).

Terms of the form (5.47) (and (5.85)). We study now expressions of the form (5.47)
and the related ones introduced in (5.85).

We plug expansion (5.59) in (5.47). By Corollary B.2.6, we get again terms of the
form (5.85), with 2 < |f| < 6 instead of 2 < |f| < 4, and terms of the form

a(t)Op(ﬁq’l,,)(Ul, LU, | =k=2 (5.86)

with again 71 ; in Si’o(nﬁﬂl(éj)_lMé’, |1]), Uy belonging to

{4, u" P u"PP R,
one of the arguments at least being equal to R satisfying (5.25) and (5.26). We have
already checked that terms of this last form provide remainders (even without the
pre-factor a(¢)) (see (5.69) and (5.70), where the assumption k > 3 was not used).
We are thus reduced to the study of terms of the form (5.85), with |i | > 2 in the sum.
If |i | > 3, we get terms of the form (5.72) with conditions (5.73), that have been seen
to be remainders. We must thus just study

a(t)0p(rr} )(Uy, Uz) (5.87)

with 1| =2, Uy, Uz € {fi+,u"" u”}. Moreover, we may assume, in order to
bound the Sobolev norm, that 772} ; is supported for |§;| < K(1 + |&;|) for instance.
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Applying (D.78) with ¢/ =£ =1if Uy = ti+ or u’i‘Ep and{=1,¢'=0if U; = u”iEp,
we bound the H*® norm of (5.87) by

—1 ~ ~
la@e ™ (I Lt | 2+ i s + 1L SN2 + Sl

1
+ 1L P llno.ce + 1" llyoo.co + 173 "7 <)

< (I llas + N Pllas + [u" P las).

_1
As a(t) = O(t, 2), one gets at time 7 a bound in et~ le(z, £) using (4.39)—(4.41),
(4.43)—(4.45) and (5.35). It follows that (5.39) will hold. On the other hand, if we
make act L on (5.87) and compute the L? norm, we get a bound given by

la(t)] = 0t %)

multiplied by (5.77) or (5.78) with k = 2. Using again (4.39)—(4.41), (4.43)—(4.45)
and (5.35), we obtain at time t an upper bound in

| 6’ .
CIE_2((—(82:;_§) + 82|10g8|2)1’z(82ﬁ)9

2 1
+ log(1 + 7)log(1 + ‘L'EZ)E((:i2>)2).

By (5.53), (5.55), (5.40) will hold true. This concludes the estimate of these terms.

Terms of the form (5.48). Terms (5.48) with |I| > 2 are of the same form as (5.47),
with a smaller pre-factor a(¢)”, so they are remainders. We have thus to study

a(t)’ Y Op(my )(ur). j =2.3. (5.88)
[I]=1

By (4.96), (4.97), (4.98), (4.100) and the definition of a(¢) = ¢T§ (a4 —a—), one may
write (5.88) from the term

LY (¢ ) + 5 ) Optm ) (5.89)
[1]=1
and from terms like
a() Y Op(m ) (ur), (5.90)
[1]=1
where
a0 < C VDY + 170, (5.91)

Terms (5.89) are present on the right-hand side of (5.36). We have to show that (5.90)
provides remainders. The H® norm of these terms in bounded from above, using
the Sobolev boundedness of Op(m() ;) and estimates (4.39), (4.43) and (5.35) by
Cet3=162% 50 that (5.39) will hold.
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On the other hand, if we make act L+ on (5.90) and compute the L? norm, we
have to estimate by (5.91) expressions of the form

TRV + 1 )|Op(m01)U||Lz, (5.92)

where st ; is of the same form as m{, ; and U = il or u" P or u”fP.

When U = ii4 or u’}”, we use (D.71) to bound (5.92) by

—1/.—1 ’ -5 ~ ~
Ci ' (72D +1 2)(IIL+M+IIL2 L Pl + itz + 5l 2).

Using (4.39), (4.41) and (5.35), we see from (5.53) that (5.40) will hold. On the other
hand, if U = u” fp, we estimate the L2 norm in (5.92) from an L™ one, using the
rapid decay of mO’I, and we use (D.77) with £ = n = 1, r = 1, in order to obtain
a bound in

SR VDY + 1) (P lwroe + L Plgonce + 175 [P s).
By (4.43)—(4.45), we bound this by
Clog 8|28l_%(lc8)

so that, since t < ¢4 and o may be taken as small as we want, (5.55) implies that
(5.40) holds. This concludes the study of terms (5.48).

Terms of the form (5.49). These terms satisfy (4.38). It follows immediately from
(5.50) that (5.39) holds. Using (5.51), we get as well (5.40).
This concludes the proof of Proposition 5.2.1. ]

The reduced equation (5.36) obtained in Proposition 5.2.1 still needs one more
reduction before we are able to deal with it. Recall that in Proposition 4.1.2, we have

decomposed u P under the form (4.48) uap = app’ + X, where u pr’l was given
by (4.49). We reﬁned this decomposition in (4. 54) as
s LRV L
)1
u't = Z Uj’,+(t, x),
j€{—2,0,2} (5.93)
)1
W= Y U (x),
j€{~2,0,2}
where U ]/ + U/ /', are defined in (C.4) from the right-hand side of (4.50), namely

+oo
Ul (x) =i / TP () My (2
1

t
Ul (1 x) = i/

—00

(5.94)
el =D p(Dx)+ij 5> (1—)()<\/—)M (r,-)dr

with M; given by (4.21). Let us prove the following corollary of Proposition 5.2.1.
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Corollary 5.2.3. Under the assumptions of Proposition 5.2.1, iy solves an equation
of the form

(Ds = p(D))ii+ — Z 15 Op(b) )ity — Z 5 Op(b )it

j=—2 j=—2
= > OpUap)(r. uff) + Y Op(my ) (i)
3=<|I=4 [1]=2
I=1".1") (5.95)
+ > Oplmy )G u'FRh
I= (I/ //)
[=11"1=1
+ > Opmy NP + Ry (2, %),

[11=2

where ()s3<|11<4 IS as in the statement of Proposition 5.2.1, where (m0 =2
are symbols in the class S1 0(]_[J_l (£, YMo (&), 2), where R satisfies (5. 39) and
(5.40), and where the symbols b it satisfy (3.7) and the following estimates for «, B,
NinN:Ifj=—lorj =1,

_1
0200 b} 4 (t.x.§)| < Capvte 2< YN E) T

(5.96)
10:0%0 ) (1, %, §)] = Capy (2 + (VD37 173) ()N (),
andif j = -2,0,2,
|a“aﬂb’~,i(r,x, £) < Capnty (x)™N(E)7,
5.97)

10:0%08 D) (1, %, 6)] < Capnt 2 (12 + (2VD37 1 3) (0) N (g).

Proof. Let us analyze the different terms on the right-hand side of (5.36). The first
sum appears unchanged in (5.95).

By the definition (5.38) of aap P the fact that g®P = *r(aapp app 1) and (4.3),
the a®P(r) ZI I1=1 Op(ml’ P 1) term in (5.36) contributes to the terms involving
bj’., 4 on the left-hand side of (5.95). The same holds true for the last but one term
in (5.36). We are thus left with studying

> Oplmpy p)Gip ). (5.98)
[ I|=2
I:(I/,I//)

First step. If |1"| = 0, we get the ;| _, Op(my, ;) (i) contribution in (5.95).
Second step. We consider next the contributions to (5.98) with |I’| =1, |I"| = 1.
As one may decompose

app rapp,1 //app,
Uy =uy tu + X4
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by (4.48) and (4.55), we shall get three type of terms:

> Oplmy )G P, (5.99)
I=(I/,I//)
=171

> Op(mp )i a5, (5.100)
I=',1")
=17]=1

> Op(my )Gip. Bp0). (5.101)
1=',1")

=117]=1

Term (5.99) appears on the right-hand side of (5.95). From (5.93), we may rewrite
(5.100) as a sum of expressions

Op(my )iy Ul'p).  j =—2.0.2. (5.102)

We shall apply Proposition C.2.2 with « = 1, w = 1. Since UJ” 4 18 defined by (5.94)
from a M; given by (4.21), thus satisfying by (4.3) inequalities (C.7) with v =1,
Assumption (H1); of Proposition C.2.1 is satisfied, and so Proposition C.2.2 applies.
It follows from (C.106), applied with A = j “/75 Jj =-2,0,2, that (5.102) may be
written as
€' 0p(by)iiy + Op(by )iy (5.103)
where b{ (resp. bé) satisfies (3.7) and the first two lines (resp. the last line) in (C.107)
with @ = 1. The first term in (5.103) brings thus contributions to the last two sums on
the left-hand side of (5.95), for j = —2, 0, 2, with symbols satisfying (5.97) and (3.7).
We have to check next that the last term in (5.103) contributes to the remainders.
By the last line in (C.107) and (D.32), (5.35)

|0p(b3)iiy|las < Cet~ log(1 + 1)er®

from which a remainder estimate of the form (5.39) follows. If we make act L+ on
Op(bé)ﬁ 77 and use (D.71) with n = 1 and the bounds (C.107) for the semi-norms
of bé (with @ = 1), we obtain from (5.35)

IL£Op(®))ir 2 < Ce?t~ log(l + 1) # (€2 3/1)° (5.104)

so that a bound of form (5.40) holds.
It remains to study (5.101). Recall the definition of X4 given after (4.50): this

function is a sum
3
> U@y,

j=-3
where U; solves (4.50) with source term et % M ;, where M ; satisfies (4.51),
i.e. the first inequality in (C.8). We may then decompose each U; as U’ , + U7,
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according to (C.110) with A = j ‘/73 and rewrite the terms in (5.101) from
Op(mi),l)(ﬁl’,g},hlﬂ)’ Op(mé),l)(ﬁl”g}/,l,ﬂ) (5.105)

to which Proposition C.2.5 applies. This allows us to rewrite these terms in the form
Op(b)(i+), where b satisfies estimates (C.117), namely

ol -1
10,°0¢b(1, y.£)| < Cte 2t log(1 + 1) (y) N (£)~". (5.106)
By (D.32) and (5.35), we thus get
_1
I0p(®)(lix) s < Cte 2t~ log(1 + 1) ||+ | s

_1
< Ct, 2t " 1og(1 + t)etd.

An estimate of the form (5.39) follows at once. If we make act L+ on Op(b)(ti+), use
the rapid decay in y of (5.106) and (D.71), we obtain an estimate of the L? norm by
the right-hand side of (5.104), with &2 replaced by ¢, 1/2 < ¢. This suffices to imply
that (5.40) holds, and thus shows that (5.101) is a remainder.

Third step. We study finally contributions to (5.98) where |I’| = 0. Again, we use
(4.48) and (4.55) to write

app rapp, 1 /aPPa
uy =uy tu + X4

Plugging this expression inside the terms (5.98) with |I’| = 0, we shall get expres-
sions given by

Op(mp ) (u'F™), 1] =2, (5.107)

Op(mpy ) (Zp. PP, ' =\1"=1,1=U.1"), (5.108)

Op(mg 1) (X1). 1] =2, (5.109)

Op(mp ) ("), 1] =2, (5.110)

Op(my (S "), I =1"=11=(I.1"), (5.111)

Op(mpy ) (/S u" PNy, |1 = 11" =1,1=(",1"), (5.112)
where my, ; are still elements of S 0(]_[l YTIMY|T)).

Term ’(5 107) appears on the rlght hand 51de of (5 95)

Term (5.108) is treated as (5.101): actually, u /app’ satisfies (4.39)—(4.41) as has
been established after (4.54), and these bounds are better than inequalities (5.35)
for i 4.

Term (5.109) may be treated in the same way: we have seen in the study of
(5.101) that Op(mé),l)(-,Eln) may be written as Op(b) - for b satisfying (5.106)
(see (5.105)). By (4.52), we shall get for any N,

IxN Op(mpy ) (D) s < CllxN Opb)(S2)llas

3 (5.113)
<Ct, zt_l(log(l +0))(te 2+ 17 —l—t ~1e?)
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By (5.56), we see that (5.39) will hold. Estimating the action of L+ on Op(m0 D7)
in L2, we get an upper bound by the right-hand side of (5.113) multiplied by ¢. Then
(5.55) shows that (5.40) holds.

To study (5.110), we recall that u”:‘f’p’l is given by (4.54), where U/, is given
by the second formula (C.4) in terms of an M that satisfies (4.13), i.e. such that
(C.7) with @ = 1 (Assumption (H1);) holds. We may thus apply Corollary C.2.3
with w = 1. It follows that the H* norm of (5.110) is bounded from above by

C(1;% + e*t 2 (log(1 +1))?).

This largely implies (5.39). On the other hand, the L? norm of the action of L+ on
(5.110) is bounded by

C(tta_2 + e* 1(log(1 + t))z).

Then (5.55) implies that (5.40) largely holds.
Terms (5.111) may be treated in a similar way as (5.109): we have seen that
Op(my)(Zy, u”;ff?’l) may be written as Op(b)u”"*™" with b satisfying (5.106). By

the expression (4.54) of
app, 1
M”_Ep = Z Uj/,/"r"
je{—2,0,2}
where U/, is defined by the second formula (C.4) with A = j ‘/75 and M = M,

given by (4.21), we see that we may apply Proposition C.2.1 with @ = 1. Taking into
account the time decaying factor on the right-hand side of (5.106), it follows from
(C.89)—~(C.91) that

10%0p(mpy ) (S u" )]
o (5.114)
< Ct; 2t (log(1 + 1)) (¢ " + &2t Mog(1 + 1)) {x) V.

Thus the H® norm of (5.111) is bounded from above by the ¢-depending factor in
(5.114). By (5.56), we get that (5.39) largely holds. If we make act L4 on (5.111)
and estimate the L2 norm, we get a bound in

_1
Ct, 2 log(1 + 1) (1, + &%t log(1 +1)).

Thus (5.55) implies (5.40).

It just remains to treat (5.112). Notice that (5.112) is of the same form as (5.100)
with @i/ replaced by u'}) Pl 5o that may be written under a similar form as (5.103),
namely

e/5 Op(b] '8P + Op(b] '8!, (5.115)

where b{ (resp. b'2i) satisfies the first two lines (resp. the last line) in (C.107) with

o = 1. We have checked after (5.103) that the second term in that formula is a remain-

der. Since as seen above, u’ Tp’l satisfies (4.39)—(4.41), which are better estimates than
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those verified by 4, it follows that the last term in (5.1 15) is also a remainder. Let us
prove that, because of the better bounds satisfied by u'"’ PPl versus Uy, the first term
in (5.115) is a remainder as well. By the estimates of b1 in (C.107) and (D.32),

s < Ct; 124

||Op(bj)u/app’ |HS < Cla_l ||u/zfp,1|

according to (4.39) written for u'%f P! By (5.57), we conclude that (5.39) holds.
To estimate || L-Op(b] 'y P15, we are reduced, by the fact that b is rapidly
decaying in x, to bounding t||Op(b] 'Y P15 According to (D.71) and the bounds
(C.107) of b , we thus get an estimate in

12) < C17' 13 ((PV0) + (2V1)Fe¥)

by (4.41). As in (5.40) 6 <3 L (5.53) shows that (5.40) holds.
This ends the study of term (5.112) and thus the proof of Corollary 5.2.3. ]
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