
Chapter 6

Normal forms

This chapter is devoted to the completion of Step 5 of the proof of our main theorem,
that is described in Section 2.7 of Chapter 2. We recall here some elements of the
strategy. The preceding steps of the proof allowed us to reduce ourselves to an equa-
tion (5.95) for a new unknown QuC. In this chapter, we first write a system made of that
equation and of the one obtained by conjugation. In that way, if we set Qu� D �QuC
and Qu D Œ QuC

Qu�
�, the system we get on Qu may be written (see equation (6.17) below)�

Dt � P0 � V
�
Qu DM3. Qu; u

app/CM4. Qu; u
app/CM02. Qu; u

0app;1/CR; (6.1)

where R is a remainder and the other terms in the equation have the following struc-
ture:
� Operator P0 is just

P0 D

�
p.Dx/ 0

0 �p.Dx/

�
: (6.2)

� Operator V is a 2 � 2 matrix of linear operators acting on Qu.

Each of these operators is a pseudo-differential operator of order �1, whose coeffi-
cients depend on the approximate solution uapp constructed in Chapter 4. The main
contribution to V has thus entries of the following simplified form:

e˙it
p
3
2 t
� 12
" c.x/hDxi

�1; (6.3)

where c.x/ is in �.R/ and again t
� 12
" D

"

.1Ct"2/1=2
. The left-hand side of (6.1) is thus

a vectorial version of the scalar operator

Dt � p.Dx/ � t
� 12
" Re

�
c.x/hDxi

�1eit
p
3
2

�
: (6.4)

We get thus a perturbation of the constant coefficients operator p.Dx/ D
p
1CD2

x

by a potential term, rapidly decaying in x. We already encountered such a perturba-
tion in Chapter 2, except that there the potential was autonomous. Here, it is time
dependent and has some decay when t goes to infinity. Because of that, we can-
not apply the results of Chapter 2 or of Appendix A to eliminate term V in (6.1)
through conjugation. Nevertheless, one may construct by hand some wave operators
for a time depending perturbation of Dt � p.Dx/ like the one in (6.4). That con-
struction is made on the Fourier transform side: we introduce in Lemma 6.1.1 below
a class of operators, obtained composing at the left and the right the last term in
(6.4) by (inverse) Fourier transform. In Appendix E below we design “by hand” wave
operators for such perturbations of p.Dx/, so that, conjugating (6.1) through them,
we may eliminate V from that equation, exactly as we got rid of potential 2V in the
second equation of (2.9) in Section 2.1 of Chapter 2 (see equation (2.17)).
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The second part of this chapter is devoted to a normal form procedure allowing
one to eliminate non-characteristic contributions to the quadratic, cubic and quartic
terms M02;M3;M4 in (6.1). Characteristic contributions are terms like j QuCj2 QuC that
obey a Leibniz type rule of the form

kLC.j QuCj
2
QuC/kL2 � Ck QuCk

2
W �0;1kLC QuCkL2

up to remainders. These contributions may be safely kept on the right-hand side
of (6.1). The non-characteristic terms are those that do not satisfy such a Leibniz
rule, and that have to be eliminated by normal form. We explained this idea on a sim-
ple model in Section 1.6 of the introduction, and gave more details in Section 2.7. In
the present chapter, we apply this method to M3;M4 that have essentially the same
structure as the models discussed there.

We have also to eliminate the quadratic term M02. Qu; u
0app;1/ on the right-hand

side of (6.1). Since the arguments Qu; u0app;1 are odd, and M02 is morally of the form
a.x/ Qu˙ Qu˙, with a.x/ rapidly decaying, one may express each factor Qu˙ using (2.65)
in terms of L˙ Qu˙ gaining a t�1 decay for each factor. Nevertheless, this gain is not
sufficient to be able to consider M02 as a remainder. One get operators of the form
(2.68)–(2.69), and we explained at the end of Section 2.7 how to eliminate these
expressions performing again some elementary normal form.

6.1 Expression of the equation as a system

Let us first fix some notation. From QuC, Qu� D �QuC, uapp
C , uapp

� D �u
app
C , u0app

C and
u0app
� D �u

0app
C , we introduce the vector-valued functions

Qu D

�
QuC
Qu�

�
; uapp

D

�
u

app
C

uapp
�

�
; u0app

D

�
u0

app
C

u0app
�

�
: (6.5)

In order to write (5.95) as a system on Qu, let us define, when I D ˙,

b0I .t; x; �/ D

2X
jD�2

eitj
p
3
2 b0j;I .t; x; �/; (6.6)

where b0j;˙ satisfies (5.96), (5.97). Denoting Nb0_
˙
.t; x; �/ D b0

˙
.t; x;��/, we define

the matrix of symbols

M 0.t; x; �/ D

�
b0C.t; x; �/ b0�.t; x; �/

�Nb0_�.t; x; �/ �
Nb0_C.t; x; �/

�
: (6.7)

As Op.b0
˙
/w D Op. Nb0_

˙
/ Nw, if we denote by Op.M 0/ the quantization of M 0 defined

entry by entry, and define Op.M 0/ by

Op.M 0/ Qu D Op.M 0/ Qu;
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the form of M 0 shows that

Op.M 0/ D
�

Op.b0C/ Op.b0�/
�Op.b0�/ �Op.b0C/

�
(6.8)

or equivalently, if N0 D Œ 0 11 0 �,

Op.M 0/N0 CN0Op.M 0/ D 0: (6.9)

If we define for j D �2; : : : ; 2,

M 0j .t; x; �/ D

"
b0j;C.t; x; �/ b0j;�.t; x; �/

�Nb0_
�j;�.t; x; �/ �

Nb0_
�j;C.t; x; �/

#
;

we have

M 0.t; x; �/ D

2X
jD�2

eijt
p
3
2 M 0j .t; x; �/;

Op.M 0j /N0 CN0Op.M 0�j / D 0:

(6.10)

We shall set also, if m.x; �1; : : : ; �n/ is a multilinear symbol,

m_.x; �1; : : : ; �n/ D m.x;��1; : : : ;��n/ (6.11)

so that Op.m/ D Op.m_/ if we set again

Op.m/.w1; : : : ; wn/ D Op.m/.w1; : : : ; wn/:

If I D .i1; : : : ; in/2 ¹�;Cºn and uI D .ui1 ; : : : ; uin/, we denote NI D .�i1; : : : ;�in/

u NI D .u�i1 ; : : : ; u�in/ D �. Nui1 ; : : : ; Nuin/ D �uI (6.12)

according to our definition u� D �NuC. Then if mI is in S�;0.M; jI j/, we shall get
that

Op.mI /.uI /D Op.mI /.uI /D .�1/jI jOp.mI /.u NI /D .�1/
jI jOp. Nm_I /.u NI /: (6.13)

Let us use this notation to express nonlinear quantities constructed from (5.95). We
define first the quadratic terms, that will come from the right-hand side of (5.95),
namely

M02. Qu; u
0app;1/ D

X
ID.I 0;I 00/

jI 0jD0; jI 00jD2

"
Op.m00;I /.u

0app;1
I 00 /

Op. Nm0_0;I /.u
0app;1
NI 00

/

#

C

X
ID.I 0;I 00/

jI 0jDjI 00jD1

"
Op.m00;I /. QuI 0 ; u

0app;1
I 00 /

Op. Nm0_0;I /. Qu NI 0 ; u
0app;1
NI 00

/

#

C

X
ID.I 0;I 00/

jI 0jD2; jI 00jD0

�
Op.m00;I /. QuI 0/
Op. Nm0_0;I /. Qu NI 0/

�
(6.14)
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and the cubic and quartic expressions, given for j D 3; 4 by

Mj . Qu; u
app/ D

" P
ID.I 0;I 00/; jI jDj Op. QmI /. QuI 0 ; u

app
I 00 /

.�1/j
P
ID.I 0;I 00/; jI jDj Op. Qm

_

I /. Qu NI 0 ; u
app
NI 00
/

#
: (6.15)

We also set

R.t; x/ D

�
RC.t; x/

RC.t; x/

�
(6.16)

where RC is the last term in (5.95).
The system obtained taking equation (5.95) and the conjugated equation may be

written as follows, denoting V the operator Op.M 0/ given by (6.8) and P0 the matrix
of operators given by (6.2):�

Dt � P0 � V
�
Qu DM3. Qu; u

app/CM4. Qu; u
app/CM02. Qu; u

0app;1/CR: (6.17)

In order to apply the results of Appendix E below, we need to re-express operator V

on the Fourier transform side.

Lemma 6.1.1. For j D �2; : : : ; 2, there are two by two matrices

Qj .t; �; �/ D
h �
h�i

�

h�i
qj;.k;`/.t; �; �/

i
1�k;`�2

whose entries satisfy estimates

j@˛� @
ˇ
� qj;.k;`/j � CN t

� 12
" hj�j � j�ji

�N
h�i�1;

j@˛� @
ˇ
� @tqj;.k;`/j � CN

�
t
� 32
" C ."2

p
t /
3
2 �
0

t�
3
2

�
hj�j � j�ji�N h�i�1

(6.18)

for any ˛; ˇ;N if j D �1; 1, and

j@˛� @
ˇ
� qj;.k;`/j � CN t

�1
" hj�j � j�ji

�N
h�i�1;

j@˛� @
ˇ
� @tqj;.k;`/j � CN t

� 12
"

�
t
� 32
" C ."2

p
t /
3
2 �
0

t�
3
2

�
hj�j � j�ji�N h�i�1

(6.19)

for any ˛; ˇ;N if j D �2; 0; 2, such that, if we define the operator KQj by

1KQj f .�/ D
Z
Qj .t; �; �/ Of .�/ d� (6.20)

for f a C2-valued function, the operator V acting on odd functions may be written
as

V D

2X
jD�2

eitj
p
3
2 KQj : (6.21)

Moreover, one has VN0 D �N0V .
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Proof. If f D Œ fC
f�
�, we have according to the definition (6.8) of V D Op.M 0/ and

(6.10)

Op.M 0/f D
2X

jD�2

eitj
p
3
2 Op.M 0j /f; (6.22)

Op.M 0j /f D

"
Op.b0j;C/fC C Op.b0j;�/f�

�Op. Nb0_
�j;�/fC � Op. Nb0_

�j;C/f�

#
: (6.23)

The Fourier transform of the first line of (6.23) may be writtenZ
Ob0j;C.t; � � �; �/

OfC.�/ d�C

Z
Ob0j;�.t; � � �; �/

Of�.�/ d�; (6.24)

where Ob0j;˙ is the Fourier transform relatively to the first variable. Since b0j;˙ satisfies
(3.7), if we set

Qqj;.1;1/.t; �; �/ D Ob
0
j;C.t; � � �; �/; Qqj;.1;2/.t; �; �/ D

Ob0j;�.t; � � �; �/;

we see that Qqj;.k;`/.t;��;��/ D Qqj;.k;`/.t; �; �/. If we make act (6.24) on odd func-
tions fC, f�, we may rewrite this expression as the sum for .k; `/ D .1; 1/ or .1; 2/
of

1

2

Z �
Qqj;.k;`/.t; �; �/ � Qqj;.k;`/.t; �;��/

�
Of˙.�/ d�

(with fC if .k; `/ D .1; 1/ and f� if .k; `/ D .1; 2/). In other words, we may assume
that Qqj;.1;1/.t; �; �/ is odd in �. Since that function is even in .�; �/, it has also to be
odd in � . By (5.96)–(5.97), x 7! b0j .t; x; �/ is in �.R/, and the function is C1 in �.
It follows that the Fourier transform in x of these functions satisfies

j@˛� @
ˇ
� @
`�1
t
Ob0j;I .t; � � �; �/j � C˛;ˇ;NT `

j .t; "/hj�j � j�ji
�N
h�i�1

for any ˛; ˇ;N , ` D 1; 2, where T `
j .t; "/ is the time dependent pre-factor in the `-th

equation in (5.96) (resp. (5.97)). After the preceding reductions, it follows that Qqj;.k;`/
satisfies for all ˛; ˇ;N 2 N, ` D 1; 2,

j@˛� @
ˇ
� @
`�1
t Qqj;.k;`/.t; �; �/j � C˛;ˇ;NT `

j .t; "/hj�j � j�ji
�N
h�i�1:

Since we have seen that this function is odd in � and odd in �, we may write it as
�
h�i

�
h�i
qj;.k;`/.t; �; �/, where qj;.k;`/ satisfies (6.18)–(6.19). It follows that we have

written the first component of the Fourier transform bVf of (6.22) as the first com-
ponent of

P2
jD�2 e

itj
p
3=2 1KQj f .�/. Since the reasoning is the same for the second

component, we get (6.21).
The last statement of the lemma follows from (6.9).

We may now eliminate the operator V on the left-hand side of (6.17), using the
results of Appendix E.
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Proposition 6.1.2. Fix m in �0; 1
2
Œ close to 1

2
, and set as in the example following

Definition E.1.1, � D min.1 � 2m; 3
4
c� 0/ > 0. There is "0 > 0 such that, for any V

of the form (6.21), defined in terms of matrices Qj whose coefficients satisfy (6.18)
and (6.19), with " 2 �0; "0Œ, there are operators B.t/, C.t/, defined for t 2 Œ1; T �
(T � "�4Cc), bounded onH s.R/, satisfying the properties of Propositions E.1.1 and
E.1.3 of Appendix E, such that, if Qu solves (6.17) and satisfies estimates (5.35), then
C.t/ Qu solves

.Dt � P0/C.t/ Qu D C.t/M3. Qu; u
app/C C.t/M4. Qu; u

app/

C C.t/M02. Qu; u
0app;1/C C.t/R

(6.25)

with R satisfying for any t 2 Œ1; T �,

kR.t; � /kH s � "t
ı�1e.t; "/; (6.26)

kLR.t; � /kH s � t
� 34 ."2

p
t /�e.t; "/; (6.27)

where e satisfies (5.41). Moreover, C.t/ Qu is odd if Qu is odd and N0C.t/ Qu D �C.t/ Qu.

Proof. By (E.9), it holds .Dt � P0 � V/B.t/ D B.t/.Dt � P0/ and by (E.14), we
have Qu D B.t/C.t/ Qu. Replacing Qu by this value on the left-hand side of (6.17), com-
posing at the left with C.t/ and using again (E.14), we obtain (6.25). Since V.t/

preserves odd functions and satisfies V.t/N0 D �N0V.t/, the last statement of the
proposition follows from (E.23) and the fact that N0 Qu D �Qu. This concludes the
proof, as estimates (6.26) and (6.27) are just rewriting of (5.39) and (5.40).

6.2 Normal forms

Our next objective will be to eliminate by normal forms most of the contributions on
the right-hand side of (6.25). We shall construct first the relevant operators in order
to do so.

Let us fix some notation. Let n be in N�. Consider C2-valued test functions vj ,
defined on Œ1; T � �R for some T , of the form

.t; x/ 7! vj .t; x/ D

�
vj;C.t; x/

vj;�.t; x/

�
(6.28)

with vj;˙ odd in x and satisfying vj;� D �vj;C. If n � 3, we shall consider n-linear
maps

.v1; : : : ; vn/ 7! QMj .v1; : : : ; vn/ (6.29)

sending C2-valued functions to C2-valued functions and having the following struc-
ture (using notation (B.17)):

QMn.v1; : : : ; vn/ D

" P
jI jDn Opt . QmI /.v1;i1 ; : : : ; vn;in/

.�1/n
P
jI jDn Opt . Qm

_

I /.v1;�i1 ; : : : ; vn;�in/

#
; (6.30)
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where I D .i1; : : : ; in/2 ¹�;Cºn, QmI is in S1;ˇ .M �
0

Qn
jD1h�j i

�1; n/ for some ˇ > 0
small, � 2 N, where Qm

_

I is defined by (6.11), and where the form of the second line of
(6.30) versus the first one just reflects the fact that Mn.v1; : : : ; vn/ will have a struc-
ture with respect to conjugation similar to the one in (6.14) or (6.15) (see (6.13)).
Moreover, we assume that QmI satisfies

Qm.y; x; �1; : : : ; �n/ D .�1/
n�1
Qm.�y;�x;��1; : : : ;��n/ (6.31)

so that the associated operator preserves odd functions (see (3.7)).

Proposition 6.2.1. Let n � 3. For any I with jI j D n one may find symbols OmI in
S4;ˇ .M

�
0

Qn
jD1h�j i

�1hxi�1; n/ such that, if one sets

OQMn.v1; : : : ; vn/ D

" P
jI jDn Opt . OmI /.v1;i1 ; : : : ; vn;in/

.�1/n
P
jI jDn Opt

�
Om
_

I

�
.v1;�i1 ; : : : ; vn;�in/

#
(6.32)

one may write

Rn.v1; : : : ; vn/
def
D .Dt � P0/

OQMn.v1; : : : ; vn/ � QM.v1; : : : ; vn/

�

nX
jD1

OQMn.v1; : : : ; .Dt � P0/vj ; : : : ; vn/
(6.33)

under the following form:

Rn.v1; : : : ; vn/ D

�
Rn;C.v1; : : : ; vn/

Rn;�.v1; : : : ; vn/

�
(6.34)

withRn;�DRn;C, andRn;C satisfies the following: One may writeRn;C.v1; : : : ; vn/
as a sum

Rn;C.v1; : : : ; vn/ D
X
jI jDn

Opt .rI /.v1;i1 ; : : : ; vn;in/ (6.35)

with symbols rI in the class S4;ˇ .M �
0

Qn
jD1h�j i

�1; n/ for some � 2 N. Moreover,
LCRn;C.v1; : : : ; vn/ may be written as a sum of terms of the following form:

X
jI jDn

nX
jD1

Opt .rI;j /.v1;i1 ; : : : ; Lij vj;ij ; : : : ; vn;in/ (6.36)

with rI;j in S4;ˇ .M �
0

Qn
jD1h�j i

�1; n/,X
jI jDn

Opt .rI /.v1;i1 ; : : : ; vn;in/ (6.37)

for symbols rI in S4;ˇ .M �
0

Qn
jD1h�j i

�1; n/, and

t
X
jI jDn

Opt .r 0I /.v1;i1 ; : : : ; vn;in/ (6.38)
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for symbols r 0I in S 0
4;ˇ
.M �

0

Qn
jD1h�j i

�1; n/. Moreover, OmI satisfies

OmI .�y;�x;��1; : : : ;��n/ D .�1/
n�1
OmI .y; x; �1; : : : ; �n/ (6.39)

if QmI does so in (6.30).

We shall prove the proposition expressing (6.33) in terms of the semiclassical
quantization of symbols introduced in (B.14) in Appendix B. If h D 1

t
, we introduce

for any function vj , j D 1; : : : ; n, the function vj defined by

vj .t; x/ D
1
p
t
vj

�
t;
x

t

�
D ‚tvj .t; x/ (6.40)

according to (B.15). By (B.16), each term on the first line of (6.30) may be written

Opt . QmI /.v1;i1 ; : : : ; vn;in/.t; x/ D h
n
2Oph. QmI /.v1;i1 ; : : : ; vn;in/

�
t;
x

t

�
(6.41)

and similarly for the first line of (6.32). The first line on the right-hand side of (6.33)
may be written as the sum in I of

.Dt � p.Dx//Opt . OmI /.v1;i1 ; : : : ; vn;in/ � Opt . QmI /.v1;i1 ; : : : ; vn;in/

�

nX
jD1

Opt . OmI /.v1;i1 ; : : : ; .Dt � ijp.Dx//vj;ij ; : : : ; vn;in/:
(6.42)

It follows from (6.41) that the first term in (6.42) may be written as

h
n
2

�
Dt � Oph

�
x� C p.�/ � i

n

2
h
���

Oph. OmI /.v1;i1 ; : : : ; vn;in/
��
t;
x

t

�
:

The other terms in (6.42) admit analogous expressions, so that (6.42) may be rewritten
as h

n
2RIn;C.v1;i1 ; : : : ; vn;in/.t;

x
t
/ with

RIn;C.v1;i1 ; : : : ; vn;in/.t; x/

D

�
Dt � Oph

�
x� C p.�/ � i

n

2
h
���

Oph. OmI /.v1;i1 ; : : : ; vn;in/
�

� Oph. QmI /.v1;i1 ; : : : ; vn;in/

�

nX
jD1

Oph. OmI /
h
v1;i1 ; : : : ;

�
Dt � Oph

�
x� C ijp.�/ � i

h

2

��
vi;ij ;

: : : ; vn;in

i
:

(6.43)

We shall study (6.43) both when I is characteristic and I is non-characteristic, accord-
ing to the terminology introduced in Definition F.1.1, that we recall in the statements
of the following two lemmas.

Lemma 6.2.2. Let I D .i1; : : : ; in/ be characteristic, i.e. i1 C � � � C in D 1, and take
OmI D 0 in (6.43). Then if L˙D

1
h

Oph.x˙p
0.�//, the term L˙R

I
n;C.v1;i1 ; : : : ; vn;in/
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may be written as a sum of the following expressions:

Oph.rI;j /.v1;i1 ; : : : ;Lij vj;ij ; : : : ; vn;in/;

Oph.rI /.v1;i1 ; : : : ; vn;in/;
1

h
Oph.r

0
I /.v1;i1 ; : : : ; vn;in/

(6.44)

with rI;j ; rI in S4;ˇ .M �
0

Qn
jD1h�j i

�1; n/ and r 0I in S 0
4;ˇ
.M �

0

Qn
jD1h�j i

�1; n/ for
some �.

Proof. We just have to apply Proposition F.2.1 of Appendix F.

We shall consider next the case of non-characteristic indices.

Lemma 6.2.3. Let I D .i1; : : : ; in/ be non-characteristic, i.e. i1C � � � C in¤ 1. Then
one may find a symbol OmI in S4;ˇ .M �

0

Qn
jD1h�j i

�1hxi�1; n/, for some �, such that
RIn;C.v1;i1 ; : : : ; vn;in/ given by (6.43) may be written as a sum of terms

Oph.r
1
I /.v1;i1 ; : : : ; vn;in/;

hOph.rI /.v1;i1 ; : : : ; vn;in/;

Oph.r
0
I /.v1;i1 ; : : : ; vn;in/

(6.45)

with symbols r1I in S4;ˇ .M �
0

Qn
jD1h�j i

�1; n/, rI in S4;ˇ .M �
0

Qn
jD1h�j i

�1hxi�1; n/,
and r 0I in S 0

4;ˇ
.M �

0

Qn
jD1h�j i

�1; n/. Moreover, LCR
I
n;C.v1;i1 ; : : : ; vn;in/ may be

written under the form (6.44) and OmI satisfies (6.39) if QmI does so.

Proof. We apply Proposition F.3.1 and define OmI to be the symbol aI of that state-
ment, that satisfies (F.7). According to (F.20) (with mI replaced by QmI in its right-
hand side), (6.43) may be written as the sum of (F.22) and of the last two lines
in (F.21). This gives (6.45).

To get the last statement of the lemma, we use that RIn;C is also given by (F.21).
We have thus to show that the action of LC D

1
h

Oph.x C p
0.�// on the three terms

in (F.21) may be rewritten under the form (6.44). For 1
h

Oph.p
0.�// this follows

from the composition result of Proposition B.2.1. For the product of x
h

by (F.21),
this is a consequence of the fact that in these formulas mI;j and rI are in classes
S4;ˇ .M

�
0

Qn
jD1h�j i

�1hxi�1; n/. In the case of r 0I , the fact that the symbol belongs to
the class S 0

4;ˇ
.M �

0

Qn
jD1h�j i

�1; n/ means that it is rapidly decaying in M0.�/
�4jyj,

so may be multiplied by x (and even by x=h), up to a loss on the exponent �. This
concludes the proof since the definition (F.9) of aI (with mI replaced by QmI ) shows
that it satisfies (6.39) if QmI does (taking the cut-off  even).

Proof of Proposition 6.2.1. We just have to translate the above two lemmas going
back to functions v1; : : : ; vn from v1; : : : ; vn through (6.40). The first component
Rn;C of (6.33) is then h

n
2RIn;C.v1;i1 ; : : : ; vn;in/ with RIn;C given by (6.43). In the

characteristic case, (6.43) with OmI D 0 and (6.41) show that equation (6.35) holds,
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and Lemma 6.2.2 implies that LCRn;C is of the form (6.36). In the non-characteristic
case, these properties follow from Lemma 6.2.3.

Proposition 6.2.1 will allow us to treat by normal form the contributions M3;M4

on the right-hand side of (6.25). We need also a result that will allow us to treat M02.
We consider a bilinear map .v1; v2/ 7! QM02.v1; v2/ of the form

QM02.v1; v2/ D

" P
jI jD2 Op.m00;I /.v1;i1 ; v2;i2/P
jI jD2 Op. Nm0_0;I /.v1;�i1 ; v2;�i2/

#
; (6.46)

where m00;I is in QS 01;0.
Q2
jD1h�j i

�1M0.�/; 2/ and satisfies (3.7). Our goal is to prove:

Proposition 6.2.4. One may find an operator .v1; v2/ 7!
OQM02.v1; v2/, that may be

written

OQM02.v1; v2/ D

"PP
.i1;i2/2¹�;Cº2

Qi1;i2.v1;i1 ; v2;i2/PP
.i1;i2/2¹�;Cº2

Qi1;i2.v1;i1 ; v2;i2/

#
(6.47)

with operatorsQi1;i2.v1;i1 ; v2;i2/ of the form (F.35), preserving the space of odd func-
tions, such that, if we set

R2.v1; v2/ D .Dt � P0/
OQM02.v1; v2/ �

QM02.v1; v2/ �
OQM02
�
.Dt � P0/v1; v2

�
�
OQM02
�
v1; .Dt � P0/v2

�
(6.48)

and if v1; v2 are odd functions, thenR2 D Œ
R2;C
R2;�

� withR2;� D R2;C andR2;C being
a sum

R2;C.v1; v2/ D t
�2

X
.i1;i2/2¹�;Cº2

1X
`1D0

1X
`2D0

K
`1;`2
L;i1;i2

�
L
`1
i1
v1;i1 ; L

`2
i2
v2;i2

�
(6.49)

with K`1;`2L;i1;i2
in the class K 0

1; 12
.1; i1; i2/ of Definition F.4.1.

Proof. We just have to apply Corollary F.4.4 to the first component of equality (6.48)
changing the definition of the notation K`1;`2L;i1;i2

on the right-hand side of (6.49).

We shall use the results established so far in that section in order to rewrite equa-
tion (6.25). Recall first that by (E.8), (E.9), (E.14), where V is the operator (6.21), we
have

.Dt � P0/C.t/ D C.t/.Dt � P0 � V/ (6.50)

when both sides of these equalities act on odd functions.
Recall the form of operators Mj in (6.15): these operators may be written as

Mj . Qu; u
app/ D

jX
`D0

M`
j . Qu; : : : ; Qu„ ƒ‚ …

`

; uapp; : : : ; uapp„ ƒ‚ …
j�`

/; j D 3; 4; (6.51)
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where

M`
j .v1; : : : ; vj / D

264
P

I 0D.i1;:::;i`/
I 00D.i`C1;:::;ij /

Op. QmI 0;I 00/.v1;i1 ; : : : ; vj;ij /P
I 0D.i1;:::;i`/

I 00D.i`C1;:::;ij /

.�1/jOp. Qm
_

I 0;I 00/.v1;�i1 ; : : : ; vj;�ij /

375 (6.52)

and the symbols QmI 0;I 00 are in QS1;0.
QjI j
jD1h�j i

�1M0.�/
� ; jI j/, with 3 � jI j D j � 4,

according to Proposition 5.2.1. According to Corollary D.1.7, each of these sym-
bols may be replaced by a symbol in S1;ˇ .

QjI j
jD1h�j i

�1M0.�/
� ; jI j/, for ˇ > 0 small,

up to adding to (6.51) some remainder satisfying (D.35) for an arbitrary r . In other
words, we may rewrite (6.51) under the form

Mj . Qu; u
app/ D

jX
`D0

M`
j . Qu; : : : ; Qu; u

app; : : : ; uapp/C QRj . Qu; u
app/; (6.53)

where M`
j is of the form (6.52) with symbols QmI 0;I 00 in

S1;ˇ

 
jI jY
jD1

h�j i
�1M0.�/

� ; jI j

!
;

with ˇ > 0 and where QRj satisfies

k QRj . Qu; u
app/kH s � Ct

�2
�
k QukH s C ku

app
kH s

�j (6.54)

and setting L D
�LC 0

0 L�

�
,

kL QRj . Qu; u
app/kL2 � Ct

�2
�
k QukH s C ku

app
kH s

�j�1
�
�
k QukH s C ku

app
kH s C kL QukL2

C kLu0app
kL2 C kLu

00app
kW �0;1

�
;

(6.55)

where in (6.55), we decomposed the factor uapp that eventually replaces vn in (D.35)
as uapp D u0app C u00app, and used the second (resp. third) of these estimates if vn is
substituted by u0app (resp. u00app).

In the same way, operators M02 in (6.14) may be written as

M02. Qu; u
0app;1/ DM002.u

0app;1; u0app;1/CM012. Qu; u
0app;1/CM022. Qu; Qu/; (6.56)

where M02
` is given by the .`C 1/-st contribution in (6.14). Applying again Corol-

lary D.1.7, we may assume that

M02
`.v1; v2/ D

264
P

I 0D.i1;:::;i`/
I 00D.i`C1;:::;ij /

Op.m00;I 0;I 00/.v1;i1 ; v2;i2/P
I 0D.i1;:::;i`/

I 00D.i`C1;:::;ij /

Op. Nm0_0;I 0;I 00/.v1;�i1 ; v2;�i2/

375 (6.57)
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up to replacing (6.56) by

M02. Qu; u
0app;1/ DM002.u

0app;1; u0app;1/CM012. Qu; u
0app;1/CM022. Qu; Qu/

C QR2. Qu; u
0app;1/;

(6.58)

where QR2 satisfies

k QR2. Qu; u
0app;1/kH s � Ct

�2
�
k QukH s C ku

0app;1
kH s

�2
;

kL QR2. Qu; u
0app;1/kL2 � Ct

�2
�
k QukH s C ku

0app;1
kH s

�
�
�
k QukH s C ku

0app;1
kH s

C kL QukL2 C kLu
0app;1
kL2

� (6.59)

and where the symbolsm00;I 0;I 00 in (6.57) are now in S 0
1;ˇ

�Q2
jD1h�j i

�1M0.�/; 2
�

for
some ˇ > 0.

Let us apply to each M`
j on the right-hand side of (6.53) Proposition 6.2.1 set-

ting QMj DM`
j in order to define by (6.32) an operator OQMj that we denote just

by OM`
j , 0 � ` � j , j D 3; 4. In the same way, apply to each M0`2, ` D 0; 1; 2 Propo-

sition 6.2.4 in order to define operators OM0`2, ` D 0; 1; 2. Denote

OMj . Qu; u
app/ D

jX
`D0

OM`
j . Qu; : : : ; Qu„ ƒ‚ …

`

; uapp; : : : ; uapp„ ƒ‚ …
j�`

/; j D 3; 4;

OM02. Qu; u
0app;1/ D

2X
`D0

OM0`2. Qu; : : : ; Qu„ ƒ‚ …
`

; u0app;1; : : : ; u0app;1„ ƒ‚ …
2�`

/:

(6.60)

Let us prove:

Corollary 6.2.5. Let Qu satisfy the assumptions of Proposition 6.1.2, so that equation
(6.25) holds. Then, with the above notation,

.Dt � P0/

�
C.t/

�
Qu �

4X
jD3

OMj . Qu; u
app/

�
� OM02. Qu; u

0app;1/

�
D OR; (6.61)

where OR is the sum of contributions of the following form:

C.t/V.t/ OM`
j . Qu; : : : ; Qu„ ƒ‚ …

`

; uapp; : : : ; uapp„ ƒ‚ …
j�`

/; j D 3; 4; 0 � ` � j (6.62)

�
C.t/ � Id

�
M0`2. Qu; : : : ; Qu„ ƒ‚ …

`

; u0app;1; : : : ; u0app;1„ ƒ‚ …
2�`

/; 0 � ` � 2; (6.63)

�C.t/ OM`
j . Qu; : : : ; Qu; .Dt � P0/ Qu; : : : ; Qu„ ƒ‚ …

`

; uapp; : : : ; uapp/;

�C.t/ OM`
j . Qu; : : : ; Qu„ ƒ‚ …

`

; uapp; : : : ; uapp; .Dt � P0/u
app; : : : ; uapp/

(6.64)
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for j D 3; 4, 0 � ` � j ,

�C.t/ OM0`2. Qu; : : : ; .Dt � P0/ Qu; : : : ; Qu„ ƒ‚ …
`

; u0app;1; : : : ; u0app;1/;

�C.t/ OM0`2. Qu; : : : ; Qu„ ƒ‚ …
`

; u0app;1; : : : ; .Dt � P0/u
0app;1; : : : ; u0app;1/

(6.65)

for 0 � ` � 2, of remainders of type

C.t/Rj . Qu; : : : ; Qu„ ƒ‚ …
`

; uapp; : : : ; uapp„ ƒ‚ …
j�`

/; j D 3; 4; 0 � ` � j; (6.66)

where Rj is of the form (6.34) and

R2. Qu; : : : ; Qu„ ƒ‚ …
`

; u0app;1; : : : ; u0app;1„ ƒ‚ …
2�`

/; 0 � ` � 2; (6.67)

where R2 D
�R2;C
R2;�

�
with R2;� D R2;C, and R2;C given by (6.49), and of contribu-

tions
C.t/

�
R.t; x/C QR3 C

QR4

�
C QR2; (6.68)

where R is given by equation (6.16) and satisfies (6.26)–(6.27) and with QR2 (resp. QR3,
resp. QR4) satisfying (6.59) (resp. (6.54), resp. (6.55)).

Proof. We write, using (6.50), for j D 3; 4,

.Dt � P0/C.t/ OMj . Qu; u
app/ D �C.t/V.t/ OMj . Qu; u

app/

C C.t/.Dt � P0/ OMj . Qu; u
app/:

(6.69)

We plug in the right-hand side of this equality (6.33) with QM (resp. OQMn) replaced
by M`

j (resp. OM`
j ) according to the notation defined before (6.60). In the same way,

we express
.Dt � P0/ OM

0
2. Qu; u

0app;1/

from (6.48) with QM02 (resp. OQM02) replaced by M02
` (resp. OQM02

`). Making the difference
between (6.25) (where we substitute (6.53) and (6.58)) and these expressions, we
obtain the contributions (6.62) to (6.68). This concludes the proof.


