Chapter 6

Normal forms

This chapter is devoted to the completion of Step 5 of the proof of our main theorem,
that is described in Section 2.7 of Chapter 2. We recall here some elements of the
strategy. The preceding steps of the proof allowed us to reduce ourselves to an equa-
tion (5.95) for a new unknown i 4. In this chapter, we first write a system made of that
equation and of the one obtained by conjugation. In that way, if we set 1i_ = —
andu = [g* ], the system we get on # may be written (see equation (6.17) below)

(D = Po = V)it = M3 (i, u™®) + My (i, u™™) + M (i, u"™") + R, (6.1)
where R is a remainder and the other terms in the equation have the following struc-

ture:

e Operator Py is just

_ [ p(Dx) 0
PO_[ 0 _p(Dx)]. 6.2)

e Operator V is a 2 x 2 matrix of linear operators acting on .

Each of these operators is a pseudo-differential operator of order —1, whose coeffi-
cients depend on the approximate solution u*? constructed in Chapter 4. The main
contribution to 'V has thus entries of the following simplified form:

/3 1
eET 12 e (x)(Dy) 6.3)

D=

where ¢(x) is in $(R) and again t, > = m The left-hand side of (6.1) is thus

a vectorial version of the scalar operator

Dy — p(Dy) — 1 * Re(c(x)(Dy) el 7). (6.4)
We get thus a perturbation of the constant coefficients operator p(Dy) = /1 + D2
by a potential term, rapidly decaying in x. We already encountered such a perturba-
tion in Chapter 2, except that there the potential was autonomous. Here, it is time
dependent and has some decay when ¢ goes to infinity. Because of that, we can-
not apply the results of Chapter 2 or of Appendix A to eliminate term V in (6.1)
through conjugation. Nevertheless, one may construct by hand some wave operators
for a time depending perturbation of D; — p(D,) like the one in (6.4). That con-
struction is made on the Fourier transform side: we introduce in Lemma 6.1.1 below
a class of operators, obtained composing at the left and the right the last term in
(6.4) by (inverse) Fourier transform. In Appendix E below we design “by hand” wave
operators for such perturbations of p(Dy), so that, conjugating (6.1) through them,
we may eliminate 'V from that equation, exactly as we got rid of potential 2V in the
second equation of (2.9) in Section 2.1 of Chapter 2 (see equation (2.17)).



Normal forms 104

The second part of this chapter is devoted to a normal form procedure allowing
one to eliminate non-characteristic contributions to the quadratic, cubic and quartic
terms M), M3, M4 in (6.1). Characteristic contributions are terms like |ii4 |*ii4 that
obey a Leibniz type rule of the form

1L+ (it Pia)) L2 < Clliit [Gyo0.00 | L+l 2

up to remainders. These contributions may be safely kept on the right-hand side
of (6.1). The non-characteristic terms are those that do not satisfy such a Leibniz
rule, and that have to be eliminated by normal form. We explained this idea on a sim-
ple model in Section 1.6 of the introduction, and gave more details in Section 2.7. In
the present chapter, we apply this method to M3, M4 that have essentially the same
structure as the models discussed there.

We have also to eliminate the quadratic term M} (&, u’*P!) on the right-hand
side of (6.1). Since the arguments i, u’*P! are odd, and M} is morally of the form
a(x)uyuy, with a(x) rapidly decaying, one may express each factor i+ using (2.65)
in terms of L+ gaining a ¢t~ ! decay for each factor. Nevertheless, this gain is not
sufficient to be able to consider M/, as a remainder. One get operators of the form
(2.68)—(2.69), and we explained at the end of Section 2.7 how to eliminate these
expressions performing again some elementary normal form.

6.1 Expression of the equation as a system

Let us first fix some notation. From #i4, i = —ii4, ult, utP = —u P % and
u'®P = —y’* we introduce the vector-valued functions
. app /app
- | U+ app _ | U+ rapp _ | U+
= |:ﬁ_:|’ u®P — [uapp]’ u'PP — |:u’app ) (6.5)
In order to write (5.95) as a system on i, let us define, when I = +,
2 Ve
/ itj 5= 1./
by(t,x,§) = Z e 2b (1, x,6), (6.6)

j=—

where b}’i satisfies (5.96), (5.97). Denoting l;/i(t, x,&) = b/ (t.x,—£), we define
the matrix of symbols

bl (t.x,&) b (t,x,§) ] 6.7)

M'(t,x,§) = [_,;fg(,,x,g) —b"Y (1, x.£)

As Op(b/ )w = Op(b’ 1) w, if we denote by Op(M") the quantization of M’ defined
entry by entry, and define Op(M’) by

Op(M )it = Op(M")i,
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the form of M’ shows that

Op(M’) = [

Op(b))  Op(b.) } (6.8)

—Op(b2) —Op(})
or equivalently, if No = [9 ],

Op(M’)No + NoOp(M') = 0. 6.9)
If we define for j = —2,...,2,

b, (¢, x, b. (¢, x,
Mi(t,x,§) = -f’v+( ) - (t6:5) g
—b _j,_(t,x,f) —b _j’+(t,x,$)
we have
2 A

M'(t.x.8) =Y V"7 Mj(t.x.§),

j=—2 (6.10)
Op(M[)No + NoOp(M_ ;) = 0.

We shall set also, if m(x, &1, ..., &,) is a multilinear symbol,

n_/lv(xvélv"'9sn) = m(X,_%_l’---a_En) (6.11)

so that Op(m) = Op(m") if we set again
Op(m)(wiy, ..., wy) = Op(m)(wy,..., Wy).

IfI =(,...,in)€{— +}" and uy = (u;,,...,u;,), we denote I = (—i1,....—In)

ul-:(u_il,...,u_in):—(ﬁil,...,ﬁin):—ﬁ (612)
according to our definition u_ = —ii4. Then if my is in Sy o(M,|I]), we shall get
that

Op(mp)(ur) = Op(my) @) = (—1)10p(mp)(up) = (~1)!Op(my)(uz). (6.13)

Let us use this notation to express nonlinear quantities constructed from (5.95). We
define first the quadratic terms, that will come from the right-hand side of (5.95),
namely

~ Op(m’ )(u/agy,l)
M) = Z |: T ept
I=(I/,I//) Op(m 0’1)(14 I )
[I']=0, 1" |=2
- app. 1
by [ Orem
_ - op.1
I1=(",1") OP(m'X,I)(up,u’I-‘if’) (6.14)
1I'|=[1"]=1
+ [OP(ma,n(um]
1=, Op(m'g ()i )
|I'1=2,]1"]=0
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and the cubic and quartic expressions, given for j = 3, 4 by

1 Op(ﬁ’l )(ft / uaE?)
Mj(a,uapp){ Zer=na7 1= OPO G i (6.15)
( 1) ZI a1, |I|= JOp(mI)(ul/, I”
We also set
_ R+(t,X)

where R is the last term in (5.95).

The system obtained taking equation (5.95) and the conjugated equation may be
written as follows, denoting 'V the operator Op(M”) given by (6.8) and Py the matrix
of operators given by (6.2):

(Dt — Po— V)it = M3(it, u™) + Ma(it, u™) + M (i1, ') + R, (6.17)

In order to apply the results of Appendix E below, we need to re-express operator V
on the Fourier transform side.

Lemma 6.1.1. For j = —2,...,2, there are two by two matrices
0,6 = [ g, @t m)]
’ (€) (m) " 1<k L2

whose entries satisfy estimates

aaaﬂ . <C _% _ -N -1
|08 90 q),(e.00| < Cnte > (IE] = nD) ™" ()™,

6.18
10208950 < Cw (2 + VD37 173)(le] = [nl)™ ()~ o
foranyoa,B,N if j = —1,1, and
13208 4.1, < Cut (] - =N ()", o1
10208 0i4;. 00 < Cnta 2 (60 + @YD) el — ™ )™
foranya, B, N if j = —2,0,2, such that, if we define the operator KQj by
Ko, 1© = [ os.6mitndy (6.20)

for f a C2%-valued function, the operator 'V acting on odd functions may be written
as

.
V=Y Ky, (6.21)
j:_
Moreover, one has 7Ng = —NoV.
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Proof. If f = [J;J_r ], we have according to the definition (6.8) of V = Op(M’) and
(6.10)

2
Op(M')f = 3 &% Op(M)) £ (622)
j=—2

Op(®; ) f+ + Op(b; _) f~
Op(M;) f = . 6.23
P [ 0P, ) f1 — Op(b'Y; ) /- } ©29

The Fourier transform of the first line of (6.23) may be written
[Bwe—nniiman+ [5 cs-nnfman 629

where bj’. 4 is the Fourier transform relatively to the first variable. Since b]’. L satisfies
(3.7), if we set

gian@.En) =b; (t.E—n.n). ¢ia.En) =b;_(t.§—n.n),

we see that G; (x,¢)(t, =&, =) = G}, k,0) (¢, §. n). If we make act (6.24) on odd func-
tions f4, f—, we may rewrite this expression as the sum for (k,£) = (1, 1) or (1,2)
of

1 A
3 [ @060 = G e.6.-0) fetn dn

(with f4 if (k,€) = (1,1) and f_ if (k,£) = (1, 2)). In other words, we may assume
that g; (1,1)(¢, &, 1) is odd in 7. Since that function is even in (§, n), it has also to be
odd in £. By (5.96)—(5.97), x bl/. (t,x,n) is in $(R), and the function is C*° in 7.
It follows that the Fourier transform in x of these functions satisfies

1020805715) (.6 — .| < Capn T (2. &) (E] — Inl) ™ ()"

for any o, 8, N, £ = 1,2, where ’fje (¢, ¢) is the time dependent pre-factor in the £-th
equation in (5.96) (resp. (5.97)). After the preceding reductions, it follows that g; . ¢)
satisfies forall o, B, N e N, £ = 1,2,

1080205 3w (1 E. )| < Capn T ) (IEl = Inl) ™ ()"

Since we have seen that this function is odd in £ and odd in 7, we may write it as
é) m 4i. k.0 (z,§,n), where q; k¢ satisfies (6.18)— (6.19). It follows that we have
written the first component of the Fourier transform 'V f of (6.22) as the first com-

ponent of Z = eltiN3I2K 0, J (§). Since the reasoning is the same for the second
component, we get (6.21).
The last statement of the lemma follows from (6.9). ]

We may now eliminate the operator 'V on the left-hand side of (6.17), using the
results of Appendix E.
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Proposition 6.1.2. Fix m in |0, %[ close to %, and set as in the example following
Definition E.1.1, t = min(1 — 2m, %69/) > 0. There is &9 > 0 such that, for any V
of the form (6.21), defined in terms of matrices Q; whose coefficients satisfy (6.18)
and (6.19), with ¢ € 10, &¢[, there are operators B(t), C(t), defined for t € [1,T]
(T < &747¢), bounded on H*(R), satisfying the properties of Propositions E.1.1 and
E.1.3 of Appendix E, such that, if i solves (6.17) and satisfies estimates (5.35), then
C(t)u solves

(Di — Po)C()u = C()M3(u, u™) 4 C(1) Ma(it, u™?)

+ C()M, (i, u'*P) + C(H)R 625)

with R satisfying for any t € [1,T],
IR ) as < et’ et e). (6.26)
LR, s < 173 (VD) e, ), (6.27)

where e satisfies (5.41). Moreover, C(t)u is odd if i is odd and NoC (t)u = —C(t)u.

Proof. By (E.9), it holds (D; — Py — V)B(t) = B(1)(D; — Po) and by (E.14), we
have it = B(¢)C(¢)u. Replacing # by this value on the left-hand side of (6.17), com-
posing at the left with C(¢) and using again (E.14), we obtain (6.25). Since V(z)
preserves odd functions and satisfies V() Ng = —Ny'V(¢), the last statement of the
proposition follows from (E.23) and the fact that Noii = —ii. This concludes the
proof, as estimates (6.26) and (6.27) are just rewriting of (5.39) and (5.40). ]

6.2 Normal forms

Our next objective will be to eliminate by normal forms most of the contributions on
the right-hand side of (6.25). We shall construct first the relevant operators in order
to do so.

Let us fix some notation. Let n be in N*. Consider C?-valued test functions v},
defined on [1, T] x R for some T, of the form

. _ 'Uj,+(l‘, X)
(t,x)—v(t,x) = |:Uj,_(t, x)] (6.28)
with v; + odd in x and satisfying v; - = —v; 1. If n > 3, we shall consider n-linear
maps }

(V1s.- s v) > M (V1, ..., 0p) (6.29)

sending C2-valued functions to C2-valued functions and having the following struc-
ture (using notation (B.17)):

D 111=n OP' (D) (Vi - - Vniy)

e/I/((vl,...,v)z —
" " [(—1)“ Y1112 OP" () W1ty - - Vn i)

i| , (6.30)
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where I = (iy,..., z,,ls {— +}",myisin Sy g (M, ]—[;'zl(fj)_l,n) for some 8 >0
small, v € N, where 11/ is defined by (6.11), and where the form of the second line of
(6.30) versus the first one just reflects the fact that M,,(vq, ..., v,) will have a struc-
ture with respect to conjugation similar to the one in (6.14) or (6.15) (see (6.13)).
Moreover, we assume that 71 satisfies

nﬁ(y,x,él, o 75”) = (_l)n_ll/h(_y’ —X, _517 ey _gn) (631)

so that the associated operator preserves odd functions (see (3.7)).

Proposition 6.2.1. Let n > 3. For any I with |I| = n one may find symbols my in
Sa.p(My 1_[;'1=1 (£/,)1(x)™%, n) such that, if one sets

[ > 111=n OP (D) (V1iy s+ o, Uniy)
ey V) =

e/i{ (U . —V
m (=n" Zm:n OPt(ml)(Ul,—ip"-’Un,—in)

:| (6.32)

one may write

def Y =
R,(v1,...,vy) = (Dy — Po)M,(v1,...,05) — M(v1,...,0,)
"oa (6.33)
=Y Mu(vr.....(D; = Po)vj.....vn)
j=1
under the following form:
| Ru+(v1,... v0)
Ry,(v1,...,vp) = |:Rn,—(vl,--~,vn) (6.34)
with R, — = Ry, 4, and Ry, 4 satisfies the following: One may write R, 4 (v, ..., V)
as a sum
Ry +(vi,...,vp) = Z Op" (r1) (Vi dys- -+ Vniiy) (6.35)
|I|=n
with symbols ry in the class S4 g(My H;’:l(éj)_l,n) for some v € N. Moreover,
LRy +(v1,...,v,) may be written as a sum of terms of the following form:
n
YN 00 (11 ) Wiy Lig vy Uiy (6.36)
[I|=nj=1
with rrj in Sq.p(Mg 1=, (8)~" ),
> Op' ()i Vi) (6.37)
|I|=n

Jor symbols ry in S4. g(My T17=, (&), n), and

£y 0P )Wy Vi) (6.38)
|I|=n
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for symbols ry in Si’ﬂ (M, ]_[;?zl(fj)_l,n). Moreover, my satisfies
rh[(_yv —X, _Slz ey _Sn) = (_l)n_ln/:ll(y»X, Els ey Sl’l) (6‘39)

if my does so in (6.30).

We shall prove the proposition expressing (6.33) in terms of the semiclassical
quantization of symbols introduced in (B.14) in Appendix B. If h = % we introduce

for any function v;, j = 1,...,n, the function v i defined by
1 X
i (tx) = v, (%) = @) (6.40)

according to (B.15). By (B.16), each term on the first line of (6.30) may be written
~ n ~ X
Op' (i) (W14, -« Vms, )(t, X) = hzoph(ml)(glail,...,yn,in)(t, ?) (6.41)

and similarly for the first line of (6.32). The first line on the right-hand side of (6.33)
may be written as the sum in / of

(Dt — p(Dx)OP (p)(V1,iys -+« s Unsin) — OP (1) (Viiys - Uniiy)

n
N : (6.42)
- Zopt(ml)(vl,ilﬁ ceey (Dt - ljp(Dx))vj,ij LERIEIRE) vn,in)-

Jj=1

It follows from (6.4 1) that the first term in (6.42) may be written as

n .n A X
h% (Do = Opy (x§ + p(©) =1 5h) ) (OPRORN @, 1,2 s)) (8T ).
The other terms in (6.42) admit analogous expressions, so that (6.42) may be rewritten

as h%E£,+(El,i1 voes Uy 1 )(t, ) with

Ry @y 0y, (E.0)
.n .
= (Dt — Opy, (xé +p) —1i Eh))(Oph(mI)(yUl e Vi)
_O ﬁ;l U i ,...,Qni
nph( )y, i) h 6
B Oy ()| v 7, (Dr = Opy (x€ +1;p®) = 15) )

.o ’Qn,in:l'

We shall study (6.43) both when I is characteristic and / is non-characteristic, accord-
ing to the terminology introduced in Definition F.1.1, that we recall in the statements
of the following two lemmas.

Lemma 6.2.2. Let I = (iy,...,I,) be characteristic, i.e. iy + --- + i, = 1, and take
My =0in (6.43). Then if £+ = ;0p, (x £ p'(§)), the term LR}  (vy ;... 0, )
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may be written as a sum of the following expressions:

Oph(rl,j)(gl,il"' f,ljvj, ,...,yn,in),
Opp (r))(Vy 4,5+ -5 2y i) (6.44)
1
Eoph(r;)(yl,il oo Up i)

with ry.j.rp in Sqg(Mg [Tj_1(&;)7" n) and ry in Sy o(Mg [Tj_1(&;)~".n) for
some v.

Proof. We just have to apply Proposition F.2.1 of Appendix F. ]

We shall consider next the case of non-characteristic indices.

Lemma 6.2.3. Let I = (il, ..., in) be non- characteristic, ie.iy+---+in#1 Then
one may find a symbol my in S4 B(MY ]_[ '_ (&) H(x)7°, n), for some v, such that
Brlz,+(21,zl soe s Uy ) given by (6.43) may be written as a sum of terms

Oph(rll)(yl,il e ’Qnsiﬂ)’
hOPh(VI)(Eu]v---»Qn,in)’ (6.45)
Opp(r) @y -+ U iy)

with symbols ri in Sq (M} ]_[ =1 ()1 n), rpin Sq.p(M{ H/ LEH)TH X)),
and ry in S, ﬂ(M”]_[ '_ (&) n). Moreover, $+R,Il+(vlll,... Vy,.i,) may be
written under the form (6.44) and my satisfies (6.39) if my does so.

Proof. We apply Proposition F.3.1 and define 7717 to be the symbol a; of that state-
ment, that satisfies (F.7). According to (F.20) (with mj replaced by my in its right-
hand side), (6.43) may be written as the sum of (F.22) and of the last two lines
in (F.21). This gives (6.45).

To get the last statement of the lemma, we use that B,i . is also given by (F.21).
We have thus to show that the action of £ = %Oph (x + p’(§)) on the three terms
in (F21) may be rewritten under the form (6.44). For %Oph (p'(&)) this follows
from the composition result of Proposition B.2.1. For the product of ;Z—‘ by (F.21),
this is a consequence of the fact that in these formulas my ; and r; are in classes
Sa.p(Mg 171 ()" (x)~". n). In the case of r;, the fact that the symbol belongs to
the class Sé’l’ﬂ (M ]_[;-’zl (§,)71, n) means that it is rapidly decaying in Mo (§)™*|y|,
so may be multiplied by x (and even by x/ &), up to a loss on the exponent v. This
concludes the proof since the definition (F.9) of ay (with mj replaced by #17) shows
that it satisfies (6.39) if m; does (taking the cut-off y even). ]

Proof of Proposition 6.2.1. We just have to translate the above two lemmas going
back to functions vy,...,v, from v,,...,v, through (6 40). The first component
Ry + of (6.33) is then h%BiJr@l’il,..., Vy.i,) With R! .+ given by (6.43). In the
characteristic case, (6.43) with iy = 0 and (6. 41) show that equation (6.35) holds,
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and Lemma 6.2.2 implies that L R, 4 is of the form (6.36). In the non-characteristic
case, these properties follow from Lemma 6.2.3. ]

Proposition 6.2.1 will allow us to treat by normal form the contributions M3, M4
on the right-hand side of (6.25). We need alsp a result that will allow us to treat M.
We consider a bilinear map (vy, v2) = M5 (v1, v2) of the form

Z|I\=2 Op(mé)’l)(vl,il , U2,i2)
2in1=2 00§ W10y v2,-iy) |

where my, ; is in 5{’0(]_[]2-21 (£, My (£),2) and satisfies (3.7). Our goal is to prove:

My (v, v0) = [ (6.46)

Proposition 6.2.4. One may find an operator (v1, v3) — Jf(’z (v1, v2), that may be
written

222 yinyet—ty? Qivia (Wi vz’iz)} (6.47)

Z Z(il Jin)e{—,+}2 Qilai2 (Ul,il , v2,i2)

with operators Qj, i, (V1,i,, V2,i,) of the form (F.35), preserving the space of odd func-
tions, such that, if we set

Mlz(vl»vz) = |:

Ry(vi,v2) = (D — PO)M;(UL v2) — M'g(vl, vp) — M&((Dr — Po)vi, v2)

— M (v1, (D — Po)vs)
(6.43)
and if vy, v are odd functions, then Ry, = [Ilgit | with Ry — = Ry 4 and Ry 4 being
a sum

- K AL L L
Ryy(uiv) =172 )~ ZZ K2 (Litvrg, Li2va,)  (6.49)

(i1,i2)€{—,+}? £1=0£{2=0

with Kill’bj in the class JC’ 4 (1,i1,12) of Definition F.4.1.

Proof. We just have to apply Corollary F 4 4 to the first component of equality (6.48)
changing the definition of the notation K Ll i zl on the right-hand side of (6.49). =

We shall use the results established so far in that section in order to rewrite equa-
tion (6.25). Recall first that by (E.8), (E.9), (E.14), where V is the operator (6.21), we
have

(Dy — Po)C(t) = C(t)(D: — Po = V) (6.50)

when both sides of these equalities act on odd functions.
Recall the form of operators M in (6.15): these operators may be written as

M (1, u™P) = Z,Me(u L, u®™P o u®Py, =34, (6.51)
“/—/ S —
£=0 ¢ j—t
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where

Yo U=(irsic) OPL 1) (Vg5 -5 V)

,/\/{e(vl, L ) — I//=(if+1;-..,ij) . —v (6.52)
/ / Z I'=(i1,..sig) (_I)Jop(ml’,l”)(vl,—il seues vj,—ij)
I//=(ie+1,...,l'j)

and the symbols 27/ r~ are in Sl,o(nl.l:ll(éj)_lMo(E)“, [1]),with3 < |I| = j <4,
according to Proposition 5.2.1. According to Corollary D.1.7, each of these sym-
bols may be replaced by a symbol in Sy g (]_[yzl1 (£ IMo(£)", 1)), for B > 0 small,
up to adding to (6.51) some remainder satisfying (D.35) for an arbitrary r. In other
words, we may rewrite (6.51) under the form

J
M (L u™P) =Y MG, ) R (i, ), (6.53)
£=0

where Mf is of the form (6.52) with symbols sy, ;7 in

1]
Sip ( [t " Mo, |1|),

j=1
with 8 > 0 and where R; satisfies
IR @) < Co7(allas + 4™ as)’ (6.54)

and setting L = [LO+ LO_ ],

T ~ — ~ j—1
ILR; @ u™) |2 < Ct72 (it s + [[uP || prs)’
x (lallgs + ™ |gs + | L] 2 (6.55)
+ [ Lu"®| 12 + || Lu"*P||peo.00),

where in (6.55), we decomposed the factor u*P that eventually replaces v, in (D.35)
as u™PP = y’%P 4 /2P and used the second (resp. third) of these estimates if v, is
substituted by u’*P (resp. u’/?PP).

In the same way, operators M), in (6.14) may be written as

Mo (i, u" Py = MO P W) 4 MO, u ) + MG ), (6.56)

where M/zz is given by the (£ 4 1)-st contribution in (6.14). Applying again Corol-
lary D.1.7, we may assume that

> U=Gi1sie) OPMG 1 1) (Vg5 V2,5)

My vy, v2) = I7=Gegrip) (6.57)
2 > U=Giysie) OPR'S 11 1) (V1) s V2,—i5)
I"=(ig41,m05i5)
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up to replacing (6.56) by
Mlz(ﬁ’u/app,l) — M/g(u/app,l’u/app,l) + M/;(ljl, u/app,l) + M’%(ft, a)

= o (6.58)
+ R (i, u"*PP7),
where sz satisfies
| Ra ™ g5 < o> (s + ™ | 1zs)
ILR2 (@, w1l 2 < Co2 (il s + /™ || gs ) 6.59)
x (lallas + u"™ ) gs

+ | L]l 2 + | Lu1) )

and where the symbols m, ;, 7, in (6.57) are now in S{’ﬂ (]_[12:1 (E/) Mo (§), 2) for
some 8 > 0.

Let us apply to each EMK on the right-hand side of (6.53) Proposition 6.2.1 set-
ting M Me in order to define by (6.32) an operator M that we denote just
by EMZ, 0<¢ < j,j = 3,4. In the same way, apply to each ,M’g, £ =0,1,2 Propo-
sition 6.2.4 in order to define operators M g £ =0,]1,2. Denote

M (1, u™P) = Z:Me(u L, u™P o u™Py, =34,
“/—’ N ——
=0 ¢ j—t
5 (6.60)
d{{/ = o,7app,1y ~ /app, 7app, 1 )
bGPty =" ML ')
£=0 ¢ 2—¢

Let us prove:

Corollary 6.2.5. Let u satisfy the assumptions of Proposition 6.1.2, so that equation
(6.25) holds. Then, with the above notation,

4
(D, — PO)(C(I)(zZ = > M (i, uapp)) — M, u’app’l)) = R, 6.61)

Jj=3

where R is the sum of contributions of the following form:

COVOMEG ... u™, ... u™™), j=3,4,0<l<j (662
—— ————
l j—t
(C(t) —Td) M4 @, ... i, w/™P1 w0 <€ <2, (6.63)
——
L 2—¢
—C(O)YMEiL, ... i, (Dy — Po)il, ... i, u", ... u™™),
) ¢ (6.64)
—C(O)MEG ... 10, u™, .. u™, (D, — Po)u™,... u"P)
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forj=340<{<j,

—CO)MEG, . ... (Dy — Po)it, ... i, /™t /Pl

14

A , ‘ , (6.65)
—C()MS(i, ... a0, u*t (D, — Po)u'™!, . /")
~——
)4
for 0 < £ <2, of remainders of type
CH)R;(,...,u,u™, ... u*), j=340=<L<], (6.66)
~——— ——
14 j—t
where R; is of the form (6.34) and
Ro(it, ... o, u/™Pt /%Pl o< (<2, (6.67)
—— —

12 2—4{

where Ry, = [gif] with Ry — = R, 4, and Ry 4 given by (6.49), and of contribu-
tions ' _ _ B

C(t)(R(t,x) + R3 + R4) + R, (6.68)
where :73 is given by equation (6.16) and satisfies (6.26)—(6.27) and with 532 (resp. j?3,
resp. Ry4) satisfying (6.59) (resp. (6.54), resp. (6.55)).

Proof. We write, using (6.50), for j = 3,4,

(D; — Po)C(t)M; (i, u™P) = —C(£)V(£)M; (it, u™)

R (6.69)
+ C(t)(D; — Po)M; (i1, u™P).

We plug in the right-hand side of this equality (6.33) with M (resp. M) replaced
by Mf (resp. Mf) according to the notation defined before (6.60). In the same way,
we express

(D — Po) My (it u' ™)

from (6.48) with J/(/z (resp. *M/z) replaced by M,* (resp. Jf(’zé). Making the difference
between (6.25) (where we substitute (6.53) and (6.58)) and these expressions, we
obtain the contributions (6.62) to (6.68). This concludes the proof. ]



