Chapter 7

Bootstrap: L? estimates

The proof of the main theorem relies on a bootstrap argument of the type described
in Sections 1.4 and 1.5 of the introduction (see estimates (1.28), (1.29) and (1.39)).
In our setting, the bounds to be bootstrapped will be actually (2.45), (2.46), (2.47)
of Section 2.5 in Chapter 2 (see (7.3) below). In the present chapter our objective is
to bootstrap the first and last estimates (7.3) (see Proposition 7.3.7 below). We have
thus to bound the Sobolev norm of the solution i of (6.61), and the L? norm of L.
This is done by energy inequality, and the main task is to estimate the right-hand side
of (6.61) in Sobolev spaces or the action of L on that right-hand side in L2. We do
that first for cubic and quartic terms, then for quadratic ones, and finally for terms of
higher order.

7.1 Estimates for cubic and quartic terms

We consider C-valued functions u’ afp cu” ifp , defined on some interval [1, T'], with

T < &=*+¢ for some given ¢ > 0, and that satisfy on that interval, for a given large r
in N and some constant C(A4, A”) bounds (4.39)—(4.41) and (4.43)—(4.45) that we
recall below:
I PPl = €A, A)ees,
PP (. llwree < C(A, A, (7.

L 4w (e, )| ar < C(A, A ((2V1) + (21 Be¥)

and

1
1 e < CA, ()
+ = (te2)

") [ wree < C(4, A)e? log(1 + 1),
ILu” P, ) [wreo < C(A, A')log(1 + t) log(1 + &2¢).
Moreover, we shall assume that the solution # = [ZJ“] (with 7i_ = —ii1) of (6.61)

satisfies a priori estimates (5.35), i.e. having fixed c>0,0 <0< % with @’ close
to % and § > 0 small, for some 1 < p < s, we have

(1.2)

4 (¢, )llms < Det?,
§ N
iy (2, ) lwo.e < D%, (7.3)

Iyt (t.) 2 < D4 (VD)0
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We recall also that we have deﬁned from u" + P the function uapp’ in (4.48), that we

decomposed in (4.55) as u’ il_jp T4 ’ifp’ and we have seen after (4.54) that u'% app.1

satisfies the same estimates as u’ pr , so that we shall have

P (1, e < C(A, APt
||u’ap"’ (t,)|lwreo < C(A, A)e2, (7.4)
L4112, ) [ar < C(A, A3 ((€23/1) + (2VD)e).

We may assume that r in (7.1) and (7.4) is as large as we want since the smoothness
of the approximate solution u*PP is independent of s: these functions are actually C *°,
since their x dependence comes only from stationary solution to our initial problem.

Our goal in that section is to deduce from (7.1) to (7.4) bounds for the cubic and
quartic terms on the left-hand side of (6.61) and in (6.62) and (6.64).

Proposition 7.1.1. Let Mj (u, u®P), j = 3,4, be given by the first line in (6.60). There
is a function (t,¢&) — e(t,¢), depending on the constants A, A’, D in (7.1)«(7.3),
satisfying limg— o+ SUp <, <o—a+c €(t, &) = 0, such that the following bounds hold:

IC@O)M; (1, u) | gs < Cer® (2VD)2 17+ e*%) < ete(re),  (1.5)
ILC) M (@, u) | 2 < 17 (21 et €) (7.6)
foranyt € [1,674%¢], any o > 0.

Proof. We prove first (7.5). By (E.19), C(¢) is bounded on H*, uniformly in ¢ staying
in the wanted interval. By (6.60) we have thus to bound

MG u ) 0<E< . j =34 a7
N’ e’
4 it

(where each ﬂf has form (6.32)) by the right-hand side of (7.5). By (D.32), (7.7) is
bounded from above by

j—g—1
Cltll s 1100 1770 [ 00 + [P Lz (1472 g o |G m0.00] — (7:8)

with the convention that the first (resp. second) term in the bracket should be replaced
by zero if £ = 0 (resp. £ = j). As

app
app __  /app 17app app __ U+
Uy =uyp +u o, U _|:uapp7

it follows from (7.1) and (7.2) that

1
~ te? \2
Wy < C(A, A
[u™||gs < C(A, )8((l82)) , (7.9)

[l yoo.00 < € (A, A)e?(log(1 + 1))



Estimates for cubic and quartic terms 119

for t < ¢~*. Using also (7.3), we bound (7.8) by

ngé’(( 2(log(1 + 1))?)’~ ((82://__)0 ) ) (7.10)

Since j > 3, we have obtained a bound by the right-hand side of (7.5).
Let us prove (7.6). By (E.20)—(E.22), it suffices to bound by the right-hand side
of (7.6) the quantities

~ ~ ~ ~ 1_
LM Gl w2, | M (@, uP) || 227"

where m is close to 5. The estimate of the second term is a consequence of (7.5). To
study the first one, we recall that L = [L+ 0 " Jwith Ly = x £ tp’(Dy), so that we
have to estimate

A ™) 2 [lxAG (w2 (7.11)

By (7.10), the first term is estimated by (as j > 3)
t3(2v)el(t, ) (7.12)
with
e(t.€) = 0(e2* (log(1 + 1)* (VD)3 + e17473 (2/1)%'°),

Ifr<e™ 0 <6< % is close enough to % so that 20’ — @ > 0, and if § is small
enough, one gets that e satisfies the condition in the statement. This concludes the
proof of (7.6) for the first term in (7.11). To study the second one, we have to bound
byt4 (szf)ee the norm ||x¢M£(u u, u* .. u®P)||;2,£ =0,...,j.Consider
first the case £ > 0, so that at 1east one of the arguments is equal to i#. By the form
(6.32) of J{'{f we may apply (D.36), putting the L? norm on that argument equal to i,

1.e. we obtain a bound in
C 11511y 00 + 1P 100 [ il L2 + | Lk 2] (7.13)

The contribution of the first term in the last bracket has already been estimates by
(7.12) in the study of the first term (7.11). The second term gives rise, according
to (7.9) and (7.3), to a quantity bounded by

Cti(ng)e((ng) + &2(log(1 + 1)) )

which is also of the form (7.12). It just remains to study the term
I P, P o

We decompose one of the arguments u?PP, say the last one, as P = y/2PP 4 /2P,
We estimate then the L2 norm of the function x,Me (u®P, ..., u®P y’%P) (resp. of
xMZ(u"Pp o, UPPP %Py using (D.36) with n = ] (resp. (D.37) withn = j). We
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obtain a bound in

C [ [pg.c0 (¢ 1Pl 2 + [ L™ 2)

a aj 1ma 1"a (7.14)
+ C U™ 3y o000 16 | 2 (¢ [P 000 + [| Lt [ yroo.00).
Using (7.9), (7.1), (7.2), we obtain a bound in
Ce*(log(1 + [))4(82l% + t%(szx/; + (82«/;)%8%)) (7.15)
+ C&(log(1 + 1)%s(%1 (log(1 + 1))? + log(1 + 1) log(1 + %))
which is largely of form (7.12). This concludes the proof. |

We shall study next term (6.62).

Proposition 7.1.2. With notation (5.41) for e(t, €), one has the following bounds for
0<t<j,j=34

ICO) VO MEG, ... i u", . u™™) || gs <t erbe(t. ), (7.16)
Af—/
4
ILC@OVOMEG, ... 0w, )| gs < 17 (14 (2D )elte).  (717)
y4

Proof. Recall that M ; is given by (6.60) in terms of operators Mf defined in (6.32).
Moreover, recall that V(¢) in (6.17) is by definition the operator Op(M’) given by
(6.8), in function of symbols b satlsfymg (5.96)—(5.97). This means that in par-
ticular tg/ b!_ are elements of the class S’ ﬁ((é y~1,1) (for any «, B as these sym-
bols depend only on one frequency vanable) Moreover, the symbols 717 in (6.32)
belong to Sy g(M{ 1, =10, L. j). It follows from the composition result of Corol-
lary B.2.6 that the components of V(t),/\/tZ (1, ...,u*P) may be written under the
form

1
te 20p' (M) (g, ... dx, u’, ... uf’) (7.18)

for some symbol " in the class S 8 (Mg ]_[Ll (€)1, j) (for some new v), and any
choice of the signs . We use (D.32) together with the boundedness of C(¢) on H?,
to estimate the left-hand side of (7.16) by

-1 . - i—1 . -
Cte 2 (J[u™|lwo.co + [lillwoeo)’ ™ (1wl s + lllles). (7.19)

Using estimates (7.9), (7.3) and j > 3, we bound this largely by the right-hand side
of (7.16).
Let us prove (7.17). By (E.20)—(E.22) it is enough to estimate

ST VO ML . )2, |LVOMEGE )]

by the right-hand side of (7.17). The first term satisfies the wanted bound as a conse-
quence of (7.19), since the exponent % — m is close to zero. By (7.18), the study of
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the second one is reduced to
_1
te 2||L+Op' (M) (g, ... s, ul . uP) |12 (7.20)

for m’ in the class Si,ﬂ (M ngzl(ég)_l,j). As Ly = x +1p’(§), and the symbol
m'(y,x,£1,...,&) is decaying like (Mo(£)7®y)™" for any N, we are reduced to
bounding by the right-hand side of (7.17) the quantity

_1 _ o
tte 2 |Op' (M) (g, ... e, u o uP) 2 (7.21)

for a new m’. If there is at least one argument equal to 7+ in (7.21), we use estimate
(D.71), making play the special role devoted to v; there to such an i+ argument. We
obtain a bound of (7.21) in

i i—1 = -
Cte * (llwoee + u'™wo.ce)’ ™ (lill L2 + I Litll2)- (7.22)
By (7.9) and (7.3), this is bounded by

2 0 2
i’ (—(8 7, £ (log(1 + t))z) (15(2v0)°) (7.23)
NG
since j > 3. Again this is largely bounded by the right-hand side of (7.17).

Consider next the case when all arguments in (7.21) are equal to u*P. Decompose
one of these arguments, say the last one, as u®P? = u/P 4 /2P By linearity, we get
a contribution in Op’ (m’ )(ujl;p e uzi’p, u’ iEp ) for which (7.21) may be estimated by
(7.22) with 7 replaced by 1’ in the last factor. As by (7.1) the L? bounds of /%P
and Lu’*? are better than the corresponding ones for i, L in (7.3), we get that (7.23)
holds again. We are thus left with

_1
tty 2||Op’ (m’)(u”jfp, .. ,u"ifp)HLz.
We use then (D.72) to estimate this by
1 .
-3 -2
Cte > [[u" |l 50.00 6" [l 2 ([ *PP [ wrr0.00 + | Lu" P || yro0.00). (7.24)

By (7.2), we thus get a bound in

2

t;%ez(log(l + t))ze((;;>

Distinguishing the cases te? <1, te? > 1, one checks that this is smaller than

3
) log(1 4 t)log(1 + t&?).

t_%(ezx/;)%e(t, g),

so than the right-hand side of (7.17). This concludes the proof. ]
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7.2 Estimates for quadratic terms

We shall study in this section the quadratic term in (6.61) and (6.63).
Proposition 7.2.1. Let M; be given by the second line in (6.60). One has the follow-
ing bounds:
M (@, u®P ) | s < etbe(r.e), (7.25)
LM @, w2 < 14 (VD) e(t, &) (7.26)
foranyt € [1,674FC], where e(t, €) satisfies (5.41).
To prove the proposition, we shall study the three terms in the definition of e/(/{’2
Lemma 7.2.2. One has the following estimates:
M3 )| s < Cer® (17319 (2VD)°), (7.27)
ILAM2G@, )2 < 1% (2VD) elt,6) (7.28)
forany t in[1,e71F¢], any o > 0, if s is large enough relatively to l.

Proof. By definition, M/ is obtained applying Proposition 6.2.4 to M3 given by the
first term on the right—hand side of the second line in (6.60). It has structure (6.47).
We thus have to study

||Q;1,i2(ﬁi19al'2)”HS’ (729)

IL+Qj, 1, iy ihiy) | 2 (7.30)

to obtain respectively (7.27) and (7.28), where Qll i, are operators of the form (F.35),
preserving the space of odd functions. To bound (7.29), we thus have to study

3K (Lél ~”,L 25 ) e (7.31)

H.,iy,iz
where 0 < £1,4, < 1.
If £; = £, = 0, we apply inequality (F.46) of Corollary F.5.2, with w = % We

obtain a bound of (7.31) in .

Ct™#||iiy|%s. (7.32)
If £, = 0,£, = 1 (or the symmetric case), we apply (F.58), which gives for (7.31) an
estimate in s

Ct™4|iiy||%s. (7.33)
If¢; = €, = 1, we use (F.57) in order to bound (7.31) by

_3 . . _
Ct 3% (ILytitllze + Nt lles) it | s (7.34)

where o0 > 0 is as small as we want (if s is large enough). Plugging in these esti-
mates (7.3), we obtain a bound in

Cet=a+o+813 (210, (7.35)
which gives (7.27).
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Consider next (7.30) and decompose L+ = x & ¢p’(D). The action of ¢tp’ (D)
on Ql’-1 i, (Wi Uiy) has L? norm bounded from above, according to (F.35), by

Y e -
K (L, L) 2 (7.36)

When £; = €, = 0 (resp. (£1,£2) = (1,0) or (0, 1)), we apply (F.46) with s =0
(resp. (F.50) and (F.51)) to bound this by

_3 3 3 3
Ct™3% (g lms + IL4tigllp2) 4| as

for any o > 0, so by (7.35), which is better that what we want.
On the other hand, if £; = >, = 1 in (7.36), we apply (F.50) or (E.51) with f;
or f1 replaced by Lt . We obtain for (7.36) an estimate in

_3 - . 2
Cr7 37 (|Lytiq |2 + it llas)” (1.37)
Using (7.3), we obtain a better bound than (7.28). We are left with studying

T K (L, L2i,) o (7.38)

H.,iy,iz

We noticed at the end of the proof of Proposition F.5.1 that an operator xK may
be wrltten as an operator K of the same type as K, ,up to the loss of a factor
(here t2) It follows that (7.38) will be bounded by =3 times (7.36), which is better
than the estimate already obtained for the other contribution to (7.30). This concludes
the proof. ]

Proof of Proposition 7.2.1. We remark first that the conclusion of Lemma 7.2.2 holds
for the three terms on the right-hand side of the second formula in (6.60) that defines
M’ We have seen it for the last one. It holds for the other two terms as, by the end of
the statement in Proposition 4.1.2, u’ ffp’ satisfies the same estimates (7.1) as u/%P.

Since these bounds are better than inequalities (7.3) satisfied by # (for t < £7%), the
proof of Lemma 7.2.2 thus applies as well to M g, M é in (6.60). Consequently, (7.25)

and (7.26) hold. [ ]

We want next to study quadratic terms on the right-hand side of (6.61), i.e. terms
of the form (6.63).

Proposition 7.2.3. Let M/, be given by (6.14) and denote by e(t, ) a function satis-
fying (5.41). We have bounds

1(C(2) — Id) M) (i, '™V || s < 17 et0e(r, ¢), (7.39)
IL(C (1) — Td) M, (i, w/™P 1) |12 < 1713 (23/1)Pe (2, ). (7.40)

Proof. We write the proof for the component of M/ that is quadratic in . This
implies the general case, as u’®P! satisfies better estimates than those holding true
for u.
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Recall that by (6.14), the components of M), are of the form Op(m0 () with
my ; in S1 0(1_[]_1 £;)"1 My, 2). If we apply estimate (D.78) with £’ = £ = 1 and
n = 2, we obtain

I MGt )| s < Ce7 O (| Latl g2 + 15t s ) 152 ) s
Plugging there (7.3), we get a bound in
C(et®)—310 (2 1)°. (7.41)
Since ||C(t) — Id|| g2y = O('+~™+5'+1) by (E.19), we obtain an estimate in

Cet®™1 [8Lt%—m+8/+o(82\/;)0]'
Since m may be taken as close to % as we want (see the example following Def-
inition E.1.1 where m is introduced), and since §’, 0 may also be taken as small as
wanted (in function of the fixed parameters c, 6, 8), fort < e~#7¢, the factor between
brackets is of the form e(z, €) in (7.39).
To prove (7.40), we write by (E.20)

L(C@t) —1d) M, = (C(t) —Td) LM}, + C1 (1) M), (7.42)

Since || M) (@, )| 12 1s estimated by (7.41), and since ||C; (t)||$(Lz) is bounded by
(E.22) with m close to 1 we see that the L2 norm of the last term in (7.42) is smaller
than the right-hand 51de of (7.40) (for t < &™*).

On the other hand, by the definition of L, || LM (i1, i)|| ;2 is bounded from above
by ¢[0p(my, ) (i) 2. with my ; in 87 o([T7—; (§;)7". 2). Using (D.76), we esti-
mate this by

Cr (| Lyiig gz + i llas)® < Co714 (13 (£200)°) .

Since [|C (1) —1d|| g2y = O(et=m+8'+1) with m close to 3 by (E.21), we see that
the L2 norm of the first term on the right-hand side of (7.42) is bounded from above
by

Ct—lt% (82 \/;)9 [(82 \/;)Qt %—m+3/+08L]
and again, if % —m, §', 0 have been taken small enough, the bracket is of the form
e(t, €), whence a bound by the right-hand side of (7.40). This concludes the proof. m

7.3 Higher-order terms

In this section, we shall bound expressions of the form (6.64)—(6.65) that appear
as contributions of higher order of homogeneity if one replaces (D; — Py)ii by its
expression coming from (6.17). We study first the first line in (6.64).
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Proposition 7.3.1. Denote for 1 <{ < j, j = 3,4,
F(t) = C)Mi(il, ... (Dy = Po)il, ... i, u™™, ... u™P). (7.43)
Then under a priori assumptions (7.1) and (7.3), one has the following bounds:
IF@)|ms <17 'et’e(t.e), (7.44)
ILF@©)lz2 < (15 (2VD°)elr. e) (7.45)
with e satisfying (5.41).

To prove the proposition, we first re-express F () replacing on the right-hand side
(D; — Py)t by its value.

Lemma 7.3.2. The components of
MEiL, ..., (Dy — Po)il, ... ., u™, ... u™P)
may be written as sums of terms of the following form:
1 Op )y, =11+ 1172 3, (746)
where m' is in Sy g (Mg ]_[é:l(&)_l»j):
Op’ (m) @iy upy). j ="+ 1"] =5, (7.47)
where m is in S4. g(M{ ngzl(ég)_l,j),
Op' (m) (R (@, u™), iy ufy), j=II'+11"], (7.48)

where j' >3, j > 2, misin Sy g(M j—H(Sg) . J + 1) and R satisfies (6.54)
and (6.55),

op' (m") (iig w50 uifh),  j o= 1|+ 17|+ 1] = 4, (7.49)
where m' is in S} 5 (Mg ]_lézl(éz)_l, J)
Op' (m) (Ra (i1, w'™™ 1), iy ufy), j =1+ |1"], (7.50)
with j > 2, misin Sq.s(MY T2 (&)™ J + 1), Ro satisfying (6.59),
Op' (m)(R. i uyy), j=I'l+1"]=2, (7.51)

where R satisfies estimates (5.39) and (5.40) and where m is a symbol in the class
Sa.p(My T2, (E)j + 1.

Proof. Recall that by (6.17)

(D; — Po)it = V(t)it + M3 (i, u*™) + My (i, u™™) + My (i, u"*') + R. (7.52)
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Recall that j,{f is an operator of the form (6.32), so that its components computed at
(u,...,u,u®P, ..., u*P) may be written

Op' (m) (@i, - - - Uiy Ui oo Uy (7.53)

2 A
with i; = &+ and m element of Sy g(M| ]_['l{:l(ég)_l, j) for some 8 > 0. We have
to compute (7.53) when one of its # arguments, say the first one, is replaced by
(D — Py)ii, so by the right-hand side of (7.52). If we replace (D; — Po)u by V(¢t)u
and use that V() is constructed from operators Op(b’,) in (6.8) that satisfy (5.96)
and (5.97), i.e. are such that tgl/zbgE =cl isin S, B((E)_l, 1) (for any «, B), we get
a contribution
_1 L .
te 2Opt(m)(0p(cl{1)u,~1,u,-2,...,uie,u?gil,...,u?fp).
By the composition result of Corollary B.2.6, we get a term of the form (7.46).
Let us study next (7.53) with the first argument replaced by

M3 (i, u*P) + Ma(it, ur)

coming from (7.52). According to definition (6.15) of M; and to (6.53), we shall get
contributions

) (7.54)

Op' (m)(Op(ny) (@ upy). thiy, ... Hip Us i

aj
igg1”""

with |7| = 3 or 4 and 7 in S1 (Mo ()" [1/L, (&) ~". 1]), with B > 0 and

Op' (1) (R 4 (i, ™), il ..., u™) (7.55)
for ~
~ R
R = - o+
/ [ﬂj/y_}

satisfying (6.54) and (6.55) with j’ = 3 or 4. By Corollary (B.19), (7.54) may be
written as a term homogeneous of degree larger than or equal to 5 that has the struc-
ture (7.47). Moreover, (7.55) provides terms of the form (7.48).

We have to study then the term (7.53) where the first argument is replaced by the
M (i1, u'®P1) term in (7.52). By (6.58) and (6.57), we get contributions of the form

Op' (m)[Op(myg 1+ 1) (g, u’é}g})’l), Uiys oo Uiy, u??i] e u?jp,’p] (7.56)
with [I’| +|I"| =2, j > 3, and
Op' (m)[Ra,+ (@™ 1) ity u™ . (7.57)

Again by Corollary B.2.6, (7.56) brings a contribution of the form (7.49) and (7.57)
an expression of type (7.50).

Finally, we have to replace one argument of (7.53) by the last term R in (7.52).
This brings (7.51). This concludes the proof of the lemma. ]
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Proof of Proposition 7.3.1. Let us prove (7.44) and (7.45). We have to estimate all
contributions from (7.46) to (7.51). As already seen, (E.19) to (E.22) allow us to
ignore the action of operator C(¢) on the definition (7.43) of F (), so that we need to
study only the Sobolev norm of (7.46) to (7.51), and the L? norm of the action of L
on these two quantities.

Term (7.46). This term is of the form (7.18) and has already been estimated by the
wanted quantities.

Term (7.47). The Sobolev norm of this term may be bounded from above, according
to (D.32), by

- a 4,0~ a
C (llillweo-co + [[u™llweo-co)” (Il ars + 14| as).
Using (7.1) and (7.3), we bound this by
C172(e2V1)* er? (7.58)

which is better than the right-hand side of (7.44). If we make act L4 on (7.47) and
compute the L? norm, we get on the one hand the product of (7.58) by ¢, which
is smaller than the right-hand side of (7.45) and |xOp’(m)(@iy, u}7)|| 2. This is
a quantity of the same form as the second term in (7.11), except that j > 5. We thus
obtain a bound by (7.13), when at least one of the arguments in (7.47) is equal to u.
By (7.1)=(7.3) and j > 5, this is controlled by the right-hand side of (7.45). If all
the arguments are equal to u®’P, we get instead a bound by (7.14) with j > 5, so by
(7.15) multiplied by [|u*P(|3, 50 00 < C1~" whent < ~*+¢ by (7.1) and (7.2). Since
(7.15) was controlled by (7.12), we get again a bound of the form (7.45).

Term (7.48). By (D.32), the H® norm of (7.48) is bounded by

% _ 2
CI Ry (™) | s (1 oo + [ [ no.co)
+ 1Ry @1, 1) [ woo.co (1 | weo.0o + [[u®||weo-oo) (7.59)
x (Il ars + [ gs)
since j > 2 in (7.48). Using Sobolev injection, we may bound ||f/~2j/||Wpo,oo from

||f/~?j/ |lzzs. By (6.54) and (7.1)—(7.3), we largely get an estimate of the form (7.44).
If we make act L4 on (7.48), and use that

xOp’ (m)(vy,...,v,) —Op' (m)(xvy,...,v,)

is of the form Op’ (m1)(vy, ..., v,) for a new symbol m of the same form as m, we
reduce the estimate of the L2 norm of the action of L on (7.48) to bounding

t|1Op" (m) (Rr 2 (G, u™). dip gy )l 2.

0P’ (m) (LR + (i, u™), dipr, uf) | L2
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By (D.33), we get an estimate in
A S - 2
(eI Ry @@ ™) |2 + | LRy @ w'™) | 2) ([ llwnooe + ™ llwreooe) ™. (7.60)

By (6.54), (6.55), (7.1)—(7.3), this is largely estimated by the right-hand side of (7.45).

Term (7.49). This term is of the form (7.18), except that there is no 7, 1/2 factor, that
we may have an argument u%P! instead of u®P, and that the number of arguments is
larger than or equal to 4. By (7.19), the H* norm of (7.49) is bounded from above by

~ 3
C (' lwoo.co + [[u™[lweo.co + [l weo-)

(1™l grs 4[|l grs + fJa'P!

).

Using (7.1)—(7.4) we get a better estimate than (7.44). If we make act L on (7.49)
and compute the L2 norm, we obtain a quantity of the form (7.20), without the pre-
factor ¢, /2 We obtain thus an upper bound given by (7.22) or (7.24) without the
te 1/2 factor, but with j > 4 and an argument u/%! replacing eventually an 1. By
(7.1)-(7.4),

~ 3/~ ~
(" llweo.c0 + 1™ |lwoo.co + illweo-oe)” (il L2 + || L]l 2)

is smaller than the right-hand side of (7.44). On the other hand, the contribution of
the form (7.24) is bounded from above by

C " P[5 pg.00 " PP | L2 (11" *P o000 + | Lu"* o000 ) < Ce”(log(1 +1))°

by (7.2). As t < & *T¢ we estimate this by %se(t, €), so by the right-hand side
of (7.45).

Term (7.50). This is a term of form (7.48). The H® norm may be bounded by (7.59),
with R - replaced by ﬁz. It follows from (6.59), Sobolev injection and (7.1)—(7.4)
that we largely get a bound of the form (7.44). If we make act L+ and estimate the
L? norm, we get a bound of the form (7.60), with R ;i replaced by R>. Again, by
(6.59), (7.1)—(7.4), we obtain the conclusion.

Term (7.51). This is a term of the form (7.48), with ﬁj/ replaced by R. Again, we
may apply (7.59) to bound the H® norm. According to (5.39), we obtain a bound by
the right-hand side of (7.44). To study the L2 norm of the action of L on (7.51), we
use that we have again a bound of the form (7.60) with R i replaced by R. As the
last factor in (7.60) is O(¢t~1) by (7.1)—(7.3), we conclude that we get an upper bound
by (7.45) using (5.39), (5.40). This concludes the proof of Proposition 7.3.1 ]

Our next task is to study the second line in (6.64).

Proposition 7.3.3. Denote now

F(t) = CO)MEG ... it u™, ... (D; — Po)u'™, ... u™P). (7.61)



Higher-order terms 129

Then under assumptions (7.1)—(7.4)
IF@)las <t et’e(t,8), (7.62)
ILF@ s < 7' 132V e e). (7.63)
Proof. Recall that (D; — p(Dx))u is given by (4.37). Together with the definition

(2.28) of F2, F3, with the fact that by (4.3), (4.6), (4.8), a® is O(t5 /%), and with
estimates (4.38), this implies that

(D — p(D WP = Z(t,x) +a*(t) Y Op(m} )i, (7.64)
[I]=1

where m ; is in 51’0((5)_1, 1) and Z(z, x) satisfies for any o, N,
10%Z(t, x)| < Cont; (x)7V. (7.65)

Notice that we may consider as well m’1 ; as an element of § { 8 (&)1 1) for B > 0,
since for symbols depending only on one frequency variable, this does not make
any difference. We plug (7.64) inside (7.61). Using the form (6.32) of Mf and the
composition result of Corollary B.2.6, we write (7.61), where we forget factor C(¢)
that does not affect the estimates, as a sum of terms (up to permutations of the argu-
ments)

_1
te 20p' (M) (%, ... . u’), (7.66)
Oop' (m)(Z, i+, ... . uth), (7.67)
where the number of arguments (ﬁi, ey u?:p) in term (7.66) (resp. term (7.67))

is j (resp. j —1) with j > 3, and m' belongs to S, (M" ]—[Z )™ L), mto
Sa,8(My Hézl(ég 1. j) for some v. Expression (7 66) is of the form (7.46), so
satisfies the wanted bounds (7.62)—(7.63) by the first point in the proof of Proposi-
tion 7.3.1. The H* norm of (7.67) is bounded by (D.32) by

C (il s + 11| zzs ) (]| woo-c + [Pl wreo.00) || Z | wroo-o0
~ 2
+ C (it weooo + U™ |lwoo-) |1 Z || s

so by the right-hand side of (7.62), by (7.1)—(7.3) and (7.65).
Let us bound next the L2 norm of the action of L+ on (7.67). We decompose

each factor u ﬁp =u afp +u” ifp . Consider first the case of the resulting expression

where at least one of the last j — 1 arguments in (7.67) is equal to %+ or u’ aipp, say

the last one. We have to estimate

t|Op* (m)(Z, s, ... . uf* w) 2,

7.68
[xOp’ (m)(Z,dix,....uy’ w2 (769

with w = @i+ or u"}”. Up to commuting x to Op’ (m) in order to put it against Z, it
is enough to bound the first expression. We use (D.73) with the special index j equal
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to the last one. Recalling the 7, 1 factor in (7.65), we get a bound in
=1(15 app Jj=2
Ct;  (lillweoeo + (U™l wreo-)

_ _ - - (7.69)
< (lllez + I Lall L2 + "l L2 + [ L] 2)

which by (7.1)—(7.3) is smaller than the right-hand side of (7.63) (as j —2>1).0n
the other hand, if we consider (7.68) with all arguments (4, .. Jul i P w) replaced
by u”*", we use (D.74) and get instead of (7.69), by (7.2)

C ity " [yt oo (LA 0,00 + ([P | yrog.00) [P .2
< Ct; 'elog(l + t)log(l + t&?).
This is much better than (7.63). This concludes the proof. ]
Let us move now to the study of (6.65).
Proposition 7.3.4. Denote
F(t) = C(t) M'9((D; — Po)u'®P1 y/2P:1)
+ C(t)M’O( rapp-1 (D, — Po)u’app’l)
+ C(t)M'A((Dy — Po)it, u'™P1) (7.70)
+ C(t) M (i1, (D, — Po)u'™P1)
+ C(O)M'E((D; — Po)it, it) + C(t)M'2(it, (D, — Po)ii).

Then
[F(t)|ms <t 'etbe(t, ), (7.71)

ILF()]2 < 7 (13 (20 )e(t. ). (1.72)
Before starting the proof, we recall some estimates for (D; — Py)u.

Lemma 7.3.5. Under a priori assumptions (7.43)—(7.45) we have the following esti-

mates. :
I(D: — Poit|lgs < Cet®~z, (7.73)
L(D; — Po)ii = f1 + xf2 (7.74)
with O
I fillL2 < Ct2(t3(2VD)°), (1.75)
I fall 2 < Ct (2 VD) erd. (7.76)

Proof. Recall that (D; — Po)ui is given by (7.52) and that V(¢) may be expressed,
according to (6.8), from operators ¢, 1/2 Op’(cly) with ¢/, in the class N L.
By boundedness of these operators on H* and (7.3), we get for ||V (¢t)u ||H s abound by
the right-hand side of (7.73).
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The action of L on V(¢)# will have L? norm bounded from above by

_1 . _1 .
ts > | xOp' (L)l L2 + tts > |Op* (cl)it 2.

By (D.71) with n = 1 and (7.3), we get a bound by the right-hand side of (7.75).

Consider next the M (i, u*®) terms, j = 3,4, on the right-hand side of (7.52).
By (6.53), these terms are given on the one hand by the contributions R i» which
by (6.54) are largely bounded in H* by the right-hand side of (7.73), and which by
(6.55) contribute to f; in (7.74) if we apply L on them. On the other hand, the main
terms in (6.53) are of the form Op’ (7, 17) (fiy/, u}y). By (D.32) and (7.1)—(7.3), they
satisfy (7.73). Let us study L+Op’ (/g 7) (i, uy’y). We apply Proposition F.2.1
and Corollary F.2.2 (translated in the non-semiclassical framework). This allows us
to re-express this quantity from

Op' (i) (L+v1,v2. ..., V)), (7.77)
Op' (F)(v1. ... v)), (7.78)
10p' (F)(v1. ..., ). (7.79)
xOp' (F)(v1.....v)) (7.80)

where vy = ti4+ or vy = u'*P + u”*P where m, 7 are in Sy g(M{ ]_[4 LE0TN D)
and 7' is in S, 4.5 (Mg ]_[4 HLEDTN D).

We estlmate the L? norm of (7.77) using (D.33) with the special index equal to
the first one, when v, is replaced either by i+ or u'} PP We largely get a bound by
(7.75) as j = 3 using (7.1)—(7.3). If v; is replaced by u” PP we still use (D.33), but
make play the special role to the second argument. We obtam a bound in

1L 2" Pllwoo.co (U lweoee + lillweooo) (IuPll2 + litll2) — (7.81)

which is largely controlled by (7.75) by (7.1)—(7.3).

The L? norm of (7.78) (or of the coefficient of x in (7.80)) is bounded from above
by the right-hand side of (7.75) (or (7.76)) again by (D.33), (7.1)—(7.3) and the fact
that j > 3.

Consider (7.79). If at least one vy is replaced by u 4+ or u’fp, we use (D.71), with
the special index equal to this £. By (7.1)—~(7.3) we largely get an estimate (7.75).
If all vy are equal to u” aipp, we use instead (D.72), from which (7.75) largely follows.

To finish the proof of the lemma, we still have to study the last two terms on the
right-hand side of (7.52). Contribution M’ (i, u'*P) has structure (6.58). The remain-
ders R, largely satisfy bounds (7.73), (7.75). The other terms are, by (6.57), of the
form Op (m')(vy, v2) with /i’ in S} 5 (Mo(§) ]_[]_1 (§,)71,2) and vy, v, equal to 7 1
or u’ jfp’ By (D.32) and (7.3)—(7. 4) the Sobolev estimate (7.73) holds. On the other
hand, by (D.76) (and the rapid decay in x of symbols in Sl,ﬂ (Mo () 1_[/=1 (£,)71,2)),
we have

~ — ~ app,1
IL£Op’ (") (w1, v2)ll2 < Cr 4O (| il L2 + 1 L4 $ |2

. 1 2
+ i g + WS las)
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if so is large enough. Using (7.3)—(7.4) and taking o < %, we estimate this by the
right-hand side of (7.75).

Finally, the last term R in (7.52) satisfies (5.39)—(5.40), so also (7.73) and (7.75)
for the action of L on it. This concludes the proof of the lemma. |

Proof of Proposition 7.3.4. We shall prove successively (7.71) and (7.72).

Step 1: Proof of (7.71). Since C(z) is bounded on H*, we may ignore it. We thus
need to study || M5 (v, v2)|| Hj» Where (up to symmetries)

vy = (D; — Po)ii or (D; — Po)u'®P1, v, = i1 or u/®P1, (7.82)

Recall that :/{/{’2 is given by (6.47) in term of operators Q;, ;, of the form (F.35). We
have thus to bound
-3 £1,4 L yl
12 ||KHI,1']2,1'2(Lillvl>il’Lizzv2>i2)”Hs (7.83)

with operators K;;‘ ’lle.z in the class K 1 1 (1,1, i) introduced in Definition F.4.1.
A1, 4

Consider first the case v; = (D; — Po)u’*!. We apply Corollary F.5.4 when £; or
£, is non-zero and (F.46) if £; = £, = 0. We obtain for ¢ > 0 small and so large
enough a bound of (7.83) by
-3 a ~ a
Crma (17| L(Dy = Po)u"™ || 2 (il s + [|u*™" | ars)
+ 17 (|Lill 2 4 1Lu ™| L2) [(Dr — Po)u'*® || s (7.84)
+ 1Dy = Po)u"™™ | gs (|||l s + 1" | 1rs)).

By the end of the statement of Proposition 4.1.2, u’ Tp’l satisfies estimates of the

form (4.46)—(4.47) and also (4.39)—(4.41). Moreover, i satisfies (7.3). Plugging these
estimates in (7.84), we get a better upper bound than (7.71).

Consider next the case v; = (D; — Po)u, £1 = 1 in (7.83). Decompose
Kﬁll,fz,iz = K< + K>1
L1.62

where K. (resp. K-) is defined by the same formula (F.25) as K Hor i but with the
function k cut-off for |&1] < 2(&,) (resp. |&2| < 2(&1)). We need to bound

_3 . ~
73| K<(Liy (Dy — iy p(Dx))iliy . Li2v2.3,) | s, (7.85)
_3 . ~
72| Ko (Liy (Dy — i1 p(Dx))iliy . Li2v2.5,) | s, (7.86)

where £, = 0 or 1 and v, = # or u’*P!, Consider first expression (7.85). We decom-
pose the first argument in K< under the form g 4 g», where, for y € C§°(R), equal
to one close to zero,

g1 = (1= )t P D) (Li (D — i1 p(Dx))ilyy ), (7.87)
g2 = 1P DY (fiiy + xfoi)), (7.88)
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where we used decomposition (7.74). Using the definition of L;, and (7.73), we may
rewrite g1 as a sum g, = tg} + xg/ with according to (7.73), for any o < s,

1
g\ llzoo + g7 lmoo < 1767000 gr8=2, (7.89)

Applying (F.38)—(F.40) (with the roles of fj, f> interchanged), we see that (7.85)
with the first argument of K. replaced by g; has Sobolev norm bounded from above
by

Cra=PE=00 g3~ (|| s + [[u*>|

If 5B is large enough, we get an estimate by the right-hand side of (7.71). On the other
hand, if we replace the first argument of K« in (7.85) by g», we reduce ourselves to

).

_3 -~ ~
T2 K<(R P DY) friy L2 v2) s, (7.90)
_3 -~ ~
2| K<(x (P D) faiy . Li202) | s (7.91)

for new functions f~1, f~2 satisfying the same estimates (7.75)—(7.76) as f1, f» and
¥ in C§°(R). Decomposing L;, = x + i»tp’(Dy) and using (F.38)—(F.39) with the
roles of f1, f» interchanged, we bound (7.90) by

3 ~
3 7P D) fri oo lvallas-
By (7.75) and (7.3)—(7.4), this is smaller than
1m34BO03 (13 (2 /1)) et

so than the right-hand side of (7.71) if # < ¢™**¢ and B is small enough. To study
(7.91), we decompose again L;, as above and use (F.39) and (F.40), to obtain a bound
in
7P D) ol oo [vall s
By (7.76) for f~2 and (7.3), (7.4), we obtain a bound by the right-hand side of (7.71).
Let us study next (7.86). If £, = 1, we use (F.52) (with f; and f5 interchanged)
and if £, = 0 we use (F.58). We bound thus (7.86) by

3 ~ ~ ~
Ct=4(Dy = PoYillars (PO (I Ll L2 + [Lu"*™ [ 2) + Il s + " [11rs).

If we use (7.73), (7.3), (7.4), we bound this by the right-hand side of (7.71), using
again t < ¢~4%¢, and taking 8 small enough.

To conclude Step 1, we still have to consider (7.83) with v; = (D; — Py)ui and
£1 =0, i.e. to bound

_3 . -

TRK YR (D — i1 p(D))itsy . L2 v2,5,) s

H,iy,iz

Expressing L;, and using (F.54) and (F.46), we obtain a bound in

3 . .
173|(Dy = Po)il s ([l ms + [[u/* | ars).
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Using (7.73), (7.3), (7.4), we obtain a bound of the form (7.71). This concludes the
proof of Step 1.

Step 2: Proof of (7.72). Again, properties (E.20)—(E.22) of operator C(¢) allow us to
ignore it in the proof of the estimates. We shall have thus to bound ||Le/{/{’2 (v1,v2) |2
where M’z has structure (6.47) and vy, v, are given by equation (7.82). If we express
Ly = x £1p'(Dy), we are reduced to studying

-1 £1.4 14 14

2Ky 5, (L v Ligva,n) 2, (7.92)
-3 £1.,4 L 14

172 |xKy 2 (Lt vy, L2 va,,) 2 (7.93)

» . . 1z
By Definition F.4.1 of the class K7 | , (7). xK;;"’lffiz may be written as 72 Kﬁ,‘,}?’iz for

another operator in | /2(1' ). It is thus enough to bound (7.92).
We consider first the case vy = (D; — Po)u’®P-!. By (F.50), (F.47), we bound (7.92)
by
Ct=3(I(Ds — Po)u"™ || gs + 1| L(D; — Po)u"™1 || 2)
X (L™ 2 + | Lid]l 2 + /™ |2 + ]l 2)

for any o > 0 (if so is large enough). Since by Proposition 4.1.2, u/®P! satisfies
(4.46)—(4.47), we deduce from (7.3)—(7.4) an estimate better than (7.72).

Consider next the case v; = (D; — Py)ui,£1 = 1in (7.92). We replace L(D; — Py)u
by the right-hand side of (7.74). By (F.47) and (F.51), the f; contribution to (7.92) is
bounded from above by

_3 a - a -
Ctrm3|| fill 2 (e (1L |2 + I Litll2) + " llazs + [l ).
Using (7.75), (7.3), (7.4), we get an estimate in
Cr (13 (2VD)0) (VD017 + 1P~ 4).

If o is small enough, and since ¢ < g4t we get a bound of the form (7.72).
On the other hand, if we replace (D; — Py)i by x f2, (7.92) is reduced to

IR (i L2020 o (7.94)
A 0¢, -integration by parts in (F.25) using (F.27) shows that (7.94) is reduced to
IR 52 (Frins L2022
for a new operator in the same class. Using (F.47) and (F.51), we get a bound in

Ct=4|| foll o (| Lo/ !

2+ L] L2)e” + [lu P

Hs + ||ﬁ||HS).

Using (7.76), (7.3), (7.4), we obtain a bound of the form (7.72).
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Consider finally the case vy = (D; — Po)u, £1 = 0 in (7.92). By (F47), we get
a bound of (7.92) by

_3 ~ ~ ~
Ct73(Dy — PoYillgs (L] L2 + L' || L2 + [lit]| 2 + [Jae'P!

12)-

If we plug there (7.73) and (7.3)—(7.4), we get an estimate of the form (7.72). This
concludes the proof. |

This concludes the study of terms of the form (6.65). It remains to study (6.66),
(6.67) and (6.68).

Proposition 7.3.6. The following statements hold.

(1)  Denote

F@t)=C@®)R;(u,....u,u™ ... .u™), j=340<L<j (795
N ——’
¢

with R; of the form (6.34)—(6.35). Then there is a function e satisfying
(5.41) such that

IF@) s <17 et’e(t, ), (7.96)
ILLF@)llg2 < 71 (13 (2V00)er. €). (7.97)
(i) Denote
F(t) = C(t)R (i, ... u,u'®P1 . q/aP 1)
N’
L
with 0 < £ <2 and R, = [ﬁj’j] given by (6.49). Then (7.96) and (7.97)

hold.

(ili) Let F(t) = C()(R(t,-) + R3(t,-) + Ra(t,-)) + Ra(t,-) with R, R; as
in (6.68). Then (7.96) and (7.97) hold.

Proof. (i) By (6.35) and (D.32) (and the boundedness of C(¢) on H*®), we bound
[F()llas by

~ =1/ ~
C(lillweo-c + [u™llweo.ce )™ (lallzrs + U zrs).

As j > 3,(7.1) and (7.3) imply (7.96).

To prove (7.97), we use once again that by (E.20)—(E.22), we may ignore the fac-
tor C(7), and have to estimate LR; in L?. This expression is a sum of quantities of the
form (6.36)—(6.38), so of the form (7.77)~(7.79) with v, = i1+ or vy = u' L’ + u” .

When vy in (7.77) is replaced by #i+ or u’jfp, we use (D.33) to estimate the L2

norm of these terms by

~ i—1 ~
C (ltllweo-oe + [ |lweo.c0)’ " (L] L2 + | Lu'*P]2)
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so by the right-hand side of (7.97) by (7.1)—(7.3), since j > 3.If v; = u”?"?, we have
a bound by (7.81) so by

;m(ng 0P (VD)8 log(1 + 1) log(1 + 162)) (7.98)

which is bounded by the right-hand side of (7.97) for § > 0 small, 6, 8’ close to %
if 1 < g=4te,

Expression (7.78) is controlled as (7.77). For (7.79), we use (D.71) if at least one
of the functions v; is equal to %+ or u' PP which brings the wanted estimate (7.97)
by (7.1)—(7.3). If all arguments v; are equal to u”*, we use (D.72), that brings again
an estimate of the form (7.98). This concludes the proof of (1).

(ii) Again, we may forget operator C(¢). We have to study

— l N4 { l
2K (L vy L va) s, (7.99)
2 La K2 (L L2, )| (7.100)
L,iy,in iy Vi i, V2,02 ) 112 .

with Kﬁ‘lfziz in K| /2.1(0), and vy, v2 equal to i or u'®P1_ Since estimates (7.4) are
better than (7.3), we may argue just in the case v; = v, = u. Then (7.99) 1s just
(7.31) multiplied by =3 Itis then estimated by (7.32)—(7.34) multiplied by ¢~ 2 and
thus by (7.35) multiplied by =2, so by er3=179 (¢2./1)?. For t < e=#+¢, this is of the
form of the right-hand side of (7.96) if o is small enough. Let us bound next (7.100).
Using the expression Ly = x & #p’(Dy), we have to estimate

KSR (Lo, L20s ) (7.101)

L,i,in iy Vi iy V2,2 11125 .
2K (L v L2 vl 2. (7.102)

L,iy,iz

By (F.47), (F.50), (F.51), we bound (7.101) by
_5 - o ~ 2
Ct=a (|| L)l 21 + it ars)”
Using (7.3), we obtain
Ct—l((82\/;)0t%)120(82\/;)9

which is smaller than the right-hand side of (7.97) fort < e~#7¢ if ¢ is small enough.

Finally, to §tudy (7.102), we notice, as after (7.38), that this expression may be
bounded by 172 times (7.101), so has the wanted bounds.

(iii) The contributions C(7)R3, C(1)R4, R, are estimated by (6.59), (6.54),
(6.55), so largely by the right-hand side of (7.96)—(7.97), using (7.1)—(7.3). The fact
that C(¢)R satisfies these estimates follows from inequalities (5.39)—(5.40) satisfied
by R (or (6.26)—(6.27)). This concludes the proof. ]

We conclude this chapter summarizing the estimates we have obtained.
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Proposition 7.3.7. Letc > 0 (small) be given, 0 < 6’ < 0 < % with 6’ close to % Let

—44c : . ~ rapp
T el,e | and assume that we are given on [1,T] xR functions iy, u'}",

u” il_jp , u’il_)p 1 that satisfy estimates (7.1)—(7.4), for some small § > 0, some constants
C(A, A", D, any ¢ in an interval )0, &g}, and such that il solves (6.61). Then there
are Do > 0, g €0, 89] such that if D > Dg and ¢ € 0, g), for any t € [1,T], the

L? estimates in (7.3) may be improved to

o

4 (2. ) lars < Eeﬁ, (7.103)
D
| Lt ()2 < S1# (VD). (7.104)
Proof. By Corollary 6.2.5, we know that
(D — Po)ii = R (7.105)
if we define
4 A A
0= C(t)(ﬁ — Z M; (i, uapp)) — M (1, u/*PP . (7.106)
Jj=3

By Proposition 7.1.1, Proposition 7.2.1 and the boundedness properties (E.19)—(E.22)
of C(t), we have

57 — C(@)iil| s < et’e(t.e), (7.107)
ILGE— C@)i)> < t4(2VD) et o), (7.108)

where e satisfies (5.41).
The right-hand side &R of (7.105) is the sum of terms (6.62)—(6.68). These terms
have been estimated in Proposition 7.1.2, Proposition 7.2.3, Proposition 7.3.1, Propo-

sition 7.3.3, Proposition 7.3.4, Proposition 7.3.6, which imply that
IR s < o1’ e, o),

. | 2 (7.109)

ILR(t, )2 <t 't3 (V1) e(t,e).

By the fact that L. commutes to (D; — Py), it follows from the energy inequality
applied to (7.105) that

I, Hllas < (1) |las +s1’e(t, o), (7.110)
ILG () lle < L1 )2 + 13 (2D et 6) (7.111)

and then, by (7.107)—(7.108) and (E.14), (E.19)—(E.22) that
(e ) les < Cla(1, ) ms + et’e(t. o). (7.112)
ILaG. )2 < C(ILa(L )2 + Na(L )l 2) + 13 (2D Pe(te)  (7.113)
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for some constant C, some new factors e(?, ¢). Recall that % has been defined
from u4 in (5.34), and that since this function is O(¢g) at time ¢ = 1 in the space
{f € HS : xf € L?} by (2.24) and (2.22), we may take D so large that the first term
on the right-hand side of (7.112)—(7.113) is smaller than %8. If £ is small enough, we
thus get (7.103)—(7.104) using (5.41). ]



