
Chapter 7

Bootstrap: L2 estimates

The proof of the main theorem relies on a bootstrap argument of the type described
in Sections 1.4 and 1.5 of the introduction (see estimates (1.28), (1.29) and (1.39)).
In our setting, the bounds to be bootstrapped will be actually (2.45), (2.46), (2.47)
of Section 2.5 in Chapter 2 (see (7.3) below). In the present chapter our objective is
to bootstrap the first and last estimates (7.3) (see Proposition 7.3.7 below). We have
thus to bound the Sobolev norm of the solution Qu of (6.61), and the L2 norm of L Qu.
This is done by energy inequality, and the main task is to estimate the right-hand side
of (6.61) in Sobolev spaces or the action of L on that right-hand side in L2. We do
that first for cubic and quartic terms, then for quadratic ones, and finally for terms of
higher order.

7.1 Estimates for cubic and quartic terms

We consider C-valued functions u0app
C ; u

00app
C , defined on some interval Œ1; T �, with

T � "�4Cc for some given c > 0, and that satisfy on that interval, for a given large r
in N and some constant C.A;A0/ bounds (4.39)–(4.41) and (4.43)–(4.45) that we
recall below:
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Moreover, we shall assume that the solution Qu D Œ QuC
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satisfies a priori estimates (5.35), i.e. having fixed c > 0, � 0 < � < 1
2

with � 0 close
to 1

2
, and ı > 0 small, for some 1� �� s, we have

k QuC.t; � /kH s � D"t
ı ;

k QuC.t; � /kW �;1 � D
."2
p
t /�
0

p
t

;

kLC QuC.t; � /kL2 � Dt
1
4 ."2
p
t /� :

(7.3)



Bootstrap: L2 estimates 118

We recall also that we have defined from u
app
C the function uapp;1

C in (4.48), that we
decomposed in (4.55) as u0app;1

C C u00
app;1
C and we have seen after (4.54) that u0app;1

C

satisfies the same estimates as u0app
C , so that we shall have
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We may assume that r in (7.1) and (7.4) is as large as we want since the smoothness
of the approximate solution uapp is independent of s: these functions are actually C1,
since their x dependence comes only from stationary solution to our initial problem.

Our goal in that section is to deduce from (7.1) to (7.4) bounds for the cubic and
quartic terms on the left-hand side of (6.61) and in (6.62) and (6.64).

Proposition 7.1.1. Let OMj . Qu; u
app/,j D 3; 4, be given by the first line in (6.60). There

is a function .t; "/ 7! e.t; "/, depending on the constants A;A0;D in (7.1)–(7.3),
satisfying lim"!0C sup1�t�"�4Cc e.t; "/ D 0, such that the following bounds hold:
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for any t 2 Œ1; "�4Cc�, any � > 0.

Proof. We prove first (7.5). By (E.19), C.t/ is bounded onH s , uniformly in t staying
in the wanted interval. By (6.60) we have thus to bound
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(where each OM`
j has form (6.32)) by the right-hand side of (7.5). By (D.32), (7.7) is

bounded from above by
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with the convention that the first (resp. second) term in the bracket should be replaced
by zero if ` D 0 (resp. ` D j ). As
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for t � "�4. Using also (7.3), we bound (7.8) by
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Since j � 3, we have obtained a bound by the right-hand side of (7.5).
Let us prove (7.6). By (E.20)–(E.22), it suffices to bound by the right-hand side

of (7.6) the quantities
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By (7.10), the first term is estimated by (as j � 3)
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If t � "�4, � 0 < � < 1
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is close enough to 1
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, so that 2� 0 � � � 0, and if ı is small
enough, one gets that e satisfies the condition in the statement. This concludes the
proof of (7.6) for the first term in (7.11). To study the second one, we have to bound
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first the case ` > 0, so that at least one of the arguments is equal to Qu. By the form
(6.32) of OM`

j , we may apply (D.36), putting the L2 norm on that argument equal to Qu,
i.e. we obtain a bound in
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The contribution of the first term in the last bracket has already been estimates by
(7.12) in the study of the first term (7.11). The second term gives rise, according
to (7.9) and (7.3), to a quantity bounded by
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obtain a bound in
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Using (7.9), (7.1), (7.2), we obtain a bound in
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which is largely of form (7.12). This concludes the proof.

We shall study next term (6.62).

Proposition 7.1.2. With notation (5.41) for e.t; "/, one has the following bounds for
0 � ` � j , j D 3; 4:
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Proof. Recall that OMj is given by (6.60) in terms of operators OM`
j defined in (6.32).

Moreover, recall that V.t/ in (6.17) is by definition the operator Op.M 0/ given by
(6.8), in function of symbols b0
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to estimate the left-hand side of (7.16) by
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Using estimates (7.9), (7.3) and j � 3, we bound this largely by the right-hand side
of (7.16).

Let us prove (7.17). By (E.20)–(E.22) it is enough to estimate
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the second one is reduced to
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for a new m0. If there is at least one argument equal to Qu˙ in (7.21), we use estimate
(D.71), making play the special role devoted to vj there to such an Qu˙ argument. We
obtain a bound of (7.21) in
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By (7.9) and (7.3), this is bounded by
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since j � 3. Again this is largely bounded by the right-hand side of (7.17).
Consider next the case when all arguments in (7.21) are equal to uapp. Decompose

one of these arguments, say the last one, as uapp D u0app C u00app. By linearity, we get
a contribution in Opt .m0/.uapp
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andLu0app are better than the corresponding ones for Qu,L Qu in (7.3), we get that (7.23)
holds again. We are thus left with
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By (7.2), we thus get a bound in
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so than the right-hand side of (7.17). This concludes the proof.
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7.2 Estimates for quadratic terms

We shall study in this section the quadratic term in (6.61) and (6.63).

Proposition 7.2.1. Let OM02 be given by the second line in (6.60). One has the follow-
ing bounds:
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for any t 2 Œ1; "�4Cc�, where e.t; "/ satisfies (5.41).

To prove the proposition, we shall study the three terms in the definition of OM02.

Lemma 7.2.2. One has the following estimates:
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.

Proof. By definition, OM022 is obtained applying Proposition 6.2.4 to M022 given by the
first term on the right-hand side of the second line in (6.60). It has structure (6.47).
We thus have to study
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to obtain respectively (7.27) and (7.28), whereQ0i1;i2 are operators of the form (F.35),
preserving the space of odd functions. To bound (7.29), we thus have to study
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If `1 D `2 D 0, we apply inequality (F.46) of Corollary F.5.2, with ! D 1
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If `1 D 0; `2 D 1 (or the symmetric case), we apply (F.58), which gives for (7.31) an
estimate in
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Consider next (7.30) and decompose L˙ D x ˙ tp0.Dx/. The action of tp0.Dx/
on Q0i1;i2. Qui1 ; Qui2/ has L2 norm bounded from above, according to (F.35), by
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When `1 D `2 D 0 (resp. .`1; `2/ D .1; 0/ or .0; 1/), we apply (F.46) with s D 0
(resp. (F.50) and (F.51)) to bound this by
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for any � > 0, so by (7.35), which is better that what we want.
On the other hand, if `1 D `2 D 1 in (7.36), we apply (F.50) or (F.51) with f2

or f1 replaced by LC QuC. We obtain for (7.36) an estimate in
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Using (7.3), we obtain a better bound than (7.28). We are left with studying
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We noticed at the end of the proof of Proposition F.5.1 that an operator xK may
be written as an operator K1 of the same type as K, up to the loss of a factor t!

(here t
1
2 ). It follows that (7.38) will be bounded by t�

1
2 times (7.36), which is better

than the estimate already obtained for the other contribution to (7.30). This concludes
the proof.

Proof of Proposition 7.2.1. We remark first that the conclusion of Lemma 7.2.2 holds
for the three terms on the right-hand side of the second formula in (6.60) that defines
OM02. We have seen it for the last one. It holds for the other two terms as, by the end of

the statement in Proposition 4.1.2, u0app;1
C satisfies the same estimates (7.1) as u0app.

Since these bounds are better than inequalities (7.3) satisfied by Qu (for t � "�4), the
proof of Lemma 7.2.2 thus applies as well to OM002; OM

01
2 in (6.60). Consequently, (7.25)

and (7.26) hold.

We want next to study quadratic terms on the right-hand side of (6.61), i.e. terms
of the form (6.63).

Proposition 7.2.3. Let M02 be given by (6.14) and denote by e.t; "/ a function satis-
fying (5.41). We have bounds
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Proof. We write the proof for the component of M02 that is quadratic in Qu. This
implies the general case, as u0app;1 satisfies better estimates than those holding true
for Qu.
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Recall that by (6.14), the components of M02 are of the form Op.m00;I /. QuI / with
m00;I in QS 01;0.
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n D 2, we obtain
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as we want (see the example following Def-
inition E.1.1 where m is introduced), and since ı0; � may also be taken as small as
wanted (in function of the fixed parameters c; �; � 0), for t � "�4Cc , the factor between
brackets is of the form e.t; "/ in (7.39).

To prove (7.40), we write by (E.20)
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Since kM02. Qu; Qu/kL2 is estimated by (7.41), and since k QC1.t/kL.L2/ is bounded by
(E.22) withm close to 1
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, we see that the L2 norm of the last term in (7.42) is smaller

than the right-hand side of (7.40) (for t � "�4).
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the L2 norm of the first term on the right-hand side of (7.42) is bounded from above
by
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and again, if 1
2
�m; ı0; � have been taken small enough, the bracket is of the form

e.t; "/, whence a bound by the right-hand side of (7.40). This concludes the proof.

7.3 Higher-order terms

In this section, we shall bound expressions of the form (6.64)–(6.65) that appear
as contributions of higher order of homogeneity if one replaces .Dt � P0/ Qu by its
expression coming from (6.17). We study first the first line in (6.64).
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Proposition 7.3.1. Denote for 1 � ` � j , j D 3; 4,
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with e satisfying (5.41).

To prove the proposition, we first re-express F.t/ replacing on the right-hand side
.Dt � P0/ Qu by its value.
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app; : : : ; uapp�
may be written as sums of terms of the following form:

t
� 12
" Opt .m0/. QuI 0 ; u

app
I 00 /; j D jI 0j C jI 00j � 3; (7.46)

where m0 is in S 0
4;ˇ
.M �

0

Qj

`D1
h�`i
�1; j /,

Opt .m/. QuI 0 ; u
app
I 00 /; j D jI 0j C jI 00j � 5; (7.47)

where m is in S4;ˇ .M �
0

Qj

`D1
h�`i
�1; j /,

Opt .m/
�
Rj 0. Qu; u

app/; QuI 0 ; u
app
I 00

�
; j D jI 0j C jI 00j; (7.48)

where j 0 � 3, j � 2, m is in S4;ˇ .M �
0

QjC1

`D1
h�`i
�1; j C 1/ and Rj 0 satisfies (6.54)

and (6.55),

Opt .m0/
�
QuI 0 ; u

0app;1
I 00 ; u

app
I 000

�
; j D jI 0j C jI 00j C jI 000j � 4; (7.49)

where m0 is in S 0
4;ˇ
.M �

0

Qj

`D1
h�`i
�1; j /,

Opt .m/
�
QR2. Qu; u

0app;1/; QuI 0 ; u
app
I 00

�
; j D jI 0j C jI 00j; (7.50)

with j � 2, m is in S4;ˇ .M �
0

QjC1

`D1
h�`i
�1; j C 1/, QR2 satisfying (6.59),

Opt .m/.R; QuI 0 ; u
app
I 00 /; j D jI 0j C jI 00j � 2; (7.51)

where R satisfies estimates (5.39) and (5.40) and where m is a symbol in the class
S4;ˇ .M

�
0

QjC1

`D1
h�`i
�1; j C 1/.

Proof. Recall that by (6.17)

.Dt � P0/ Qu D V.t/ QuCM3. Qu; u
app/CM4. Qu; u

app/CM02. Qu; u
0app;1/CR: (7.52)
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Recall that OM`
j is an operator of the form (6.32), so that its components computed at

. Qu; : : : ; Qu; uapp; : : : ; uapp/ may be written

Opt .m/. Qui1 ; : : : ; Qui` ; u
app
i`C1

; : : : ; u
app
ij
/ (7.53)

with ij D ˙ and m element of S4;ˇ .M �
0

Qj

`D1
h�`i
�1; j / for some ˇ > 0. We have

to compute (7.53) when one of its Qu arguments, say the first one, is replaced by
.Dt � P0/ Qu, so by the right-hand side of (7.52). If we replace .Dt � P0/ Qu by V.t/ Qu

and use that V.t/ is constructed from operators Op.b0
˙
/ in (6.8) that satisfy (5.96)

and (5.97), i.e. are such that t1=2" b0
˙
D c0
˙

is in S 0
�;ˇ
.h�i�1; 1/ (for any �; ˇ), we get

a contribution

t
� 12
" Opt .m/

�
Op.c0i1/ Qui1 ; Qui2 ; : : : ; Qui` ; u

app
i`C1

; : : : ; u
app
ij

�
:

By the composition result of Corollary B.2.6, we get a term of the form (7.46).
Let us study next (7.53) with the first argument replaced by

M3. Qu; u
app/CM4. Qu; u

app/

coming from (7.52). According to definition (6.15) of Mj and to (6.53), we shall get
contributions

Opt .m/
�
Op. QmI /. QuI 0 ; u

app
I 00 /; Qui2 ; : : : ; Qui` ; u

app
i`C1

; : : : ; u
app
ij

�
(7.54)

with jI j D 3 or 4 and Qm in QS1;ˇ .M0.�/
�
QjI j
jD1h�j i

�1; jI j/, with ˇ > 0 and

Opt .m/
�
QRj 0;˙. Qu; u

app/; Qui2 ; : : : ; u
app
ij
/ (7.55)

for
QRj 0 D

�
QRj 0;C

QRj 0;�

�
satisfying (6.54) and (6.55) with j 0 D 3 or 4. By Corollary (B.19), (7.54) may be
written as a term homogeneous of degree larger than or equal to 5 that has the struc-
ture (7.47). Moreover, (7.55) provides terms of the form (7.48).

We have to study then the term (7.53) where the first argument is replaced by the
M02. Qu; u

0app;1/ term in (7.52). By (6.58) and (6.57), we get contributions of the form

Opt .m/
�
Op.m00;I 0;I 00/. QuI 0 ; u

0app;1
I 00 /; Qui2 ; : : : ; Qui` ; u

app
i`C1

; : : : ; u
app
ij

�
(7.56)

with jI 0j C jI 00j D 2, j � 3, and

Opt .m/
�
QR2;˙. Qu; u

0app;1/; Qui2 ; : : : ; u
app
ij

�
: (7.57)

Again by Corollary B.2.6, (7.56) brings a contribution of the form (7.49) and (7.57)
an expression of type (7.50).

Finally, we have to replace one argument of (7.53) by the last term R in (7.52).
This brings (7.51). This concludes the proof of the lemma.
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Proof of Proposition 7.3.1. Let us prove (7.44) and (7.45). We have to estimate all
contributions from (7.46) to (7.51). As already seen, (E.19) to (E.22) allow us to
ignore the action of operator C.t/ on the definition (7.43) of F.t/, so that we need to
study only the Sobolev norm of (7.46) to (7.51), and the L2 norm of the action of L
on these two quantities.

Term (7.46). This term is of the form (7.18) and has already been estimated by the
wanted quantities.

Term (7.47). The Sobolev norm of this term may be bounded from above, according
to (D.32), by

C
�
k QukW �0;1 C ku

app
kW �0;1

�4�
k QukH s C ku

app
kH s

�
:

Using (7.1) and (7.3), we bound this by

Ct�2."2
p
t /4�

0

"tı (7.58)

which is better than the right-hand side of (7.44). If we make act L˙ on (7.47) and
compute the L2 norm, we get on the one hand the product of (7.58) by t , which
is smaller than the right-hand side of (7.45) and kxOpt .m/. QuI 0 ; u

app
I 00 /kL2 . This is

a quantity of the same form as the second term in (7.11), except that j � 5. We thus
obtain a bound by (7.13), when at least one of the arguments in (7.47) is equal to Qu.
By (7.1)–(7.3) and j � 5, this is controlled by the right-hand side of (7.45). If all
the arguments are equal to uapp, we get instead a bound by (7.14) with j � 5, so by
(7.15) multiplied by kuappk2

W �0;1
� Ct�1 when t � "�4Cc by (7.1) and (7.2). Since

(7.15) was controlled by (7.12), we get again a bound of the form (7.45).

Term (7.48). By (D.32), the H s norm of (7.48) is bounded by

Ck QRj 0. Qu; u
app/kH s

�
k QukW �0;1 C ku

app
kW �0;1

�2
C k QRj 0. Qu; u

app/kW �0;1

�
k QukW �0;1 C ku

app
kW �0;1

�
�
�
k QukH s C ku

app
kH s

� (7.59)

since j � 2 in (7.48). Using Sobolev injection, we may bound k QRj 0kW �0;1 from
k QRj 0kH s . By (6.54) and (7.1)–(7.3), we largely get an estimate of the form (7.44).

If we make act L˙ on (7.48), and use that

xOpt .m/.v1; : : : ; vn/ � Opt .m/.xv1; : : : ; vn/

is of the form Opt .m1/.v1; : : : ; vn/ for a new symbol m1 of the same form as m, we
reduce the estimate of the L2 norm of the action of L˙ on (7.48) to bounding

tkOpt .m/
�
QRj 0;˙. Qu; u

app/; QuI 0 ; u
app
I 00

�
kL2 ;

kOpt .m/
�
L QRj 0;˙. Qu; u

app/; QuI 0 ; u
app
I 00

�
kL2 :
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By (D.33), we get an estimate in�
tk QRj 0. Qu; u

app/kL2 C kL˙
QRj 0. Qu; u

app/kL2
��
k QukW �0;1 C ku

app
kW �0;1

�2
: (7.60)

By (6.54), (6.55), (7.1)–(7.3), this is largely estimated by the right-hand side of (7.45).

Term (7.49). This term is of the form (7.18), except that there is no t�1=2" factor, that
we may have an argument u0app;1 instead of uapp, and that the number of arguments is
larger than or equal to 4. By (7.19), the H s norm of (7.49) is bounded from above by

C
�
ku0app;1

kW �0;1 C ku
app
kW �0;1 C k QukW �0;1

�3
�
�
kuapp

kH s C k QukH s C ku
0app;1
kH s

�
:

Using (7.1)–(7.4) we get a better estimate than (7.44). If we make act L˙ on (7.49)
and compute the L2 norm, we obtain a quantity of the form (7.20), without the pre-
factor t�1=2" . We obtain thus an upper bound given by (7.22) or (7.24) without the
t
�1=2
" factor, but with j � 4 and an argument u0app;1 replacing eventually an uapp. By

(7.1)–(7.4),�
ku0app;1

kW �0;1 C ku
app
kW �0;1 C k QukW �0;1

�3�
k QukL2 C kL QukL2

�
is smaller than the right-hand side of (7.44). On the other hand, the contribution of
the form (7.24) is bounded from above by

Cku00app
k
2
W �0;1ku

00app
kL2

�
ku00app

kW �0;1 C kLu
00app
kW �0;1

�
� C"5.log.1C t //6

by (7.2). As t � "�4Cc , we estimate this by 1
t
"e.t; "/, so by the right-hand side

of (7.45).

Term (7.50). This is a term of form (7.48). The H s norm may be bounded by (7.59),
with QRj 0 replaced by QR2. It follows from (6.59), Sobolev injection and (7.1)–(7.4)
that we largely get a bound of the form (7.44). If we make act L˙ and estimate the
L2 norm, we get a bound of the form (7.60), with QRj 0 replaced by QR2. Again, by
(6.59), (7.1)–(7.4), we obtain the conclusion.

Term (7.51). This is a term of the form (7.48), with QRj 0 replaced by R. Again, we
may apply (7.59) to bound the H s norm. According to (5.39), we obtain a bound by
the right-hand side of (7.44). To study the L2 norm of the action of L˙ on (7.51), we
use that we have again a bound of the form (7.60) with QRj 0 replaced by R. As the
last factor in (7.60) isO.t�1/ by (7.1)–(7.3), we conclude that we get an upper bound
by (7.45) using (5.39), (5.40). This concludes the proof of Proposition 7.3.1

Our next task is to study the second line in (6.64).

Proposition 7.3.3. Denote now

F.t/ D C.t/ OM`
j . Qu; : : : ; Qu; u

app; : : : ; .Dt � P0/u
app; : : : ; uapp/: (7.61)
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Then under assumptions (7.1)–(7.4)

kF.t/kH s � t
�1"tıe.t; "/; (7.62)

kLF.t/kH s � t
�1t

1
4 ."2
p
t /�e.t; "/: (7.63)

Proof. Recall that .Dt � p.Dx//u
app
C is given by (4.37). Together with the definition

(2.28) of F 20 ; F
3
0 , with the fact that by (4.3), (4.6), (4.8), aapp is O.t�1=2" /, and with

estimates (4.38), this implies that

.Dt � p.Dx//u
app
C D Z.t; x/C a

app.t/
X
jI jD1

Op.m01;I /.u
app
I /; (7.64)

where m01;I is in QS 01;0
�
h�i�1; 1/ and Z.t; x/ satisfies for any ˛;N ,

j@˛xZ.t; x/j � C˛;N t
�1
" hxi

�N : (7.65)

Notice that we may consider as well m01;I as an element of S 0
1;ˇ
.h�i�1; 1/ for ˇ > 0,

since for symbols depending only on one frequency variable, this does not make
any difference. We plug (7.64) inside (7.61). Using the form (6.32) of OM`

j and the
composition result of Corollary B.2.6, we write (7.61), where we forget factor C.t/
that does not affect the estimates, as a sum of terms (up to permutations of the argu-
ments)

t
� 12
" Opt .m0/. Qu˙; : : : ; u

app
˙
/; (7.66)

Opt .m/.Z; Qu˙; : : : ; u
app
˙
/; (7.67)

where the number of arguments . Qu˙; : : : ; u
app
˙
/ in term (7.66) (resp. term (7.67))

is j (resp. j � 1) with j � 3, and m0 belongs to S 0
4;ˇ
.M �

0

Qj

`D1
h�`i
�1; j /, m to

S4;ˇ .M
�
0

Qj

`D1
h�`i
�1; j / for some �. Expression (7.66) is of the form (7.46), so

satisfies the wanted bounds (7.62)–(7.63) by the first point in the proof of Proposi-
tion 7.3.1. The H s norm of (7.67) is bounded by (D.32) by

C
�
k QukH s C ku

app
kH s

��
k QukW �0;1 C ku

app
kW �0;1

�
kZkW �0;1

C C
�
k QukW �0;1 C ku

app
kW �0;1

�2
kZkH s

so by the right-hand side of (7.62), by (7.1)–(7.3) and (7.65).
Let us bound next the L2 norm of the action of L˙ on (7.67). We decompose

each factor uapp
˙
D u0

app
˙
C u00

app
˙

. Consider first the case of the resulting expression
where at least one of the last j � 1 arguments in (7.67) is equal to Qu˙ or u0app

˙
, say

the last one. We have to estimate

tkOpt .m/.Z; Qu˙; : : : ; u
app
˙
; w/kL2 ;

kxOpt .m/.Z; Qu˙; : : : ; u
app
˙
; w/kL2

(7.68)

with w D Qu˙ or u0app
˙

. Up to commuting x to Opt .m/ in order to put it against Z, it
is enough to bound the first expression. We use (D.73) with the special index j equal
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to the last one. Recalling the t�1" factor in (7.65), we get a bound in

Ct�1"
�
k QukW �0;1 C ku

app
kW �0;1

�j�2
�
�
k QukL2 C kL QukL2 C ku

0app
kL2 C kL˙u

0app
kL2

� (7.69)

which by (7.1)–(7.3) is smaller than the right-hand side of (7.63) (as j � 2 � 1). On
the other hand, if we consider (7.68) with all arguments . Qu˙; : : : ; u

app
˙
; w/ replaced

by u00app
˙

, we use (D.74) and get instead of (7.69), by (7.2)

Ct�1" ku
00app
k
j�3

W �0;1

�
kLu00app

kW �0;1 C ku
00app
kW �0;1

�
ku00app

kL2

� Ct�1" " log.1C t / log.1C t "2/:

This is much better than (7.63). This concludes the proof.

Let us move now to the study of (6.65).

Proposition 7.3.4. Denote

F.t/ D C.t/ OM002
�
.Dt � P0/u

0app;1; u0app;1�
C C.t/ OM002

�
u0app;1; .Dt � P0/u

0app;1�
C C.t/ OM012

�
.Dt � P0/ Qu; u

0app;1�
C C.t/ OM012

�
Qu; .Dt � P0/u

0app;1�
C C.t/ OM022

�
.Dt � P0/ Qu; Qu

�
C C.t/ OM022

�
Qu; .Dt � P0/ Qu

�
:

(7.70)

Then
kF.t/kH s � t

�1"tıe.t; "/; (7.71)

kL˙F.t/kL2 � t
�1
�
t
1
4 ."2
p
t /�
�
e.t; "/: (7.72)

Before starting the proof, we recall some estimates for .Dt � P0/ Qu.

Lemma 7.3.5. Under a priori assumptions (7.43)–(7.45) we have the following esti-
mates:

k.Dt � P0/ QukH s � C"t
ı� 12 ; (7.73)

L.Dt � P0/ Qu D f1 C xf2 (7.74)

with
kf1kL2 � Ct

� 12
�
t
1
4 ."2
p
t /�
�
; (7.75)

kf2kL2 � Ct
�1."2

p
t /2�

0

"tı : (7.76)

Proof. Recall that .Dt � P0/ Qu is given by (7.52) and that V.t/ may be expressed,
according to (6.8), from operators t�1=2" Opt .c0

˙
/ with c0

˙
in the class S 0

�;ˇ
.h�i�1; 1/.

By boundedness of these operators onH s and (7.3), we get for kV.t/ QukH s a bound by
the right-hand side of (7.73).
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The action of L on V.t/ Qu will have L2 norm bounded from above by

t
� 12
" kxOpt .c0˙/ QukL2 C t t

� 12
" kOpt .c0˙/ QukL2 :

By (D.71) with n D 1 and (7.3), we get a bound by the right-hand side of (7.75).
Consider next the Mj . Qu; u

app/ terms, j D 3; 4, on the right-hand side of (7.52).
By (6.53), these terms are given on the one hand by the contributions QRj , which
by (6.54) are largely bounded in H s by the right-hand side of (7.73), and which by
(6.55) contribute to f1 in (7.74) if we apply L on them. On the other hand, the main
terms in (6.53) are of the form Opt . QmI 0;I 00/. QuI 0 ; u

app
I 00 /. By (D.32) and (7.1)–(7.3), they

satisfy (7.73). Let us study L˙Opt . QmI 0;I 00/. QuI 0 ; u
app
I 00 /. We apply Proposition F.2.1

and Corollary F.2.2 (translated in the non-semiclassical framework). This allows us
to re-express this quantity from

Opt . Qm/
�
L˙v1; v2; : : : ; vj

�
; (7.77)

Opt . Qr/.v1; : : : ; vj /; (7.78)

tOpt . Qr 0/.v1; : : : ; vj /; (7.79)

xOpt . Qr/.v1; : : : ; vj / (7.80)

where v` D Qu˙ or v` D u0app C u00app, where Qm; Qr are in S4;ˇ .M �
0

Qj

`D1
h�`i
�1; j /

and Qr 0 is in S 0
4;ˇ
.M �

0

Qj

`D1
h�`i
�1; j /.

We estimate the L2 norm of (7.77) using (D.33) with the special index equal to
the first one, when v1 is replaced either by Qu˙ or u0app

˙
. We largely get a bound by

(7.75) as j � 3 using (7.1)–(7.3). If v1 is replaced by u00app
˙

, we still use (D.33), but
make play the special role to the second argument. We obtain a bound in

kLCu
00app
C kW �0;1

�
ku

app
C kW �0;1 C k QukW �0;1

��
ku

app
C kL2 C k QuCkL2

�
(7.81)

which is largely controlled by (7.75) by (7.1)–(7.3).
TheL2 norm of (7.78) (or of the coefficient of x in (7.80)) is bounded from above

by the right-hand side of (7.75) (or (7.76)) again by (D.33), (7.1)–(7.3) and the fact
that j � 3.

Consider (7.79). If at least one v` is replaced by Qu˙ or u0app
˙

, we use (D.71), with
the special index equal to this `. By (7.1)–(7.3) we largely get an estimate (7.75).
If all v` are equal to u00app

˙
, we use instead (D.72), from which (7.75) largely follows.

To finish the proof of the lemma, we still have to study the last two terms on the
right-hand side of (7.52). Contribution M0. Qu; u0app/ has structure (6.58). The remain-
ders R2 largely satisfy bounds (7.73), (7.75). The other terms are, by (6.57), of the
form Opt . Qm0/.v1; v2/ with Qm0 in S 0

1;ˇ
.M0.�/

Q2
jD1h�j i

�1; 2/ and v1; v2 equal to Qu˙
or u0app;1

˙
. By (D.32) and (7.3)–(7.4), the Sobolev estimate (7.73) holds. On the other

hand, by (D.76) (and the rapid decay in x of symbols in S 0
1;ˇ
.M0.�/

Q2
jD1h�j i

�1;2/),
we have

kL˙Opt . Qm0/.v1; v2/kL2 � Ct
�1C�

�
kLC Qu˙kL2 C kLCu

0app;1
C kL2

C k QuCkH s C ku
0app;1
C kH s

�2
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if s� is large enough. Using (7.3)–(7.4) and taking � < 1
4

, we estimate this by the
right-hand side of (7.75).

Finally, the last term R in (7.52) satisfies (5.39)–(5.40), so also (7.73) and (7.75)
for the action of L on it. This concludes the proof of the lemma.

Proof of Proposition 7.3.4. We shall prove successively (7.71) and (7.72).

Step 1: Proof of (7.71). Since C.t/ is bounded on H s , we may ignore it. We thus
need to study k OM02.v1; v2/kH sh , where (up to symmetries)

v1 D .Dt � P0/ Qu or .Dt � P0/u
0app;1; v2 D Qu or u0app;1: (7.82)

Recall that OM02 is given by (6.47) in term of operators Qi1;i2 of the form (F.35). We
have thus to bound

t�
3
2 kK

`1;`2
H;i1;i2

.L
`1
i1
v1;i1 ; L

`2
i2
v2;i2/kH s (7.83)

with operators K`1;`2H;i1;i2
in the class K 0

1; 12
.1; i1; i2/ introduced in Definition F.4.1.

Consider first the case v1 D .Dt � P0/u
0app;1. We apply Corollary F.5.4 when `1 or

`2 is non-zero and (F.46) if `1 D `2 D 0. We obtain for � > 0 small and s� large
enough a bound of (7.83) by

Ct�
3
4

�
t�kL.Dt � P0/u

0app;1
kL2

�
k QukH s C ku

0app;1
kH s

�
C t�

�
kL QukL2 C kLu

0app;1
kL2

�
k.Dt � P0/u

0app;1
kH s

C k.Dt � P0/u
0app;1
kH s

�
k QukH s C ku

0app;1
kH s

��
:

(7.84)

By the end of the statement of Proposition 4.1.2, u0app;1
C satisfies estimates of the

form (4.46)–(4.47) and also (4.39)–(4.41). Moreover, Qu satisfies (7.3). Plugging these
estimates in (7.84), we get a better upper bound than (7.71).

Consider next the case v1 D .Dt � P0/ Qu, `1 D 1 in (7.83). Decompose

K
`1;`2
H;i1;i2

D K< CK>;

where K< (resp. K>) is defined by the same formula (F.25) as K`1;`2H;i1;i2
, but with the

function k cut-off for j�1j � 2h�2i (resp. j�2j � 2h�1i). We need to bound

t�
3
2 kK<.Li1.Dt � i1p.Dx// Qui1 ; L

`2
i2
v2;i2/kH s ; (7.85)

t�
3
2 kK>.Li1.Dt � i1p.Dx// Qui1 ; L

`2
i2
v2;i2/kH s ; (7.86)

where `2 D 0 or 1 and v2 D Qu or u0app;1. Consider first expression (7.85). We decom-
pose the first argument inK< under the form g1 C g2, where, for � 2 C10 .R/, equal
to one close to zero,

g1 D .1 � �/.t
�ˇDx/

�
Li1.Dt � i1p.Dx// Qui1

�
; (7.87)

g2 D �.t
�ˇDx/.f1;i1 C xf2;i1/; (7.88)
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where we used decomposition (7.74). Using the definition of Li1 and (7.73), we may
rewrite g1 as a sum g1 D tg

0
1 C xg

00
1 with according to (7.73), for any �0 � s,

kg01kH�0 C kg
00
1kH�0 � t

�ˇ.s��0/"tı�
1
2 : (7.89)

Applying (F.38)–(F.40) (with the roles of f1; f2 interchanged), we see that (7.85)
with the first argument of K< replaced by g1 has Sobolev norm bounded from above
by

Ct
1
4�ˇ.s��0/"tı�

1
2

�
k QukH s C ku

0app;1
kH s

�
:

If sˇ is large enough, we get an estimate by the right-hand side of (7.71). On the other
hand, if we replace the first argument of K< in (7.85) by g2, we reduce ourselves to

t�
3
2 kK<. Q�.t

�ˇDx/ Qf1;i1 ; L
`2
i2
v2/kH s ; (7.90)

t�
3
2 kK<.x Q�.t

�ˇDx/ Qf2;i1 ; L
`2
i2
v2/kH s (7.91)

for new functions Qf1; Qf2 satisfying the same estimates (7.75)–(7.76) as f1; f2 and
Q� in C10 .R/. Decomposing Li2 D x C i2tp

0.Dx/ and using (F.38)–(F.39) with the
roles of f1; f2 interchanged, we bound (7.90) by

t�
3
4 k Q�.t�ˇDx/ Qf1;i1kH�0kv2kH s :

By (7.75) and (7.3)–(7.4), this is smaller than

t�
3
4Cˇ�0 t�

1
2

�
t
1
4 ."2
p
t /�
�
"tı

so than the right-hand side of (7.71) if t � "�4Cc and ˇ is small enough. To study
(7.91), we decompose again Li2 as above and use (F.39) and (F.40), to obtain a bound
in

t�
1
4 k Q�.t�ˇDx/ Qf2kH�0kv2kH s :

By (7.76) for Qf2 and (7.3), (7.4), we obtain a bound by the right-hand side of (7.71).
Let us study next (7.86). If `2 D 1, we use (F.52) (with f1 and f2 interchanged)

and if `2 D 0 we use (F.58). We bound thus (7.86) by

Ct�
3
4 k.Dt � P0/ QukH s

�
tˇ�0

�
kL QukL2 C kLu

0app;1
kL2

�
C k QukH s C ku

0app;1
kH s

�
:

If we use (7.73), (7.3), (7.4), we bound this by the right-hand side of (7.71), using
again t � "�4Cc , and taking ˇ small enough.

To conclude Step 1, we still have to consider (7.83) with v1 D .Dt � P0/ Qu and
`1 D 0, i.e. to bound

t�
3
2 kK

0;`2
H;i1;i2

.Dt � i1p.Dx// Qui1 ; L
`2
i2
v2;i2

�
kH s :

Expressing Li2 and using (F.54) and (F.46), we obtain a bound in

t�
3
4 k.Dt � P0/ QukH s

�
k QukH s C ku

0app;1
kH s

�
:
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Using (7.73), (7.3), (7.4), we obtain a bound of the form (7.71). This concludes the
proof of Step 1.

Step 2: Proof of (7.72). Again, properties (E.20)–(E.22) of operator C.t/ allow us to
ignore it in the proof of the estimates. We shall have thus to bound kL OM02.v1; v2/kL2
where OM02 has structure (6.47) and v1; v2 are given by equation (7.82). If we express
L˙ D x ˙ tp

0.Dx/, we are reduced to studying

t�
1
2 kK

`1;`2
H;i1;i2

�
L
`1
i1
v1;i1 ; L

`2
i2
v2;i2

�
kL2 ; (7.92)

t�
3
2 kxK

`1;`2
H;i1;i2

�
L
`1
i1
v1;i1 ; L

`2
i2
v2;i2

�
kL2 : (7.93)

By Definition F.4.1 of the class K 0
1;1=2

.i/, xK`1;`2H;i1;i2
may be written as t

1
2 QK

`1;`2
H;i1;i2

for
another operator in K 0

1;1=2
.i/. It is thus enough to bound (7.92).

We consider first the case v1 D .Dt � P0/u
0app;1. By (F.50), (F.47), we bound (7.92)

by
Ct�

3
4

�
k.Dt � P0/u

0app;1
kH s C t

�
kL.Dt � P0/u

0app;1
kL2

�
�
�
kLu0app;1

kL2 C kL QukL2 C ku
0app;1
kL2 C k QukL2

�
for any � > 0 (if s� is large enough). Since by Proposition 4.1.2, u0app;1 satisfies
(4.46)–(4.47), we deduce from (7.3)–(7.4) an estimate better than (7.72).

Consider next the case v1 D .Dt � P0/ Qu, `1 D 1 in (7.92). We replaceL.Dt � P0/ Qu

by the right-hand side of (7.74). By (F.47) and (F.51), the f1 contribution to (7.92) is
bounded from above by

Ct�
3
4 kf1kL2

�
t�
�
kLu0app;1

kL2 C kL QukL2
�
C ku0app

kH s C k QukH s
�
:

Using (7.75), (7.3), (7.4), we get an estimate in

Ct�1
�
t
1
4 ."2
p
t /�
��
."2
p
t /� t� C "tı�

1
4

�
:

If � is small enough, and since t � "�4Cc , we get a bound of the form (7.72).
On the other hand, if we replace .Dt � P0/ Qu by xf2, (7.92) is reduced to

t�
1
2 kK

`1;`2
H;i1;i2

.xf2;i1 ; L
`2
i2
v2;i2/kL2 : (7.94)

A @�1-integration by parts in (F.25) using (F.27) shows that (7.94) is reduced to

k QK
`1;`2
H;i1;i2

.f2;i1 ; L
`2
i2
v2;i2/kL2

for a new operator in the same class. Using (F.47) and (F.51), we get a bound in

Ct�
1
4 kf2kL2

��
kLu0app;1

kL2 C kL QukL2
�
t� C ku0app;1

kH s C k QukH s
�
:

Using (7.76), (7.3), (7.4), we obtain a bound of the form (7.72).
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Consider finally the case v1 D .Dt � P0/ Qu, `1 D 0 in (7.92). By (F.47), we get
a bound of (7.92) by

Ct�
3
4 k.Dt � P0/ QukH s

�
kL QukL2 C kLu

0app;1
kL2 C k QukL2 C ku

0app;1
kL2

�
:

If we plug there (7.73) and (7.3)–(7.4), we get an estimate of the form (7.72). This
concludes the proof.

This concludes the study of terms of the form (6.65). It remains to study (6.66),
(6.67) and (6.68).

Proposition 7.3.6. The following statements hold.

(i) Denote

F.t/ D C.t/Rj . Qu; : : : ; Qu„ ƒ‚ …
`

; uapp; : : : ; uapp/; j D 3; 4; 0 � ` � j; (7.95)

with Rj of the form (6.34)–(6.35). Then there is a function e satisfying
(5.41) such that

kF.t/kH s � t
�1"tıe.t; "/; (7.96)

kL˙F.t/kL2 � t
�1
�
t
1
4 ."2
p
t /�
�
e.t; "/: (7.97)

(ii) Denote
F.t/ D C.t/R2. Qu; : : : ; Qu„ ƒ‚ …

`

; u0app;1; : : : ; u0app;1/

with 0 � ` � 2 and R2 D
�R2;C
R2;�

�
given by (6.49). Then (7.96) and (7.97)

hold.

(iii) Let F.t/ D C.t/.R.t; � /C QR3.t; � /C QR4.t; � //C QR2.t; � / with R; QRj as
in (6.68). Then (7.96) and (7.97) hold.

Proof. (i) By (6.35) and (D.32) (and the boundedness of C.t/ on H s), we bound
kF.t/kH s by

C
�
k QukW �0;1 C ku

app
kW �0;1

�j�1�
k QukH s C ku

app
kH s

�
:

As j � 3, (7.1) and (7.3) imply (7.96).
To prove (7.97), we use once again that by (E.20)–(E.22), we may ignore the fac-

tor C.t/, and have to estimateLRj inL2. This expression is a sum of quantities of the
form (6.36)–(6.38), so of the form (7.77)–(7.79) with v` D Qu˙ or v` D u0

app
˙
C u00

app
˙

.
When v1 in (7.77) is replaced by Qu˙ or u0app

˙
, we use (D.33) to estimate the L2

norm of these terms by

C
�
k QukW �0;1 C ku

app
kW �0;1

�j�1�
kL QukL2 C kLu

0app
kL2

�
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so by the right-hand side of (7.97) by (7.1)–(7.3), since j � 3. If v1 D u00app, we have
a bound by (7.81) so by

1

t
t
1
4 ."2
p
t /�
�
."2
p
t /
1
2C�

0�� tı log.1C t / log.1C t "2/
�

(7.98)

which is bounded by the right-hand side of (7.97) for ı > 0 small, �; � 0 close to 1
2

if t � "�4Cc .
Expression (7.78) is controlled as (7.77). For (7.79), we use (D.71) if at least one

of the functions vj is equal to Qu˙ or u0app
˙

, which brings the wanted estimate (7.97)
by (7.1)–(7.3). If all arguments vj are equal to u00app

˙
, we use (D.72), that brings again

an estimate of the form (7.98). This concludes the proof of (i).
(ii) Again, we may forget operator C.t/. We have to study

t�2kK
`1;`2
L;i1;i2

.L
`1
i1
v1;i1 ; L

`2
i2
v2;i2/kH s ; (7.99)

t�2kL˙K
`1;`2
L;i1;i2

.L
`1
i1
v1;i1 ; L

`2
i2
v2;i2/kL2 (7.100)

with K`1;`2L;i1;i2
in K 0

1=2;1
.i/, and v1; v2 equal to Qu or u0app;1. Since estimates (7.4) are

better than (7.3), we may argue just in the case v1 D v2 D Qu. Then (7.99) is just
(7.31) multiplied by t�

1
2 . It is then estimated by (7.32)–(7.34) multiplied by t�

1
2 and

thus by (7.35) multiplied by t�
1
2 , so by "tı�1t� ."2

p
t /� . For t � "�4Cc , this is of the

form of the right-hand side of (7.96) if � is small enough. Let us bound next (7.100).
Using the expression L˙ D x ˙ tp0.Dx/, we have to estimate

t�1kK
`1;`2
L;i1;i2

.L
`1
i1
v1;i1 ; L

`2
i2
v2;i2/kL2 ; (7.101)

t�2kxK
`1;`2
L;i1;i2

.L
`1
i1
v1;i1 ; L

`2
i2
v2;i2/kL2 : (7.102)

By (F.47), (F.50), (F.51), we bound (7.101) by

Ct�
5
4

�
kL QukL2 t

�
C k QukH s

�2
:

Using (7.3), we obtain

Ct�1.."2
p
t /� t

1
4 /t2� ."2

p
t /�

which is smaller than the right-hand side of (7.97) for t � "�4Cc if � is small enough.
Finally, to study (7.102), we notice, as after (7.38), that this expression may be

bounded by t�
1
2 times (7.101), so has the wanted bounds.

(iii) The contributions C.t/ QR3, C.t/ QR4, QR2 are estimated by (6.59), (6.54),
(6.55), so largely by the right-hand side of (7.96)–(7.97), using (7.1)–(7.3). The fact
that C.t/R satisfies these estimates follows from inequalities (5.39)–(5.40) satisfied
by R (or (6.26)–(6.27)). This concludes the proof.

We conclude this chapter summarizing the estimates we have obtained.
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Proposition 7.3.7. Let c > 0 (small) be given, 0 < � 0 < � < 1
2

with � 0 close to 1
2

. Let
T 2 Œ1; "�4Cc� and assume that we are given on Œ1; T � �R functions QuC, u0app

C ,
u00

app
C , u0app;1

C that satisfy estimates (7.1)–(7.4), for some small ı > 0, some constants
C.A;A0/, D, any " in an interval �0; "0�, and such that Qu solves (6.61). Then there
are D0 > 0, "00 2 �0; "0� such that if D � D0 and " 2 �0; "00�, for any t 2 Œ1; T �, the
L2 estimates in (7.3) may be improved to

k QuC.t; � /kH s �
D

2
"tı ; (7.103)

kLC QuC.t; � /kL2 �
D

2
t
1
4 ."2
p
t /� : (7.104)

Proof. By Corollary 6.2.5, we know that

.Dt � P0/ Vu D OR (7.105)

if we define

Vu D C.t/

�
Qu �

4X
jD3

OMj . Qu; u
app/

�
� OM02. Qu; u

0app;1/: (7.106)

By Proposition 7.1.1, Proposition 7.2.1 and the boundedness properties (E.19)–(E.22)
of C.t/, we have

k Vu � C.t/ QukH s � "t
ıe.t; "/; (7.107)

kL. Vu � C.t/ Qu/kL2 � t
1
4 ."2
p
t /�e.t; "/; (7.108)

where e satisfies (5.41).
The right-hand side OR of (7.105) is the sum of terms (6.62)–(6.68). These terms

have been estimated in Proposition 7.1.2, Proposition 7.2.3, Proposition 7.3.1, Propo-
sition 7.3.3, Proposition 7.3.4, Proposition 7.3.6, which imply that

k OR.t; � /kH s � "t
ı�1e.t; "/;

kL OR.t; � /kL2 � t
�1t

1
4 ."2
p
t /�e.t; "/:

(7.109)

By the fact that L commutes to .Dt � P0/, it follows from the energy inequality
applied to (7.105) that

k Vu.t; � /kH s � k Vu.1; � /kH s C "t
ıe.t; "/; (7.110)

kL Vu.t; � /kL2 � kL Vu.1; � /kL2 C t
1
4 ."2
p
t /�e.t; "/ (7.111)

and then, by (7.107)–(7.108) and (E.14), (E.19)–(E.22) that

k Qu.t; � /kH s � Ck Qu.1; � /kH s C "t
ıe.t; "/; (7.112)

kL Qu.t; � /kL2 � C
�
kL Qu.1; � /kL2 C k Qu.1; � /kL2

�
C t

1
4 ."2
p
t /�e.t; "/ (7.113)
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for some constant C , some new factors e.t; "/. Recall that QuC has been defined
from uC in (5.34), and that since this function is O."/ at time t D 1 in the space
¹f 2 H s W xf 2 L2º by (2.24) and (2.22), we may takeD so large that the first term
on the right-hand side of (7.112)–(7.113) is smaller than D

4
". If " is small enough, we

thus get (7.103)–(7.104) using (5.41).


