
Chapter 8

L1 estimates and end of bootstrap

The goal of this chapter is to conclude the bootstrap argument that gives our main
theorem. At the end of the preceding chapter, we have seen that assuming a priori
estimates (7.3), we could prove that the first and last ones hold with a better constant.
Here, we shall bootstrap the W �;1 bound in (7.3). Once this is done, we still have to
go back to the original unknowns of the statement of our main Theorem 2.1.1 and to
deduce from estimates of Qu and from the study made in Section 4.2 the bounds of the
quantities that appear in that theorem.

8.1 L1 estimates

One cannot deduce an L1 estimate of the form of the second inequality in (7.3) from
the Sobolev estimates satisfied by QuC; LC QuC through Klainerman–Sobolev inequal-
ities: the fact that kLC QuCkL2 admits only an O.t

1
4 / bound would be too rough in

order to do so. Instead, we deduce from the equation satisfied by Qu an ODE, that will
allow us to get the wanted L1 bound.

We shall reduce ourselves to the semiclassical framework, defining from the solu-
tion Qu D

�
QuC
Qu�

�
of (6.61) a function Qu D

� QuC
Qu�

�
by

Qu˙ D
1
p
t
Qu˙

�
t;
x

t

�
D .‚t Qu/.t; x/ (8.1)

using notation (B.15). We set h D t�1 and decompose for a given � � 0,

hhDxi
�
Qu˙ D Qu

�
˙;ƒ C Qu

�
˙;ƒc (8.2)

with according to notation (D.91)

Qu
�
˙;ƒ D OpW

h

�


�x ˙ p0.�/
p
h

��
OpW

h .h�i
�/ Qu˙; (8.3)

where 
 2 C10 .R/ has small enough support and is equal to 1 close to zero. We
denote by Qu�

˙;ƒ; Qu
�
˙;ƒc the functions corresponding to Qu�

˙;ƒ; Qu
�
˙;ƒc by a change of

variables of the form (8.1).
The contribution Qu�

˙;ƒc has nice L1 bounds by Klainerman–Sobolev estimates:

Proposition 8.1.1. For any � > 0, any s with s� large enough, one has the following
estimate:

k Qu
�
˙;ƒckL1 � Ct

� 34C�
�
kL˙ Qu˙kL2 C k Qu˙kH s

�
: (8.4)
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Proof. Translating that on Qu�
˙;ƒc , this means

k Qu
�
˙;ƒckL1 � Ch

1
4��

�
kL˙ Qu˙kL2 C kQu˙kH sh

�
:

This is just statement (D.87) in Proposition D.3.4.

We study from now on the function Qu�
˙;ƒ. We first prove some bounds for expres-

sions (5.43)–(5.49), whose sum is equal to .Dt � p.Dx// QuC. If W.t; x/ is some
function and W is defined from W by (8.1), i.e. W.t; � / D ‚tW .t; � /, we denote
by W �

ƒ the function defined by (8.3) with sign C and Qu˙ replaced by W , and we
shall call W �

ƒ the function W �
ƒ D ‚tW

�
ƒ.

Lemma 8.1.2. Let

a.t/ D

p
3

3
.aC.t/ � a�.t//; aapp.t/ D

p
3

3
.a

app
C .t/ � a

app
� .t//;

where a� D �NaC, aapp
� D �a

app
C , and where aC; a

app
C satisfy by (4.96)–(4.100)

ja
app
C .t/j � Ct

� 12
" ; jaC.t/ � a

app
C .t/j � Ct

� 32
" (8.5)

for t in the interval Œ1; T �, T � "�4Cc , where these functions are defined. Assume
moreover that on that interval, the functions QuC; u0

app
C , u00app

C satisfy (7.1)–(7.3). Then
the quantities (5.43)–(5.49) satisfy the following estimates, with a constantC depend-
ing on the constants A;A0;D in (7.1)–(7.3):

k(5.43)kW �;1 � Ct�
3
2 ."2
p
t /� ; (8.6)

k(5.44)kW �;1 � Ct�
3
2 ."2
p
t /� ; (8.7)

k(5.45)kW �;1 � Ct�
3
2 ."2
p
t /� ; (8.8)

k(5.46)�ƒkL1 � Ct
� 32C� ."2

p
t /� ; (8.9)

k(5.47)kW �;1 � Ct�
3
2 ."2
p
t /� ; (8.10)

k(5.48)kW �;1 � Ct�
3
2 ."2
p
t /� ; (8.11)

k(5.49)kW �;1 � Ct�
3
2C� ."2

p
t /� ; (8.12)

where � > 0 may be taken as small as one wants if s� is large enough (s being the
index of Sobolev estimates (7.1)–(7.3)) relatively to �, and where in (8.9) one uses the
notation W �

ƒ defined before the statement of the lemma.

Proof. We prove the inequalities separately.

Inequality (8.6). This inequality follows from (5.58) and the fact that t
� 12
" � ".

Inequality (8.7). We have seen in the proof of Proposition 5.2.1 that (5.44) is a sum
of terms of the form (5.60) or (5.61), with conditions (5.62) or (5.63), i.e. may be
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written from
Op.m/.v1; : : : ; vn/; (8.13)

where m is in QS1;0.
Qn
jD1h�j i

�1M �
0 ; n/, with n � 3 and vj equal to Qu˙ or u0app˙ or

u00
app
˙

or R (with R satisfying (5.25)–(5.26)). In particular, by Sobolev estimates, one
has

kR.t; � /kW �;1 � C

�
."2
p
t /�
0

t�
p
t

�4
"tı : (8.14)

If we apply (D.39), we obtain for the W �;1 norm of (8.13) a bound in�
k QuCkW �;1 C ku0

app
C kW �;1 C ku00

app
C kW �;1 C kRkW �;1

�2
�

�
t�
�
k QuCkW �;1 C ku0

app
C kW �;1 C ku00

app
C kW �;1 C kRkW �;1

�
C t�1

�
k QuCkH s C ku

0app
C kH s C ku

00app
C kH s C kRkH s

��
:

By (7.1)–(7.3) and (5.25), (8.14), this is smaller than the right-hand side of (8.7) (if
we use that ."2

p
t /3�

0�� t� � C for t � "�4Cc).

Inequality (8.8). Expression (5.45) to estimate has been seen to be of the form (5.71)
or (5.72), with either (5.73) or (5.74). Terms corresponding to (5.73) are of the form
(8.13) and, as we have just seen, satisfy the wanted bound. We have just to consider
expressions (5.71) or (5.72) under (5.74), i.e. quantities of the form

Op.m0/.v1; v2/; (8.15)

where m0 is in QS 01;0.
Q2
jD1h�j i

�1M �
0 ; 2/, and v1; v2 taken among Qu˙, u0app

˙
, u00app
˙

, R.
If both v1; v2 are different from u00

app
˙

, we use (D.77) with r D 2, n D 2, ` D 0. We
get a bound in

t�2C�
�
ku0

app
C kH s C k QuCkH s C kRkH s

C kLCu
0app
C kL2 C kLC QuCkL2 C kLCRkL2

�2 (8.16)

(estimating the W �0;1 norm from the H s one). It follows from (5.25) and (5.26)
that kLCRkL2 � C.t

1
4 ."2
p
t /� /. Using also (7.1) and (7.3), we estimate (8.16) by

the right-hand side of (8.8), when t � "�4Cc if � is small enough. Consider next the
case when v1 or v2 is equal to u00app

˙
. If for instance v1 D u00

app
˙

and v2 D Qu˙ or u0app
˙

or R, we apply (D.77) with n D 2, ` D 1. The first term on the right-hand side of this
expression is largely estimated by (8.8) if r is taken large enough. The second one is
smaller than

Ct�2C�
�
ku00

app
C kW �;1 C kLCu

00app
C kW �;1

�
�
�
ku0

app
C kH s C k QuCkH s C kRkH s

C kLCu
0app
C kL2 C kLC QuCkL2 C kLCRkL2

�
:

By (7.1)–(7.3) and (5.25)–(5.26), this is largely bounded by the right-hand side of
inequality (8.8).
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If v1 and v2 are both equal to u00app
˙

, we use (D.77) with ` D n D 2. We obtain
a bound in t�2C� .log.1C t //2.log.1C t "2//2 for the second contribution to the
right-hand side of (D.77). If � is small enough, this is better than (8.8) since � � 1

2
.

Inequality (8.9). It follows from (D.82) (with a large enough r) translated in the non-
semiclassical framework, that for any function W

kW
�
ƒkL

1 � C
�
t�

1
4C�kW kL2 C t

�2
kW kH s

�
: (8.17)

To estimate (8.9), we decompose expression (5.46) as the sum of (5.80)–(5.83). Con-
sider first the nonlinear quantity (5.82), that may be written as (5.85). By (D.88) and
the fact that a.t/ D O.t�1=2" /, its contribution to (8.9) is bounded from above by

t� t
� 12
"

�
kOp.m0/.v1; : : : ; vn/kW �;1 C t�rkOp.m0/.v1; : : : ; vn/kH s

�
(8.18)

for any r , if � > 0 and s� is large enough, m0 being in QS 01;0.
Qn
jD1h�j i

�1M �
0 ; n/,

2 � n � 4, vj being equal to Qu˙ or u0app
˙

or u00app
˙

. Since (8.18) involves expressions
of the form (8.13) or (8.15), we already know that the first term is estimated by the
right-hand side of (8.9). The second term is easily bounded, as r is arbitrary.

We have thus just to consider the linear expressions (5.80), (5.81), (5.83). As
a.t/ D O.t

�1=2
" /, a.t/ � aapp.t/ D O.t

�3=2
" / by (8.5), the expressions to study are

of the form

t
� 12
" Op.m0/ Qu˙;

t
� 12
" Op.m0/R;

(8.19)

t
� 32
" Op.m0/u0app

˙
;

t
� 32
" Op.m0/u00app

˙
;

(8.20)

where m0 is in QS 01;0.h�i
�1; 1/. We replace in (8.17) W by (8.19) or (8.20). It follows

from (D.71) and (D.32) with n D 1 that the contribution of (8.19) to the right-hand
side of (8.17) is bounded from above by

t�
5
4C� t

� 12
"

�
k Qu˙kH s C kRkH s C kL˙ Qu˙kL2 C kL˙RkL2

�
:

Combined with (7.1), (7.3) and (5.25)–(5.26), this gives an estimate in t�
3
2C� ."2

p
t /�

as wanted.
To study the contribution of (8.20) to the right-hand side of (8.17), we just apply

the Sobolev boundedness of Op.m0/ to get

t
� 32
" t�

1
4C�

�
ku0

app
C kH s C ku

00app
C kH s

�
:

Combining with (7.1) and (7.2), we get again the wanted bound. This concludes the
study of (8.9).



L1 estimates 143

Inequality (8.10). Expression (5.47) is made of terms of the form (5.45) or (5.44)
multiplied by the decaying factor a.t/. It is thus estimated by better quantities than
the right-hand side of (8.7)–(8.8).

Inequality (8.11). To estimate (5.48), we notice first that terms in that expression
corresponding to jI j � 2 have already been treated in the proof of (8.7) and (8.8). It
remains thus to study the linear terms, that are of the form

a.t/jOp.m0/u˙; j � 2;

with m0 in QS 01;0.h�i
�1; 1/. By expression (5.59) of uC, we shall get terms of the form

(5.82) with a.t/ replaced by a.t/2. These terms have already been considered in the
study of (8.7) and (8.8) (see (8.13) and (8.15)). We obtain also linear terms in

a.t/jOp.m0/ Qu˙; a.t/jOp.m0/u0app
˙
;

a.t/jOp.m0/u00app
˙
; a.t/jOp.m0/R

(8.21)

with j � 2. To study those terms in (8.21) of the form a.t/jOp.m0/w with w D Qu˙
or u0app

˙
or R, we use (D.77) with n D 1, ` D 0. We obtain an estimate of the W �;1

norm in

Ct�1" t�1C�
�
ku0

app
C kH s C k QuCkH s C kRCkH s

C kLC QuCkL2 C kLCu
0app
C kL2 C kLCRkL2

�
:

Combined with (7.1)–(7.2) and (5.25)–(5.26), this largely implies a bound by the
right-hand side of (8.11). Finally, the W �;1 norm of the terms in (8.21) involving
u00

app
˙

is estimated using (D.77) when n D 1; ` D 1. One obtains

Ct�1" t�1C�
�
ku00

app
C kH s C ku

00app
C kW �;1 C kLCu

00app
C kW �;1

�
which by (7.2) is also largely estimated by (8.11).

Inequality (8.12). Finally, (8.12) follows from the fact that (5.49) satisfies bounds
(4.38), that largely imply (8.12).

We may deduce from the above lemma an L1 bound for .Dt � p.Dx// QuC.

Proposition 8.1.3. Denote fC D .Dt � p.Dx// QuC and define f
C

by

fC.t; x/ D
1
p
t
f
C

�
t;
x

t

�
D ‚tf

C
.t; x/ (8.22)

using notation (B.15). According to (D.91), define

f
�
C;ƒ D OpW

h

�


�x C p0.�/
p
h

��
OpW

h .h�i
�/f

C
: (8.23)

Then, under a priori assumption (7.3) on QuC, for any � > 0, any s such that s� is
large enough, one has

kf
�
C;ƒ.t; � /kL1 � Ch

1�� ."2
p
t /� : (8.24)
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Proof. Recall that
fC D .Dt � p.Dx// QuC

is given by the sum of expressions (5.43)–(5.49). Call fC;2 contribution (5.46) and
fC;1 the sum of all other contributions. Define f �

C;j;ƒ, j D 1; 2, from f C;j as
in (8.23). Then (8.9) shows that f �

C;2;ƒ satisfies (8.24). To obtain the same estimates
for f �

C;1;ƒ, we apply (D.88) in order to bound the different contributions to f �
C;1;ƒ

in L1 from (8.6)–(8.8) and (8.10)–(8.12), using moreover (7.73) in order to estimate
the H s norm in (D.88) (taking the power N in the pre-factor hN large enough). This
concludes the proof.

We shall now write an ODE satisfied by function (8.3).

Proposition 8.1.4. Assume a priori assumptions (7.1)–(7.3). There is a real-valued
function �h, supported in ��1; 1Œ such that Qu�

C;ƒ defined by (8.3) satisfies�
Dt � �h.x/

p

1 � x2
�
Qu
�
C;ƒ D OL1

�
t�1C� ."2

p
t /�
�
; (8.25)

where � > 0 is as small as one wants (if s in estimate (7.3) is large enough relatively
to 1

�
).

Proof. Denote as in the preceding proposition fC D .Dt � p.Dx// QuC, so that

.Dt � p.Dx//
�
hDxi

�
QuC
�
D hDxi

�fC:

If f
C

is given by (8.22) and QuC by (8.1), this is equivalent to�
Dt � OpW

h

�
x� C

p
1C �2

��
OpW

h .h�i
�/ QuC D OpW

h .h�i
�/f

C
: (8.26)

We make act OpW
h .
.

xCp0.�/
p
h
// on (8.26). By (D.94) and the definition (8.3) of Qu�

C;ƒ,
we obtain �

Dt � OpW
h

�
x� C

p
1C j�j

��
Qu
�
C;ƒ D f

�
C;ƒ CR1 CR2 (8.27)

with

R1 D hOpW
h

�

�1

�x C p0.�/
p
h

��x C p0.�/
p
h

��
OpW

h .h�i
�/ QuC; (8.28)

R2 D h
3
2OpW

h .r/OpW
h .h�i

�/ QuC; (8.29)

where j@˛z
�1.z/j � C˛hzi
�1�˛ and r satisfies

j@˛1x @
˛2
�
.h@h/

kr.x; �; h/j � Ch�
˛1C˛2
2

Dx C p0.�/
p
h

E�1
: (8.30)

By [82, Lemma 4.2], R1 may be replaced by

h
1
2OpW

h

�

�1

�x C p0.�/
p
h

�
.x C p0.�//h�i��.hˇ �/

�
QuC (8.31)
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modulo a quantity estimated in L1 by

Ch
5
4��

�
kLC QuCkL2 C k QuCkH s

�
(8.32)

for some � > 0, � going to zero with ˇ. By a priori assumption (7.3) (translated
on QuC) this is estimated by the right-hand side of (8.25). By [82, estimate (4.25) of
Lemma 4.3], the L1 norm of (8.31) is also controlled by (8.32), so by the right-hand
side of (8.25).

Let us check that R2 given by (8.29) is also bounded by the same quantity. This
follows from semiclassical Sobolev injection together with the a priori Sobolev esti-
mate in (7.3). Moreover, by (8.24), the f �

C;ƒ contribution in (8.27) is also bounded
by the right-hand side of (8.25).

It remains to write the left-hand side of (8.27) as the left-hand side of (8.25),
up to some new contributions to the right-hand side of the latter. This follows from
Proposition D.3.6, where the right-hand side of the second inequality of (D.93) is
again estimated using (7.3). This concludes the proof.

8.2 Bootstrap of L1 estimates

We have shown in Proposition 7.3.7 that under a priori assumptions (7.1)–(7.4), we
could improve the Sobolev estimates in (7.3) to (7.103)–(7.104). Our first goal here
will be to improve also the L1 estimate.

Proposition 8.2.1. Assume that (7.1)–(7.3) hold true on an interval Œ1; T �. Let c > 0
be given. Then if D in (7.3) has been taken large enough, there is "0 2 �0; 1� such
that, for all " 2 �0; "0�, all 1 � t � T � "�4Cc , one has the bound

k QuCkW �;1 �
D

2

."2
p
t /�
0

p
t

: (8.33)

Proof. We have to bound hDxi� QuC in L1. By (8.1) and the notation introduced after
(8.3) for Qu�

C;ƒ, Qu�
C;ƒc , it suffices to show

k Qu
�
C;ƒkL

1 �
D

4
t�

1
2 ."2
p
t /�
0

; (8.34)

k Qu
�
C;ƒckL1 �

D

4
t�

1
2 ."2
p
t /�
0

: (8.35)

By (8.4) and a priori estimate (7.3), one may bound (8.35) byCt�
1
2C� ."2

p
t /� . Since

� 0 < � and t � "�4Cc , we bound this by the quantity Ct�
1
2 ."2
p
t /�
0

e.t; "/, where
e satisfies (5.41), if � has been taken small enough relatively to c.� � � 0/.

We are left with estimating (8.34). It is equivalent to show that

k Qu
�
C;ƒkL

1 �
D

4
."2
p
t /�
0
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if " is small enough. Computing @t j Qu
�
C;ƒ.t; x/j

2 from (8.25) and integrating in time,
we get

j Qu
�
C;ƒ.t; x/j � j Qu

�
C;ƒ.1; x/j C C

Z t

1

��1C� ."2
p
�/� d�:

If D has been taken large enough so that k Qu�
C;ƒ.1; � /kL1 �

D
8
", we get the wanted

estimate, using again that t � "�4Cc and that � may be taken small relatively to
c.� � � 0/. This concludes the proof.

Propositions 7.3.7 and 8.2.1 allowed us to bootstrap estimates (7.3). To be able to
finish the proof of the main theorem, we shall have to bootstrap as well the inequalities
satisfied by g. We prove first some technical lemmas.

Proposition 8.2.2. LetZ be a function in �.R/. Assume that the function QuC satisfies
estimate (7.3). For any neighborhood W of ¹�1; 1º in R, there is "0 > 0 (depend-
ing only on W and on the constants in (7.3)) such that for any � in R �W , there
are functions '˙.�; t/,  ˙.�; t/ defined for t 2 Œ1; "�4Cc�, " 2 �0; "0�, satisfying the
estimates

j'˙.�; t/j � t
� 12 ."2

p
t /�
0

; (8.36)

j ˙.�; t/j � t
�1."2

p
t /�
0

(8.37)

and solving the equation

.Dt � �/'˙.�; t/ D hZ; Qu˙i C  ˙.�; t/: (8.38)

Moreover, denoting hZ; Qui for the vector
�
hZ; QuCi

hZ; Qu�i

�
, one has the bound

jhZ; Quij � t�
3
4 ."2
p
t /�
0

: (8.39)

Proof. We shall use the following notation: we set f D o.g/ when we may write
jf j � jgje.t; "/ for some e.t; "/ satisfying (5.41). In particular, for any given N ,
taking " small enough, we may bound jf j by 1

N
jgj.

We prove the proposition in the case of signC. Let us show first that on the right-
hand side of (8.38), we may replace hZ; QuCi by hZ.C.t/ Qu/Ci, up to a contribution
to  C. Since ..Id � C.t// Qu/C is odd, and Z is in � , we may use (4.79) to write

hZ; ..Id � C.t// Qu/Ci D
1

t

Z 1

�1

hZ1; .L.Id � C.t// Qu/C.�x/i d�

�
1

t

Z 1

�1

hZ2; ..Id � C.t// Qu/C.�x/i�d�
(8.40)

for new functions Z1, Z2 in �.R/. By (7.3) and L2 boundedness of C.t/, the last
term is O."tı�1/ D o.."2

p
t /�
0

t�1/. It may thus be integrated to  C.�; t/. In the
first term on the right-hand side of (8.40) we write using (E.20)

L.Id � C.t// Qu D .Id � QC.t//L QuC QC1.t/ Qu:
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By (E.21), (E.22) and (7.3), we get

kL.Id � C.t// QukL2 � C."
2
p
t /�
0�
"�t�mC

1
2Cı

0

."2
p
t /���

0

C "1C��2�
0

t
1
2�mCı�

�0

2

�
:

(8.41)

As �; � 0 are fixed with � 0 < � < 1
2

and � 0 close to 1
2

, and as ı0; 1
2
�m may be taken

as small as we want, the bracket above is o.1/ when t � "�4Cc and " goes to zero.
Thus (8.41) plugged in the first term on the right-hand side of (8.40) shows that this
term is o.t�1."2

p
t /�
0

/, so satisfies (8.37). We are thus reduced to studying equation

.Dt � �/'C.�; t/ D hZ; .C.t/ Qu/Ci C  C.�; t/: (8.42)

Recall the function Vu defined in (7.106). We may write

hZ; .C.t/ Qu/Ci D hZ; VuCi C  1.t/;

 1.t/ D hZ; . OM
0
2. Qu; u

0app;1//Ci C

4X
jD3

hZ; .C.t/ OMj . Qu; u
0app;1//Ci:

(8.43)

By (7.5), we may bound the last sum by

Ct�1."2
p
t /�
0�
tı."2

p
t /�
0

"C "5�2�
0

t1�
�0

2 CıC�
�
:

As t � "�4Cc , this is smaller than the right-hand side of (8.37) (for ı; � small).
Let us show that the first term on the right-hand side of the expression of  1

satisfies also (8.37). It suffices to show that k OM02. Qu; u
0app;1/kL2 D o.t

�1."2
p
t /�
0

/.
Recall that OM02. Qu; u

0app;1/ is given by (6.60) in terms of expressions OM02
`, that have

structure (6.47), i.e. that may be written from expressions

t�
3
2K`1;`2

�
L
`1
˙
f1;˙; L

`2
˙
f2;˙

�
; (8.44)

where 0 � `1; `2 � 1, K`1;`2 is in K 0
1;1=2

.1;˙;˙/ and f1; f2 equal to Qu or u0app;1

(see (F.35)). If we apply (F.47), (F.50), (F.51), we obtain a bound for the L2 norm
of (8.44) in

Ct�
3
2�

1
4C�

�
kLC QuCkL2 C kLCu

0app;1
C kL2 C k QuCkH s C ku

0app;1
C kH s

�2
so according to (7.3) and (7.4) by

Ct�
3
2C� ."2

p
t /� t

1
4 ."2
p
t /�

which is better than (8.37). On the right-hand side of (8.42), up to incorporating
 1 to  C, we thus may replace hZ; .C.t/ Qu/Ci by hZ; VuCi, i.e. we reduced equa-
tion (8.42) to

.Dt � �/'C.�; t/ D hZ; VuCi C  C (8.45)
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for a new  C. Since VuC is odd and Z in �.R/, we may write using (4.79) again

hZ; VuCi D
1

t

Z 1

�1

hZ1; .LC VuC/.�� /i d� �
1

t

Z 1

�1

hZ2; VuC.�� /i�d� (8.46)

for new functions Z1; Z2 in the space �.R/. By inequality (7.110), the last term is
O."tı�1/ D o.."2

p
t /�
0

t�1/. It may thus be incorporated to  C.�; t/. We decom-
pose the first integral on the right-hand side of (8.46) as I1 C I2, with

I2 D

Z 1

�1

D
Z1;

�
�
�p

t
�
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q
1CD2
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q
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���
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��
; LC VuC

E d�
�
;

(8.47)

where � 2 C10 .R/ is real valued, equal to one close to zero. By Cauchy–Schwarz,

jI2j �

Z 1

�1




��pt�� �q1CD2
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���
Z1
�
�

�

��



L2

d�

�
kLC VuCkL2 : (8.48)

Since � 62 W , k�.
p
t .� �

p
1C �2//kL2.d�/ D O.t

� 14 /, so that the L2 norm inside
the above integral is bounded by

Ct�
1
4




Z1� �
�

�



L1
D O.�C t�

1
4 /:

By (7.111), it follows that the contribution of I2 to the first term in (8.46) satisfies
(8.37), so may be incorporated to  C. We have thus written by (8.40) and (8.46)

hZ; VuCi D
1

t
I1 C  

1
C; (8.49)

where  1C satisfies the same estimates as  C (with an arbitrary small multiplicative
constant on the right-hand side) and

I1 D

Z 1

�1

D
Z1;

�
.1 � �/

�p
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� �

q
1CD2

x

��
.LC VuC/

�
.�� /

E
d�: (8.50)

We thus reduced (8.45) to

.Dt � �/'C.�; t/ D
1

t
I1 C  C.�; t/ (8.51)

for a new  C. We define
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1

t

Z 1

�1

�
Z1;

�
.1 � �/

�p
t .� �

p
1CD2

x/
�p

1CD2
x � �

LC VuC

�
.�� /

�
d�

C D
1
p
t

Z 1

�1

D
�1

�p
t .� �

q
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Z1
�
�

�

��
; LC VuC

E d�
�
;

(8.52)
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where �1.z/ D
�.z/�1
z

. Arguing as in (8.48) and using inequality (7.111), we obtain
that 'C.�; t/ satisfies (8.36). If we compute .Dt � �/'C.�; t/, we get the following
terms:

i

t
'C.�; t/; (8.53)

1

t

Z 1

�1

�
Z1;

�
.1��/

�p
t .��

p
1CD2

x/
�p

1CD2
x��

.Dt �p.Dx//LC VuC

�
.�� /

�
d�; (8.54)

1

t
I1.t/; (8.55)
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D
Z1;

�
�0
�p
t .� �

q
1CD2

x/
�
LC VuC

�
.�� /

E
d�: (8.56)

According to (8.51), we shall have proved (8.38) (in the case of sign C) if we show
that (8.53), (8.54), (8.56) satisfy estimates (8.37), with a small constant in front of the
right-hand side of this inequality. For (8.53), this follows from (8.52) and (8.36). We
may rewrite (8.54) as

1
p
t

Z 1

�1

D
�1

�p
t .� �

q
1CD2

x/
��
Z1
�
�

�

��
; .Dt �

q
1CD2

x/LC VuC

E d�
�
:

Arguing as in (8.48), we estimate that by

Ct�
3
4 k.Dt �

q
1CD2

x/LC VuCkL2 :

Since LC commutes to .Dt �
p
1CD2

x/, it follows from (7.105) and (7.109) that
this is bounded by

t�
3
2 ."2
p
t /�e.t; "/ D o.t�1."2

p
t /�
0

/

which implies an estimate of the form (8.37). Finally, (8.56) is bounded by

Ct�
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kLC VuCkL2

d�
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� Ct�
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according to (7.111). This is again better than needed.
Finally, estimate (8.39) follows from (8.40) (that is bounded by (8.37)), (8.43),

the fact that  1 is o.t�1."2
p
t /�
0

/, (8.46) were we plug (7.110) and (7.111). This
concludes the proof.

Our next task will be to show that a priori assumptions (7.1)–(7.3) imply that
inequalities (4.92)–(4.93) that we assume in Section 4.2 in order to get estimates for
the solution of the ODE (4.94), hold.

Lemma 8.2.3. Assume that estimates (7.1)–(7.3) hold. Then inequality (4.92) is true,
with a constant B 0 depending only on the constants A;A0;D in (7.1)–(7.3).
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Proof. We divide the proof into two steps.

Step 1. Consider first the contribution ˆ2 on the left-hand side of (4.92). Recall that
ˆ2 is given by (2.36), (2.38) so may be written as a sum of terms“

eix.�1C�2/m0.x; �1; �2/ Ou˙.�1/ Ou˙.�2/ d�1 d�2 dx (8.57)

with
m0.x; �1; �2/ D �.x/Y.x/b.x; �1/b.x; �2/p.�1/

�1p.�2/
�1:

By estimates (A.8) satisfied by b, and the fact that Y is in �.R/, we have that m0

belongs to QS 00;0.
Q2
jD1h�j i

�1; 2/ and ˆ2 is thus a sum of expressionsZ
Op.m0/.u˙; u˙/ dx:

On the other hand, recall that uC is related to QuC by (5.59), with a remainder R
satisfying (5.25) and (5.26). By Corollary B.2.6, we get that (8.57) may be written as
a sum of expressions Z

Op. Qm0/.v1; : : : ; vn/ dx (8.58)

where n � 2 and vj is equal to u0app
˙

or u00app
˙

, or Qu˙ or R, with a symbol Qm0 in
QS 01;0.

Q2
jD1h�j i

�1M �
0 ; 2/ for some �.

Consider first the case when at least one of the arguments vj , say the last one, is
not equal to u00app

˙
. Since Qm0 is rapidly decaying as hM0.�/

�1jyji�N , we may estimate
(8.58) from theL2 norm of the integrand. If n D 2, we use (D.76) when v1 is different
from u00

app
˙

and (D.75) if v1 D u00
app
˙

. We obtain for (8.58) a bound in

Ct�2C�
�
kLC QuCkL2 C kLCu

0app
C kL2 C kLCRkL2 C k QuCkH s C ku

0app
C kH s

C kRkH s C kLCu
00app
C kW �0;1 C ku

00app
C kW �0;1

�
�
�
kLC QuCkL2 C kLCu

0app
C kL2 C kLCRkL2 C k QuCkH s

C ku0
app
C kH s C kRkH s

�
:

(8.59)

We plug there (7.1)–(7.3) and (5.25)–(5.26). We obtain a bound in t�
3
2C� ."2

p
t /2� .

As � > � 0 and t � "�4Cc , we see that if � is small enough, this is smaller than the
right-hand side of (4.92).

If n � 3 in (8.58), and again at least one vj , say the last one, is different from
u00

app
˙

, we use Corollary D.2.8. By (D.71), we estimate then (8.58) by

Ct�1
�
ku0

app
C kW �0;1 C ku

00app
C kW �0;1 C k QuCkW �0;1 C kRCkW �0;1

�n�1
�
�
kLC QuCkL2 C kLCu

0app
C kL2 C kLCRkL2 C k QuCkL2

C ku0
app
C kL2 C kRkL2

�
:

Using (7.1)–(7.3) and (5.25) (together with Sobolev injection), (5.26), we get a bound
in t�2."2

p
t /2�

0

."2
p
t /� t

1
4 , which is better than what we want.
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It remains to study (8.58) when all arguments vj are equal to u00app
˙

. Again by the
rapid decay in x of the symbol Qm0, it is enough to control the L1 norm of the inte-
grand (up to changing the definition of Qm0). We may use then (D.77) with n D ` � 2.
We obtain a bound in

t�2C�
�
ku00

app
C kW �0;1 C kLCu

00app
C kW �0;1 C t

� 12 ku00
app
C kH s

�2
: (8.60)

Using (7.2) and the fact that � 0 < 1
2

, � � 1, one controls that by t�
3
2 ."2
p
t /2�

0

for
t � "�4Cc . This concludes the proof of (4.92) for contribution ˆ2.

Step 2. We study next the term t
� 32C

j
2

" �j .uC; u�/ in (4.92), for 1 � j � 3. Recall
that �j is given by (2.36)–(2.39). It has thus again the structure (8.58) with n D j ,
as it follows from the expression (5.59) of uC in terms of uapp

C ; QuC; R and the com-
position results of Appendix B. If j � 2, our preceding reasoning implies the wanted
bound. We thus just have to consider

t�1"

Z
Op. Qm0/.v/ dv (8.61)

with Qm0 in QS 01;0.h�i
�1; 1/ and v D u0app

˙
; u00

app
˙
; Qu˙; R. When v is not equal to u00app

˙
,

we use (D.71) in order to bound (8.61) by
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which by (7.1)–(7.3) and (5.25)–(5.26) is bounded from above by t�1" t�1."2

p
t /� t

1
4 .

One checks that this quantity is O.t�
3
2 ."2
p
t /2�

0

/ using � 0 < � < 1
2

.
If v in (8.61) is equal to u00app

˙
, we bound (8.61) by

Ct�1" kOp. Qm0/vkL1

(for a new symbol Qm0). We use (D.77) to get a bound in

t�1" t�1C�
�
ku00

app
C kW �0;1 C kLCu

00app
C kW �0;1 C t

� 12 ku00
app
C kH s

�
: (8.62)

Using (7.2), one bounds the bracket by t�
0

t
1
4 ."2
p
t /
1
2 for any � 0 > 0. As t � "�4Cc ,

one concludes that if �; � 0 are small enough, (8.62) is O.t�
3
2 ."2
p
t /2�

0

/. This con-
cludes the proof of the lemma.

We show next that a priori assumptions (7.1)–(7.3) imply as well estimates (4.93).

Lemma 8.2.4. Assume that estimates (7.1)–(7.3) hold true. Then inequality (4.93)
holds true with a constant B 0 depending only on A;A0;D in (7.1)–(7.3).

Proof. Recall that ˆ1.uC; u�/ is given by (2.36), i.e. taking (2.37) into account, by
p
3

3
hY; Y.x/�.x/b.x;Dx/p.Dx/

�1.uC � u�/i: (8.63)
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Expressing uC using (5.59), we get that, if we define

Z D

p
3

3
p.Dx/

�1b.x;Dx/
�.�.x/Y.x/2/;

the term inside the modulus on the left-hand side of (4.93) may be written as the
sum of an expression hZ;Ri with R satisfying (5.25) and of expressions of the form
(8.58) with n � 2. We have seen that these last quantities may be bounded by (8.59)
or (8.60), and thus by the right-hand side of (4.93). On the other hand, by (5.25)
hZ;Ri is also O.t�

3
2 ."2
p
t /2�

0

/. This concludes the proof.

Corollary 8.2.5. Assume that estimates (7.1)–(7.3) hold true. Then Assumption .H 01/
of Section 4.2 holds.

Proof. We have seen that by Lemmas 8.2.3 and 8.2.4, inequalities (4.92) and (4.93)
hold. It remains to check that for any � 2 R � ¹�1; 1º, there are functions '˙.�; t/,
 ˙.�; t/ as at the end of the statement of condition .H 01/. But this is exactly the
statement of Proposition 8.2.2.

8.3 End of bootstrap argument

We give here the proof of Theorem 2.1.1. We shall have to gather all estimates we
proved in the preceding chapters. We first restate the main estimates in Theorem 2.1.1.

Proposition 8.3.1. There is �0 in N and for any � � �0, any c 2 �0; 1Œ, any � 0 2 �0; 1
2
Œ

close to 1
2

, any large enoughN 2N, there are "0 > 0, C > 0 such that if 0 < " < "0,
the solution ' of equation (2.11) with odd initial conditions with bounds (2.10) satis-
fies for t 2 Œ1; "�4Cc� the following estimates (using notation (2.7) and (2.8)):

kPac'.t; � /kW �;1 � Ct�
1
2 ."2
p
t /�
0

;

khxi�2NPac'.t; � /kW �;1 � Ct�
3
4 ."2
p
t /�
0

;

khxi�2NDtPac'.t; � /kW ��1;1 � Ct�
3
4 ."2
p
t /�
0

(8.64)

and a.t/ may be written as a.t/ D eit
p
3
2 gC.t/ � e

�it
p
3
2 g�.t/ with

jg˙.t/j � C".1C t "
2/�

1
2 ;

j@tg˙.t/j � C"t
� 12 .1C t "2/�

1
2 :

(8.65)

Proof. Recall that we have defined in (2.18) and (2.19)

w D b.x;Dx/
�Pac'; Pac' D b.x;Dx/w: (8.66)

We have introduced in (2.24)

uC D .Dt C p.Dx//w: (8.67)
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We shall prove the following inequalities, where the last two ones are just the restate-
ment of (8.65):

kuC.t; � /kW �;1 � Ct�
1
2 ."2
p
t /�
0

;

kuC.t; � /kH s � C"t
ı

(8.68)

and
jg˙.t/j � C".1C t "

2/�
1
2 ;

j@tg˙.t/j � C"t
� 12 .1C t "2/�

1
2 :

(8.69)

We shall deduce these estimates from bounds on QuC that we establish by boot-
strap of (7.3). Actually, let us show that if (7.3) holds on some interval Œ1; T � with
T � "�4Cc with a constantD, then it still holds withD replaced by D

2
, as soon asD

has been fixed large enough, and " smaller than some "0 (depending on D). Proposi-
tion 7.3.7 shows that this statement holds for the Sobolev and L2 estimate as soon as
bounds (7.1), (7.2), (7.4) hold true (with constants A;A0 that may depend on D). By
Proposition 8.2.1, the W �;1 estimate of QuC may also be bootstrapped.

Let us next show that we may bootstrap as well estimate (4.99) on g. Accord-
ing to Proposition 4.2.1, we may do so as soon as Assumption .H 01/ holds true. By
Corollary 8.2.5, this follows under a priori conditions (7.1)–(7.3). Property (7.3) is
the bootstrap assumption. On the other hand, (7.1), (7.2), (7.4) hold, for convenient
constants C.A;A0/ by Proposition 4.1.2 as soon as (4.3)–(4.7) hold. The first of these
inequalities is the bootstrap assumption (4.99) on g. The other ones are (8.36)–(8.39),
that, according to Proposition 8.2.2, hold under the bootstrap assumption (7.3).

Let us now deduce (8.68) from estimates (7.1)–(7.3) and (4.3), that hold on
Œ1; "�4Cc� for " small, according to our bootstrap assumption. Recall that uC is given
by (5.59) (or (5.24)) by

uC D u
0app
C C u

00app
C C QuC C

X
2�jI j�4

ID.I 0;I 00/

Op. QmI /. QuI 0 ; u
app
I 00 /CR; (8.70)

where R satisfies (5.25). This (and Sobolev injection) shows that R satisfies better
bounds than those given by (8.68). By (7.1)–(7.3), the first three terms in (8.70) satisfy
also the wanted bounds. Finally, the terms in the sum are also estimated by these
bounds using (7.1)–(7.3) and (D.32), (D.39).

Let us check inequalities (8.69). Recall that a.t/ D
p
3
3
.aC.t/ � a�.t//, where

a� D �aC and aC is given by (4.96). We set then, using notation (4.97) and (4.98),
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p
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3
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p
3
2 .a
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and g�.t/ D �gC.t/. It follows from the expressions of aapp
C ; S and (4.97)–(4.101)

that
gC.t/ D O

�
t
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�
; @tgC.t/ D O

�
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" t�

1
2

�
:
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It remains to prove (8.64). By (2.19) and (2.24),

Pac' D b.x;Dx/w D
1

2
b.x;Dx/p.Dx/

�1.uC � u�/: (8.72)

By Proposition D.1.5, the operator b.x;Dx/p.Dx/�1hDxi�˛ is bounded on W �0;1

if ˛ > 0. It follows that the first estimate (8.64) follows from (8.68) if we modify the
value of � on the left-hand side of (8.64).

To obtain the weighted estimates in (8.64), let us write from (8.72) and (2.24)

hxi�2NPac' D
1

2
hxi�2N b.x;Dx/p.Dx/

�1.uC � u�/; (8.73)

hxi�2NDtPac' D
1

2
hxi�2N b.x;Dx/.uC C u�/: (8.74)

On the right-hand side of (8.73), we replace uC by its expression (8.70). We have to
bound the following quantities:
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app
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�1
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C kW �;1 ; (8.76)X
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I 00 /kW �;1 ; (8.77)

khxi�2N b.x;Dx/p.Dx/
�1RkW �;1 : (8.78)

IfN D 2, the assumptions of Proposition D.2.5 with n D 1 are satisfied. We may thus
apply Corollary D.2.11 with ` D 0. Taking into account (7.1) and (7.3), we obtain for
(8.75) a bound in

t�
3
4C� ."2

p
t /� C t�1
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p
t /�
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p
t

:

For (8.76), we apply also Corollary D.2.11, but with ` D 1. We obtain by (7.2)
a bound in

t�1C� log.1C t / log.1C t "2/ D O
�
t�

3
4C2� ."2

p
t /
1
2

�
:

modulo a bound in t�1 ."
2
p
t/�
0

p
t

. To estimate (8.77), we use again Corollary D.2.11,
with n D jI j and ` equal to the number of arguments equal to u00app

˙
, n � ` equal to

the number of arguments equal to Qu˙ or u0app
˙

. If N is taken large enough, we get
better estimates than those holding for (8.75) and (8.76). Finally, Sobolev injection
and (5.25) provide for (8.78) a better upper bound than the one in (8.64). We thus got
estimates of khxi�NPac'.t; � /kW �;1 in t�

3
4 ."2
p
t /�
0

since � is as small as we want,
t � "�4Cc , and � < 1

2
. This implies the second inequality of (8.64).

The proof of the last inequality (8.64) is similar, starting from (8.74).


