
Appendix A

Scattering for time independent potential

This appendix is devoted to the construction of wave operators for a Schrödinger
operator of the form

A D �
1

2

d2

dx2
C V.x/;

where V is a real-valued potential in �.R/. If WC stands for the wave operator
defined by (A.5) below, one knows that WCW �C D Pac; W

�
CWC D IdL2 , where Pac

is the spectral projector associated to the absolutely continuous spectrum of A. More-
over, one has the intertwining property

W �CAWC D �
1

2

d2

dx2
:

Our main result below is that, under convenient assumptions on V , operator WC
acting on odd functions may be represented from pseudo-differential operators (see
Proposition A.1.1). Let us mention that, even if we give quite complete proofs, our
approach here is not original, and that we strongly rely on the classical paper of Deift
and Trubowitz [17] and on the work of Weder [85].

A.1 Statement of main proposition

We consider V W R! R a potential belonging to �.R/. Then the operator

�
1

2
�C V D �

1

2

d2

dx2
C V

is a self-adjoint operator whose spectrum is made of an absolutely continuous part,
equal to Œ0;C1Œ, and of finitely many negative eigenvalues (see [17]). For � in R,
we define the Jost function f1.x; �/ (resp. f2.x; �/) as the unique solution to

�
d2

dx2
f C 2V.x/f D �2f (A.1)

that satisfies f1.x; �/ � eix� when x goes to C1 (resp. f2.x; �/ � e�ix� when x
goes to �1). We set

m1.x; �/ D e
�ix�f1.x; �/;

m2.x; �/ D e
ix�f2.x; �/:

(A.2)

We shall say that the potential V is generic ifZ C1
�1

V.x/m1.x; 0/ dx ¤ 0: (A.3)
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Notice that the above integral is convergent as m1.x; �/ is bounded when x goes to
C1 and has at most polynomial growth as x goes to �1 (see [17, Lemma 1] and
Lemma A.1.1 below). We say that V is very exceptional ifZ C1

�1

V.x/m1.x; 0/ dx D 0 and
Z C1
�1

V.x/xm1.x; 0/ dx D 0: (A.4)

If one sets V.x/ D �3
4

cosh�2.x
2
/, as for the potential of interest in this paper (see

equation (2.5)), it is proved in [13, Lemma 2.1] that the transmission coefficient of
this potential satisfies T .0/ D 1 (see [17] or below for the definition of the transmis-
sion coefficient). This implies on the one hand that (A.3) does not hold (as (A.3) is
equivalent to T .0/ D 0 – see [17, 85] or (A.32) below) and that moreoverZ

xV.x/m1.x; 0/ dx D 0;

i.e. that (A.4) holds, as follows from (A.26) and (A.31).
We denote byWC the wave operator associated to A D �1

2
�C V , defined as the

strong limit
WC D s � lim

t!C1
eitAe�itA0 ; (A.5)

where A0 D �12�. One knows (see Weder [85] and references therein) that

WCW
�
C D Pac; W �CWC D IdL2 ; (A.6)

where Pac is the orthogonal projector on the absolutely continuous spectrum and,
more generally, that if b is any Borel function on R,

b.A/Pac D WCb.A0/W
�
C; b.A0/ D W

�
Cb.A/WC: (A.7)

Notice that since A and A0 preserve the space of odd functions, so do WC; W �C . For
odd w, we shall obtain an expression for WCw given by the following proposition.

Proposition A.1.1. Assume that V is an even potential that is either generic or very
exceptional. Let �˙ be smooth functions, supported for ˙x � �1, with values in
the interval Œ0; 1�, with ��.x/ D �C.�x/, �C.x/C ��.x/ � 1. There are an odd
smooth real-valued function � , and a smooth function .x; �/ 7! b.x; �/ satisfyingˇ̌

@
ˇ

�
b.x; �/

ˇ̌
� Cˇ for all ˇ 2 N;ˇ̌

@˛x@
ˇ

�
b.x; �/

ˇ̌
� C˛ˇN hxi

�N for all ˛ 2 N�; ˇ 2 N; N 2 N;
(A.8)

and
b.x;��/ D b.x; �/; b.�x;��/ D b.x; �/ (A.9)

such that if we set c.�/ D ei�.�/1�>0 C e�i�.�/1�<0, then for any odd function w,

WCw D b.x;Dx/ ı c.Dx/w (A.10)

with
b.x;D/v D

1

2�

Z
eix�b.x; �/ Ow.�/ d�:
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A.2 Proof of main proposition

We shall give here the proof of Proposition A.1.1, relying on the results of Deift and
Trubowitz [17] and Weder [85].

If V is a real-valued even potential, the Jost functions satisfy by uniqueness
f1.�x; �/ D f2.x; �/ so that (A.2) implies that

m1.�x; �/ D m2.x; �/: (A.11)

By [17, Lemma 1], m1 solves the Volterra equation

m1.x; �/ D 1C

Z C1
x

D�.x
0
� x/2V.x0/m1.x

0; �/ dx0 (A.12)

where

D�.x/ D

Z x

0

e2ix
0� dx0 D

e2ix� � 1

2i�
: (A.13)

If V is in �.R/, then [17, Lemma 1 (ii)] shows thatˇ̌
@˛x@

ˇ

�
.m1.x; �/ � 1/

ˇ̌
� C˛ˇN hxi

�N
h�i�1�ˇ for all x > �M; � 2 R;ˇ̌

@˛x@
ˇ

�
.m2.x; �/ � 1/

ˇ̌
� C˛ˇN hxi

�N
h�i�1�ˇ for all x < M; � 2 R;

(A.14)

holds for m1 (and thus also for m2) when ˛ D ˇ D 0. To get also estimates for the
derivatives, we need to establish the following lemma, whose proof relies on the same
ideas as in [17]:

Lemma A.2.1. Denote for any ˇ;N in N by �ˇN .x/ a smooth positive function
such that �ˇN .x/ D hxi

�N for x � 1 and �ˇN .x/ D hxi
ˇ for x � �1. Then for any

N; ˛; ˇ in N, there is C > 0 such that for any � with Im � � 0, any x,ˇ̌
@˛x@

ˇ

�
.m1.x; �/ � 1/

ˇ̌
� C�

ˇC1
N .x/h�i�1�ˇ : (A.15)

Proof. Following the proof of [17, Lemma 1], we write

m1.x; �/ D 1C

C1X
nD1

gn.x; �/ (A.16)

with

gn.x; �/ D

Z
x�x1�����xn

nY
jD1

D�.xj � xj�1/2V .xj / dx1 � � � dxn; (A.17)

using the convention x0 D x. Set �.x/ D �10.x/ and

K�.y; y
0/ D D�.y � y

0/�.y0/�12V.y/�.y/:
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Then we may rewrite gn as

gn.x; �/ D �.x/

Z
x�x1�����xn

nY
jD1

K�.xj ; xj�1/�.xn/
�1 dx1 � � � dxn;

or equivalently

gn.x; �/ D �.x/

Z
y1�0;:::;yn�0

nY
jD1

K�.x C y1 C � � � C yj ; x C y1 C � � � C yj�1/

��.x C y1 C � � � C yn/
�1 dy1 � � � dyn: (A.18)

By (A.13), we have ˇ̌
@
ˇ

�
D�.y/

ˇ̌
� Cˇ h�i

�1
hyi1Cˇ :

Fix some integer m. The definition of K� implies that for ˛ C ˇ � mˇ̌
@˛x@

ˇ

�
K�.x C y1 C � � � C yj ; x C y1 C � � � C yj�1/

ˇ̌
� C h�i�1�.x C y1 C � � � C yj�1/

�1
hx C y1 C � � � C yj i

�1�ˇ

�W.x C y1 C � � � C yj /hyj i
1Cˇ ;

(A.19)

where W is some smooth rapidly decaying function. When y1 � 0; : : : ; yj � 0, we
may bound

hyj i
1Cˇ�.x C y1 C � � � C yj�1/

�1
hx C y1 C � � � C yj i

�1�ˇ
� C�.x/ˇ :

Consequently, (A.18) implies that

j@˛x@
ˇ

�
gn.x; �/j � C�.x/

ˇC1
h�i�n

�

Z
y1�0;:::;yn�0

nY
jD1

W.x C y1 C � � � C yj / dy1 � � � dyn:
(A.20)

Define G.x/ D
R C1
x

W.z/ dz, so that the last integral above may be written

.�1/n�1
Z
y1�0;:::;yn�1�0

n�1Y
jD1

G0.x C y1 C � � � C yj /

�G.x C y1 C � � � C yn�1/ dy1 � � � dyn�1 D
1

nŠ
G.x/n:

As jG.x/j � CN�0N .x/ for any N , it follows from (A.20) that, for any N ,

j@˛x@
ˇ

�
gn.x; �/j �

C nC1N

nŠ
h�i�n�

ˇC1
N .x/: (A.21)

If we sum for n � ˇ C 1, we get a bound by the right-hand side of (A.15).
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We are thus left with studying

ˇX
nD1

@˛x@
ˇ

�
gn.x; �/: (A.22)

Notice that (A.21) summed for n D 1; : : : ; ˇ gives, when j�j � 1, estimate (A.15) for
(A.22) as well. Assume from now on that j�j � 1 and let us prove by induction on
n D 1; : : : ; ˇ that j@˛x@

ˇ

�
gn.x; �/j is bounded by the right-hand side of (A.15). We

may write from (A.17)

gn.x; �/ D

Z
x�x1

D�.x1 � x/2V.x1/gn�1.x1; �/ dx1

D

Z
y1�0

D�.y1/2V .y1 C x/gn�1.y1 C x; �/ dy1

(A.23)

with g0 � 1. We use in (A.23) the last expression (A.13) for D� . We have then to
consider two kind of terms. The first one isZ

y1�0

e2iy1�

�
2V .y1 C x/gn�1.y1 C x; �/ dy1

D �
1

2i�2
2V.x/gn�1.x; �/

�

Z
y1�0

e2iy1�

2i�2
@y1
�
2V.y1 C x/gn�1.y1 C x; �/

�
dy1:

Repeating the integrations by parts, we end up with contributions that, according
to the induction hypothesis (and the fact that g0 � 1), satisfy estimates of the form
(A.15) (with �ˇN .x/ replaced by hxi�N ), and an integral term of the formZ

y1�0

e2iy1�

�MC1
@My1

�
2V.y1 C x/gn�1.y1 C x; �/

�
dy1 (A.24)

forM as large as we want. IfM D ˇ, we see that (A.24) satisfies (A.15). The second
type of terms coming from (A.23) to consider is

1

�

Z
y1�0

2V.y1 C x/gn�1.y1 C x; �/ dy1

which trivially satisfies (A.15) by the induction hypothesis applied to gn�1. This con-
cludes the proof.

In order to obtain the representation (A.10) for WCw, when w is odd, we recall
first the definition of the transmission and reflection coefficients. The Wronskian of
.f1.x; �/; f1.x;��// (resp. .f2.x; �/; f2.x;��//) is non-zero for any � in R� (see
[17, p. 144]), so that, for real � ¤ 0, we may find unique coefficients T1.�/; T2.�/
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non-zero, R1.�/; R2.�/ such that

f2.x; �/ D
R1.�/

T1.�/
f1.x; �/C

1

T1.�/
f1.x;��/

f1.x; �/ D
R2.�/

T2.�/
f2.x; �/C

1

T2.�/
f2.x;��/:

(A.25)

By [17, Theorem I], these functions extend as smooth functions on R, and they satisfy
the following properties:

T1.�/ D T2.�/
def
D T .�/;

T .�/R2.�/CR1.�/T .�/ D 0;

jT .�/j2 C jRj .�/j
2
D 1; j D 1; 2;

T .�/ D T .��/; Rj .�/ D Rj .��/:

(A.26)

If the potential V is even, we have seen that

f1.�x; �/ D f2.x; �/;

so that, plugging this equality in the first relation of (A.25), comparing to the second
one, and using that T1 D T2, we conclude that

R1.�/ D R2.�/: (A.27)

We denote by R.�/ this common value. The integral representations of the scattering
coefficients (see [17, p. 145])

R.�/

T .�/
D

1

2i�

Z
e2ix�2V.x/m1.x; �/ dx;

1

T .�/
D 1 �

1

2i�

Z
2V.x/m1.x; �/ dx

(A.28)

together with (A.15) and the fact that V 2 �.R/, show that for any N;ˇ,

@
ˇ

�
R.�/ D O.h�i�N /; @

ˇ

�
.T .�/ � 1/ D O.h�i�1�ˇ /: (A.29)

We need the following lemma:

Lemma A.2.2. The functions T;R satisfy

T .0/ D 1CR.0/ (A.30)

in the following two cases:
� The generic case

R
V.x/m1.x; 0/ dx¤ 0.

� The very exceptional case
R
V.x/m1.x; 0/ dxD 0 and

R
V.x/xm1.x; 0/ dxD 0.
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Proof. Summing the two equalities (A.28) and making an expansion at � D 0 using
(A.15), we get

R.�/C 1 D T .�/

�
1 �

1

i�

Z C1
�1

V.x/m1.x; �/ dx

C
1

i�

Z C1
�1

e2ix�V.x/m1.x; �/ dx

�
D T .�/

�
1C 2

Z C1
�1

xV.x/m1.x; 0/ dx CO.�/

�
; � ! 0;

so that

R.0/C 1 � T .0/ D 2T .0/

Z C1
�1

xV.x/m1.x; 0/ dx: (A.31)

In the generic case, by (A.28),

T .�/ D i�

�
�

Z C1
�1

V.x/m1.x; 0/ dx CO.�/

��1
; � ! 0; (A.32)

so that T .0/ D 0. This shows that (A.31) vanishes in the two considered cases.

Proof of Proposition A.1.1. We have to prove that WC acting on odd functions is
given by (A.10). Recall (see for instance Weder [85] formula (2.20), Schechter [74])
that WCw is given by

WCw D F
�
C Ow; (A.33)

where F �C is the adjoint of the distorted Fourier transform, given by

F �Cˆ D
1

2�

Z
 C.x; �/ˆ.�/ d�; (A.34)

where
 C.x; �/ D 1�>0T .�/f1.x; �/C 1�<0T .��/f2.x;��/: (A.35)

Let �˙ be the functions defined in the statement of Proposition A.1.1 and write

 C.x; �/ D �C.x/ C.x; �/C ��.x/ C.x; �/:

Replace in �C C (resp. �� C)  C by (A.35), where we express f2 from f1 (resp.
f1 for f2) using the first (resp. second) formula (A.25). We get, using notation (A.2),

 C.x; �/ D �C.x/
�
eix�

�
T .�/m1.x; �/1�>0 Cm1.x; �/1�<0

�
C e�ix�R.��/m1.x;��/1�<0

�
C ��.x/

�
eix�

�
m2.x;��/1�>0 C T .��/m2.x;��/1�<0

�
C e�ix�R.�/m2.x; �/1�>0

�
:

(A.36)
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Using (A.11), we deduce from (A.33), (A.34) and (A.36) that

WCw D
1

2�

Z
eix�e1.x; �/ Ow.�/ d� C

1

2�

Z
e�ix�e2.x; �/ Ow.�/ d� (A.37)

with

e1.x; �/ D �C.x/m1.x; �/
�
T .�/1�>0 C 1�<0

�
C ��.x/m1.�x;��/

�
1�>0 C T .��/1�<0

�
;

e2.x; �/ D �C.x/R.��/m1.x;��/1�<0 C ��.x/R.�/m1.�x; �/1�>0:

(A.38)

If w is odd, we may rewrite (A.37) as

WCw D
1

2�

Z
eix�a.x; �/ Ow.�/ d�

with

a.x; �/ D e1.x; �/ � e2.x;��/

D �C.x/m1.x; �/
�
.T .�/ �R.�//1�>0 C 1�<0

�
C ��.x/m1.�x;��/

�
1�>0 C .T .��/ �R.��//1�<0

�
:

(A.39)

By properties (A.26), jT .�/ �R.�/j2 D 1 and by (A.30), T .0/ �R.0/ D 1. We
may thus find a unique smooth real-valued function �.�/, satisfying �.0/ D 0, such
that T .�/ �R.�/ D e2i�.�/. Moreover, using (A.26), one gets that � is odd, and by
(A.29) it satisfies @ˇ�.�/ D O.h�i�1�ˇ /. We define

c.�/ D ei�.�/1�>0 C e
�i�.�/1�<0 (A.40)

so that in (A.39)

.T .�/ �R.�//1�>0 C 1�<0 D e
i�.�/c.�/;

1�>0 C .T .��/ �R.��//1�<0 D e
�i�.�/c.�/

and a.x; �/ D b.x; �/c.�/, where b is a smooth function satisfying (A.8) given by

b.x; �/ D �C.x/m1.x; �/e
i�.�/
C ��.x/m1.�x;��/e

�i�.�/:

We thus got WCw D b.x;Dx/ ı c.Dx/w for odd w. Moreover, the definition of f1
and m1 shows that f1.x; �/ D f1.x;��/;m1.x; �/ D m1.x;��/, so that it follows
from the expression of b that equalities (A.9) hold.

Remarks. We make the following observations.
� The proof of the last result shows that b satisfies better estimates than those writ-

ten in (A.8): Actually, on the right-hand side of these inequalities, one could insert
a factor h�i�ˇ . We wrote the estimates without this factor because we shall have
in any case to consider also more general classes of symbols, for which only (A.8)
holds.



Proof of main proposition 163

� The difference between generic or very exceptional potentials versus exceptional
ones appears, as is well known, when considering the action of the Fourier mul-
tiplier c.�/ on L1 based spaces. Since @ˇ�.�/ D O.h�i�1�ˇ / when j�j ! C1,
c.�/ � 1 coincides with a symbol of order �1 outside a neighborhood of zero.
Consequently, if �0 2 C10 .R/ is equal to one close to zero, .1 � �0/.Dx/c.Dx/
is bounded on L1. On the other hand, �0.�/c.�/ is Lipschitz at zero if the poten-
tial is generic or very exceptional, since �.0/ D 0, so that �0.Dx/c.Dx/ is also
bounded on L1. In the exceptional potential case, c.�/ has a jump at � D 0, and
L1 bounds for c.Dx/ do not hold.


