Appendix B (Semiclassical) pseudo-differential operators

This appendix is devoted to the definition and main properties of classes of multilinear pseudo-differential operators and their semiclassical counterparts. Recall that the symbol of a pseudo-differential operator of order $m \in \mathbb{R}$ is in general a smooth function $(x, \xi) \mapsto a(x, \xi)$ defined on $\mathbb{R}^d \times \mathbb{R}^d$, satisfying for any multi-indices α, β estimates of the form

$$
|\partial_x^{\alpha} \partial_{\xi}^{\beta} a(x,\xi)| \le C_{\alpha,\beta} \langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|}, \tag{B.1}
$$

where $0 < \delta < \rho < 1$ (see Hörmander [\[42,](#page--1-0) [43\]](#page--1-1)). One associates to such a symbol an operator acting on test functions in $S(\mathbb{R})$ by a quantization rule, that may be given for instance by the usual quantization

$$
\text{Op}(a)u = \frac{1}{(2\pi)^d} \int e^{ix\cdot\xi} a(x,\xi) \hat{u}(\xi) \, d\xi = \frac{1}{(2\pi)^d} \int e^{i(x-y)\cdot\xi} a(x,\xi) u(y) \, dy \, d\xi
$$

or by the Weyl quantization

$$
\operatorname{Op}^{\mathbf{W}}(a)u = \frac{1}{(2\pi)^d} \int e^{i(x-y)\cdot\xi} a\left(\frac{x+y}{2}, \xi\right) u(y) \, dy \, d\xi.
$$

We shall be here more interested in the semiclassical version of this calculus, namely smooth symbols $(x, \xi, h) \mapsto a(x, \xi, h)$ that depend on a parameter $h \in [0, 1]$, and that satisfy bounds of the form

$$
|\partial_x^{\alpha} \partial_{\xi}^{\beta} (h \partial_h)^k a(x, \xi, h)| \le C_{\alpha, \beta, k} M(x, \xi)
$$
 (B.2)

with a fixed "weight function" $M(x, \xi)$ (see Dimassi and Sjöstrand [\[24\]](#page--1-2)). For instance, a function satisfying [\(B.1\)](#page-0-0) with $\rho = \delta = 0$ obeys these inequalities with $M \equiv 1$. One defines then the semiclassical quantization of a by the formulas

$$
Op_h(a)u = a(x, hD_x, h)u = \frac{1}{(2\pi)^d} \int e^{ix\cdot\xi} a(x, h\xi, h)\hat{u}(\xi) d\xi
$$

=
$$
\frac{1}{(2\pi h)^d} \int e^{i(x-y)\cdot\xi} a(x, \xi, h)u(y) dy d\xi
$$
 (B.3)

or for the Weyl quantization by

$$
\text{Op}_{h}^{\text{W}}(a)u = \frac{1}{(2\pi h)^{d}} \int e^{i(x-y)\cdot\frac{\xi}{h}} a\left(\frac{x+y}{2}, \xi, h\right) u(y) \, dy \, d\xi. \tag{B.4}
$$

One has then a symbolic calculus. Assume for instance that we are given two symbols a, b satisfying [\(B.2\)](#page-0-1) with $M \equiv 1$. Then there is a symbol c in the same class such that

 $Op_h(a) \circ Op_h(b) = Op_h(c)$. Moreover, one may get an asymptotic expansion of c in terms of powers of the semiclassical parameter h , whose first terms are given by

$$
c(x, \xi, h) = a(x, \xi, h)b(x, \xi, h) + \frac{h}{i} \sum_{j=1}^{d} \partial_{\xi_j} a(x, \xi, h) \partial_{x_j} b(x, \xi, h) + \cdots
$$
 (B.5)

It turns out that we shall be interested only in the case of one variable $d = 1$, but with more general classes of symbols. In Appendix [A,](#page--1-3) we have used symbols $b(x, \xi)$ satisfying inequalities [\(A.8\)](#page--1-4). It turns out that, if one translates in the semiclassical framework the operators $b(x, D_x)$ (see [\(B.15\)](#page-3-0) and [\(B.16\)](#page-3-1) below), one is led to consider instead of [\(B.3\)](#page-0-2) the more general operator

$$
b\left(\frac{x}{h}, hD_x\right)u = \frac{1}{2\pi} \int e^{ix\xi} b\left(\frac{x}{h}, h\xi\right) \hat{u}(\xi) d\xi.
$$
 (B.6)

Of course, the function $(x, \xi) \mapsto b(\frac{x}{h}, \xi)$ does not satisfy the estimates in [\(B.2\)](#page-0-1), since ∂_x -derivatives make lose powers of \ddot{h}^{-1} . On the other hand, because of [\(A.8\)](#page--1-4), taking a ∂_x -derivatives makes gain a weight in $\left(\frac{x}{h}\right)^{-N}$ for any N. We shall thus consider symbols depending on two space variables, $(y, x, \xi) \mapsto a(y, x, \xi, h)$, such that at fixed y, $(x, \xi, h) \mapsto a(y, x, \xi, h)$ satisfies the estimates in [\(B.2\)](#page-0-1), and that for any $\ell > 0$, $(x, \xi, h) \mapsto \partial_y^{\ell} a(y, x, \xi, h)$ satisfies [\(B.2\)](#page-0-1) with on the right-hand side of these inequalities an arbitrarily decaying factor in $\langle \frac{x}{h} \rangle^{-N}$. We shall quantify such symbols as

$$
\text{Op}_h(a)u = a\Big(\frac{x}{h}, x, hD_x, h\Big)u = \frac{1}{2\pi} \int e^{ix\xi} a\Big(\frac{x}{h}, x, h\xi, h\Big) \hat{u}(\xi) d\xi. \tag{B.7}
$$

In that way, instead of getting for the composition of two such symbols an expansion of the form [\(B.5\)](#page-1-0), we shall obtain

$$
c(y, x, \xi, h) = a(y, x, \xi, h)b(y, x, \xi, h) + hr_1 + r'_1,
$$
 (B.8)

where r_1 is in the same class as a, b and where r_1 $\frac{1}{1}$ is rapidly decaying in $\frac{x}{h}$, i.e. satisfies [\(B.2\)](#page-0-1) with on the right-hand side an extra arbitrary factor in $\left(\frac{x}{h}\right)^{-N}$.

It turns out that we shall not just need linear, but also multilinear operators, defined instead of $(B.7)$ by formula $(B.14)$ below. The goal of this chapter is thus to define such operators and study their composition properties, establishing the generalization of formulas of the form [\(B.8\)](#page-1-2) to this multilinear framework.

B.1 Classes of symbols and their quantization

We shall use classes of semiclassical multilinear pseudo-differential operators, analogous to those introduced in [\[20\]](#page--1-5). We shall use also the non-semiclassical counterparts of these operators that are deduced from the former by conjugation through dilations. We refer to Dimassi and Sjöstrand [\[24\]](#page--1-2) for a reference text on semiclassical calculus. Recall first the following definition.

Definition B.1.1. An order function on $\mathbb{R} \times \mathbb{R}^p$ is a function M from $\mathbb{R} \times \mathbb{R}^p$ to \mathbb{R}_+ , $(x, \xi_1, \ldots, \xi_p) \mapsto M(x, \xi_1, \ldots, \xi_p)$, such that there is N_0 in $\mathbb{N}, C > 0$ and for any $(x, \xi_1, \ldots, \xi_p)$, $(x', \xi'_1, \ldots, \xi'_p)$ in $\mathbb{R} \times \mathbb{R}^p$,

$$
M(x', \xi'_1, \dots, \xi'_p) \le C (x - x')^{N_0} \prod_{j=1}^p \langle \xi_j - \xi_{j'} \rangle^{N_0} M(x, \xi_1, \dots, \xi_p). \tag{B.9}
$$

An example of an order function that we use several times is

$$
M_0(\xi_1,\ldots,\xi_p) = \Big(\sum_{1 \le i < j \le p} \langle \xi_i \rangle^2 \langle \xi_j \rangle^2 \Big)^{\frac{1}{2}} \Big(\sum_{i=1}^p \langle \xi_i \rangle^2\Big)^{-\frac{1}{2}}.\tag{B.10}
$$

Actually, this function is smooth and is equivalent to $1 + \max_2(|\xi_1|, \ldots, |\xi_p|)$, where $\max_2(|\xi_1|,\ldots, |\xi_p|)$ is the second largest among $|\xi_1|,\ldots, |\xi_p|$.

We shall introduce several classes of semiclassical symbols, depending on a semiclassical parameter $h \in [0, 1]$:

Definition B.1.2. Let p be in \mathbb{N}^* , M an order function on $\mathbb{R} \times \mathbb{R}^p$, M₀ the function defined in [\(B.10\)](#page-2-0). Let (β, κ) be in $[0, +\infty[\times \mathbb{N}].$ We denote by $S_{\kappa,\beta}(M, p)$ the space of smooth functions

$$
(y, x, \xi_1, \dots, \xi_p, h) \mapsto a(y, x, \xi_1, \dots, \xi_p, h),
$$

$$
\mathbb{R} \times \mathbb{R} \times \mathbb{R}^p \times [0, 1] \to \mathbb{C}
$$
 (B.11)

satisfying for any $\alpha_0 \in \mathbb{N}$, $\alpha \in \mathbb{N}^p$, $k \in \mathbb{N}$, $N \in \mathbb{N}$, $\alpha'_0 \in \mathbb{N}^*$ the bounds

$$
\left|\partial_x^{\alpha_0}\partial_{\xi}^{\alpha}(h\partial_h)^{k}a(y,x,\xi,h)\right| \le CM(x,\xi)M_0(\xi)^{\kappa(\alpha_0+|\alpha|)}\big(1+\beta h^{\beta}M_0(\xi)\big)^{-N} \tag{B.12}
$$

and

$$
\left|\partial_{y}^{\alpha'_{0}}\partial_{x}^{\alpha_{0}}\partial_{\xi}^{\alpha}(h\partial_{h})^{k}a(y,x,\xi,h)\right|
$$

\n
$$
\leq CM(x,\xi)M_{0}(\xi)^{\kappa(\alpha_{0}+|\alpha|)}\left(1+\beta h^{\beta}M_{0}(\xi)\right)^{-N}\left(1+M_{0}(\xi)^{-\kappa}|y|\right)^{-N},
$$
\n(B.13)

where ξ stands for (ξ_1, \ldots, ξ_p) .

We denote by $S'_{\kappa,\beta}(M, p)$ the subspace of $S_{\kappa,\beta}(M, p)$ of those symbols that sat-isfy [\(B.13\)](#page-2-1) including for $\alpha'_0 = 0$.

We shall set $S'_{\kappa,\beta}^{\gamma N'}(M, p)$ for the space of functions satisfying the bound in [\(B.13\)](#page-2-1) including for the case $\alpha'_0 = 0$, but with the last factor $(1 + M_0(\xi)^{-\kappa} |y|)^{-N}$ replaced by $(1 + M_0(\xi)^{-\kappa} |y|)^{-N'}$, for a fixed power N' instead of for all N.

Remarks. We make the following observations.

If $p = 1$, then $M_0(\xi) = 1$ and symbols of the class $S_{\kappa,\beta}(M, 1)$ that do not depend on y are just usual symbols of pseudo-differential operators as defined in [\[24\]](#page--1-2) for instance. For symbols depending on y , we impose that if we take at least one

 ∂_y -derivative, we get a rapid decay in |y| in the case of the class $S_{\kappa, \beta}(M, 1)$. For elements of $S'_{\kappa,\beta}(M,1)$, this rapid decay has to hold including without taking any ∂_y -derivative. Notice also that when $p = 1$, the classes we define do not depend on the parameters κ , β .

- The parameter κ in the definition of the classes of symbols measures the power of $M_0(\xi)$ that we lose when taking ∂_x - or ∂_{ξ} -derivatives. As these losses involve only "small frequencies", they will be affordable.
- When $\beta > 0$, we have an extra gain in $\langle h^{\beta} M_0(\xi) \rangle^{-N}$ for any N, that allows to trade off the loss $M_0(\xi)^{\kappa}$ for $h^{-\beta\kappa}$. If β is small, this reduces these losses to those ones used usually in definitions of semiclassical symbols as in [\[24\]](#page--1-2). Moreover, an element of $S_{\kappa,0}(M, p)$ may be always reduced to an element of $S_{\kappa,\beta}(M, p)$ multiplying it by $\chi(h^{\beta} M_0(\xi))$ for some χ in $C_0^{\infty}(\mathbb{R})$.

We shall quantize symbols in $S_{\kappa,\beta}(M, p)$ as p-linear operators acting a p-tuple of functions by

$$
Op_h(a)(\underline{v}_1, ..., \underline{v}_p)
$$

= $\frac{1}{(2\pi)^p} \int e^{ix(\xi_1 + ... + \xi_p)} a(\frac{x}{h}, x, h\xi_1, ..., h\xi_p) \prod_{j=1}^p \hat{\underline{v}}_j(\xi_j) d\xi_1 \cdots d\xi_p$
= $\frac{1}{(2\pi h)^p} \int e^{i \sum_{j=1}^p (x - x'_j)^{\frac{\xi_j}{h}}} a(\frac{x}{h}, x, \xi_1, ..., \xi_p) \prod_{j=1}^p \underline{v}_j(x'_j) dx' d\xi.$ (B.14)

We shall call $(B.14)$ the semiclassical quantization of a. We shall also use a classical quantization, depending on the parameter $t = \frac{1}{h} \ge 1$, related to [\(B.14\)](#page-3-2) through conjugation by dilations: If $t \geq 1$, and \underline{v} is a test function on \mathbb{R} , define the L^2 isometry Θ_t by

$$
\Theta_t \underline{v}(x) = \frac{1}{\sqrt{t}} \underline{v}\left(\frac{x}{t}\right). \tag{B.15}
$$

We shall set for a an element of $S_{\kappa,\beta}(M, p)$,

$$
\operatorname{Op}^t(a)(v_1,\ldots,v_p) = h^{\frac{p-1}{2}} \Theta_t \circ \operatorname{Op}_h(a) \left(\Theta_{t^{-1}} v_1,\ldots,\Theta_{t^{-1}} v_p\right) \tag{B.16}
$$

with $h = t^{-1}$. Explicitly, we get from [\(B.14\)](#page-3-2)

$$
Opt(a)(v1,...,vp)
$$

= $\frac{1}{(2\pi)^p} \int e^{ix(\xi_1 + \dots + \xi_p)} a\left(x, \frac{x}{t}, \xi_1, ..., \xi_p\right) \prod_{j=1}^p \hat{v}_j(\xi_j) d\xi_1 \cdots d\xi_p.$ (B.17)

Remark that if $a(y, x, \xi)$ is independent of x, then $\text{Op}^t(a)$ is independent of t, and if $p = 1$, Op^t(a) is just the usual pseudo-differential operator of symbol $a(y, \xi)$. In this case, we shall just write $Op(a)$ for $Op^t(a)$.

B.2 Symbolic calculus

We prove first a proposition generalizing [\[20,](#page--1-5) Proposition 1.5].

Proposition B.2.1. *Let* n', n'' *be in* \mathbb{N}^* , $n = n' + n'' - 1$ *. Let* $M'(x, \xi_1, ..., \xi_{n'})$ and $M''(x, \xi_{n'}, \ldots, \xi_n)$ be two order functions on $\mathbb{R} \times \mathbb{R}^{n'}$ and $\mathbb{R} \times \mathbb{R}^{n''}$, respectively. In particular, they satisfy [\(B.9\)](#page-2-2) and we shall denote by N_0'' an integer such that

$$
M''(x', \xi_{n'}, \dots, \xi_n) \le C (x - x')^{N_0''} M''(x, \xi_{n'}, \dots, \xi_n).
$$
 (B.18)

Let $(\kappa, \beta) \in \mathbb{N} \times [0, 1]$, a in $S_{\kappa, \beta}(M', n')$, b in $S_{\kappa, \beta}(M'', n'')$. Assume either that $(k, \beta) = (0, 0)$ *or* $0 < \beta \kappa \le 1$ *or that symbol b is independent of x. Define*

$$
M(x, \xi_1, \dots, \xi_n) = M'(x, \xi_1, \dots, \xi_{n'-1}, \xi_{n'} + \dots + \xi_n)M''(x, \xi_{n'}, \dots, \xi_n).
$$
 (B.19)

Then there is ν *in* \mathbb{N} *, that depends only on* N_0'' *in* [\(B.18\)](#page-4-0)*, and symbols*

$$
c_1 \in S_{\kappa,\beta}(MM_0^{\nu\kappa}, n), c_1' \in S_{\kappa,\beta}'(MM_0^{\nu\kappa}, n)
$$
 (B.20)

such that one may write

$$
Op_h(a)[v_1, \ldots, v_{n'-1}, Op_h(b)(v_{n'}, \ldots, v_n)] = Op_h(c)[v_1, \ldots, v_n], \quad (B.21)
$$

where

$$
c(y, x, \xi_1, ..., \xi_n) = a(y, x, \xi_1, ..., \xi_{n'-1}, \xi_{n'} + \dots + \xi_n)
$$

$$
\times b(y, x, \xi_{n'}, ..., \xi_n)
$$

$$
+ hc_1(y, x, \xi_1, ..., \xi_n) + c'_1(y, x, \xi_1, ..., \xi_n).
$$
 (B.22)

Moreover, if b is independent of y, c[']₁ $\frac{1}{1}$ in [\(B.22\)](#page-4-1) vanishes and if *b* is independent of *x*, *then* c_1 *vanishes. In addition, if a is in* $S'_{\kappa,\beta}(M',n')$ *or b is in* $S'_{\kappa,\beta}(M'',n'')$ *, then c* and c_1 are in $S'_{\kappa,\beta}(MM_0^{\nu\kappa},n)$.

Let us prove first a lemma:

Lemma B.2.2. Let
$$
\xi' = (\xi_1, ..., \xi_{n'-1})
$$
 and $\xi'' = (\xi_{n'}, ..., \xi_n)$, $\xi = (\xi', \xi'')$. Then

$$
M_0(\xi', \xi_{n'} + \cdots + \xi_n) \le CM_0(\xi), \quad M_0(\xi'') \le CM_0(\xi).
$$
 (B.23)

Moreover, if ζ *is a real number and* $|\zeta|/M_0(\xi)$ *is small enough,*

$$
\max(M_0(\xi', \xi_{n'} + \dots + \xi_n - \zeta), M_0(\xi'')) \ge c M_0(\xi)
$$
 (B.24)

for some $c > 0$ *.*

Proof. Estimate [\(B.23\)](#page-4-2) follows from the fact that $M_0(\xi_1, \ldots, \xi_n)$ is equivalent to $1 + \max_2(|\xi_1|, \ldots, |\xi_n|).$

To prove estimate [\(B.24\)](#page-4-3), we may assume that $|\xi_n| \geq |\xi_{n-1}| \geq \cdots \geq |\xi_{n'}|$ and $|\xi_1| \ge |\xi_2| \ge \cdots \ge |\xi_{n'-1}|$. Moreover, if $n = n'$, then [\(B.24\)](#page-4-3) is trivial, so that we may assume $n' < n$.

Case 1. Assume $|\xi_n| \ge |\xi_1|$. If $|\xi_n| \sim |\xi_{n-1}|$, then both $M_0(\xi'')$ and $M_0(\xi)$ are of the magnitude of $\langle \xi_{n-1} \rangle$, so [\(B.24\)](#page-4-3) is trivial.

Let us assume that $|\xi_{n-1}| \ll |\xi_n|$.

If in addition $|\xi_n| \sim |\xi_1|$, then $M_0(\xi) \sim \langle \xi_n \rangle \sim \langle \xi_1 \rangle$ and

$$
\langle \xi_{n'} + \cdots + \xi_n - \zeta \rangle \sim \langle \xi_n \rangle,
$$

so that

$$
M_0(\xi',\xi_{n'}+\cdots+\xi_n-\zeta)\sim M_0(\xi',\xi_n)\sim \langle\xi_n\rangle\sim \langle\xi_1\rangle
$$

and [\(B.24\)](#page-4-3) holds.

If $|\xi_1| \ll |\xi_n|$, then $M_0(\xi) \sim \max(\langle \xi_1 \rangle, \langle \xi_{n-1} \rangle)$ and $M_0(\xi'') \sim \langle \xi_{n-1} \rangle$, so that $M_0(\xi', \xi_{n'} + \cdots + \xi_n - \zeta) \sim M_0(\xi', \xi_n) \sim \langle \xi_1 \rangle$ and [\(B.24\)](#page-4-3) holds again.

Case 2. Assume $|\xi_1| \ge |\xi_n|$. Then $M_0(\xi) \sim \max(\langle \xi_2 \rangle, \langle \xi_n \rangle)$.

- If $|\xi_n| \ge |\xi_2|$ and $|\xi_n| \sim |\xi_{n-1}|$, then $M_0(\xi'') \sim \langle \xi_n \rangle$, so that [\(B.24\)](#page-4-3) holds.
- If $|\xi_n| \ge |\xi_2|$ and $|\xi_n| \gg |\xi_{n-1}|$, then we have $|\xi_{n'} + \cdots + \xi_n \zeta| \sim |\xi_n|$, so that $M_0(\xi', \xi_{n'} + \cdots + \xi_n - \zeta) \sim \langle \xi_n \rangle$ and [\(B.24\)](#page-4-3) holds.
- If $|\xi_2| \ge |\xi_n|$, then $M_0(\xi', \xi_{n'} + \cdots + \xi_n \zeta) \sim \langle \xi_2 \rangle$, so that [\(B.24\)](#page-4-3) holds as well. This concludes the proof.

Proof of Proposition [B.2.1](#page-4-4). Going back to the definition [\(B.14\)](#page-3-2) of quantization, we may write the composition [\(B.21\)](#page-4-5) as the right-hand side of this expression, with a symbol c given by the oscillatory integral

$$
c(y, x, \xi) = \frac{1}{2\pi} \int e^{-iz\xi} a(y, x, \xi', \xi_{n'} + \dots + \xi_n - \xi)
$$

× $b(y - z, x - hz, \xi'') dz d\xi$. (B.25)

We decompose

$$
a(y, x, \xi', \xi_{n'} + \dots + \xi_n - \zeta) = a(y, x, \xi', \xi_{n'} + \dots + \xi_n) - \zeta \tilde{a}(y, x, \xi', \xi_{n'} + \dots + \xi_n, \zeta)
$$
(B.26)

with

$$
\tilde{a}(y, x, \xi', \tilde{\xi}, \zeta) = \int_0^1 \left(\frac{\partial a}{\partial \tilde{\xi}}\right)(y, x, \xi', \tilde{\xi} - \lambda \zeta) d\lambda. \tag{B.27}
$$

It follows from [\(B.23\)](#page-4-2) that

$$
M_0(\xi', \xi_{n'} + \dots + \xi_n - \lambda \zeta) \le C(M_0(\xi) + \langle \zeta \rangle). \tag{B.28}
$$

Using [\(B.12\)](#page-2-3) and the definition of order functions, we get that \tilde{a} satisfies

$$
|\partial_x^{\alpha_0} \partial_{\xi}^{\alpha} \partial_{\zeta}^{\gamma} (h \partial_h)^k \tilde{a}(y, x, \xi', \xi_{n'} + \dots + \xi_n, \zeta)|
$$

\n
$$
\leq C(M_0(\xi) + \langle \zeta \rangle)^{\kappa (1 + |\alpha| + |\gamma| + \alpha_0)} \langle \zeta \rangle^{N_0} M'(x, \xi', \xi_{n'} + \dots + \xi_n)
$$

\n
$$
\times \int_0^1 \left(1 + \beta h^{\beta} M_0(\xi', \xi_{n'} + \dots + \xi_n - \lambda \zeta)\right)^{-N} d\lambda
$$
 (B.29)

for any α , α ₀, γ , k, N. If one takes at least one ∂_{ν} -derivative, the same estimate holds, with an extra factor

$$
(1 + (M_0(\xi) + \langle \zeta \rangle)^{-\kappa} |y|)^{-N}
$$
 (B.30)

using $(B.13)$ and $(B.28)$. If we plug $(B.26)$ in $(B.25)$, we get the first term on the right-hand side of [\(B.22\)](#page-4-1) and, by integration by parts, the following two contributions:

$$
-\frac{i}{2\pi}\int e^{-iz\xi}\tilde{a}(y,x,\xi',\xi_{n'}+\cdots+\xi_n,\xi)\frac{\partial b}{\partial y}(y-z,x-hz,\xi'')\,dz\,d\zeta,\quad (B.31)
$$

$$
-\frac{ih}{2\pi} \int e^{-iz\xi} \tilde{a}(y, x, \xi', \xi_{n'} + \dots + \xi_n, \xi) \frac{\partial b}{\partial x}(y - z, x - hz, \xi'') dz d\xi.
$$
 (B.32)

Let us show that [\(B.31\)](#page-6-0) (resp. [\(B.32\)](#page-6-1)) provides the contribution c_1 $\frac{1}{1}$ (resp. hc_1) in equation [\(B.22\)](#page-4-1).

Study of [\(B.31\)](#page-6-0). If we insert under integral (B.31) a cut-off $(1 - \chi_0)(\zeta)$ for some C_0^{∞} function χ_0 equal to one close to zero and make N_1 integrations by parts in z, we gain a factor ζ^{-N_1} , up to making act on $\frac{\partial b}{\partial y}(y-z, x-hz, \xi'')$ at most N_1 ∂_z -derivatives. By [\(B.12\)](#page-2-3) and [\(B.13\)](#page-2-1), each of these ∂_z -derivatives makes lose $\langle h M_0(\xi'')^k \rangle$ if it falls on the x argument of $\frac{\partial b}{\partial y}$, and does not make lose anything if it falls on the y argument. Consequently, if $\beta = \kappa = 0$, or if b is independent of x, we get no loss, while if $\kappa \beta > 0$, we get a loss that may be compensated since, in this case, we get by [\(B.12\)](#page-2-3) and [\(B.13\)](#page-2-1) a factor $\langle h^{\beta} M_0(\xi'') \rangle^{-N}$ in the estimates, with an arbitrary N. Since we assume $\beta \kappa \leq 1$, $\langle h^{\beta} M_0(\xi'') \rangle^{-N} \langle h M_0(\xi'')^{\kappa} \rangle^{N_1} = O(\langle h^{\beta} M_0(\xi'') \rangle^{-N/2})$ if N is large enough relatively to N_1 . In other words, up to changing the definition of b , we may insert under [\(B.31\)](#page-6-0) an extra factor decaying like $\langle \zeta \rangle^{-N_1}$ as well as its derivatives, for a given N_1 .

We perform next N_2 integrations by parts using the operator

$$
\left\langle z(\langle \xi \rangle + M_0(\xi))^{-\kappa} \right\rangle^{-2} \left(1 - (\langle \xi \rangle + M_0(\xi))^{-2\kappa} z D_\xi \right). \tag{B.33}
$$

By estimates [\(B.28\)](#page-5-0) and [\(B.29\)](#page-5-3), each of these integrations by parts makes gain a factor $\langle z(\langle \zeta \rangle + M_0(\xi))^{-\kappa} \rangle^{-1}$. Using [\(B.29\)](#page-5-3), [\(B.13\)](#page-2-1), the definition [\(B.19\)](#page-4-6) of M and [\(B.18\)](#page-4-0), we bound the modulus of $(B.31)$ by

$$
CM(x,\xi)\int \langle \zeta \rangle^{-N_1+N_0} \langle z(\langle \zeta \rangle + M_0(\xi))^{-\kappa} \rangle^{-N_2} (\langle \zeta \rangle + M_0(\xi))^{\kappa}
$$

$$
\times \langle hz \rangle^{N_0''} \left(1 + M_0(\xi)^{-\kappa} |y - z|\right)^{-N}
$$

$$
\times \int_0^1 \left(1 + \beta h^{\beta} M_0(\xi', \xi_{n'} + \dots + \xi_n - \lambda \zeta)\right)^{-N} d\lambda
$$

$$
\times (1 + \beta h^{\beta} M_0(\xi''))^{-N} dz d\zeta
$$
 (B.34)

for arbitrary N_1 , N_2 , N and given N_0 , N_0'' (coming from [\(B.9\)](#page-2-2) and [\(B.18\)](#page-4-0)), the factor in $(1 + M_0(\xi)^{-\kappa} |y - z|)^{-N}$ coming from the last factor in [\(B.13\)](#page-2-1) of $\frac{\partial b}{\partial y}$. If $N_1 - N_0$ is large enough, and if we integrate for $|\zeta| \ge c M_0(\xi)$, then the factor $\langle \zeta \rangle^{-N_1+N_0}$

provides a decay in $M_0(\xi)^{-N'}$ for any given N'. On the other hand, if we integrate for $|\zeta| \le c M_0(\xi)$, we may use [\(B.24\)](#page-4-3) that shows that the product of the last two factors in [\(B.34\)](#page-6-2) is smaller than $C(1 + \beta h^{\beta} M_0(\xi))^{-N}$. We thus get a bound in

$$
CM(x, \xi)(1 + \beta h^{\beta} M_0(\xi))^{-N}
$$

\n
$$
\times \int {\langle \zeta \rangle^{-N_1 + N_0 + N} \langle z(\langle \zeta \rangle + M_0(\xi))^{-\kappa} \rangle^{-N_2} (\langle \zeta \rangle + M_0(\xi))^{\kappa}}
$$

\n
$$
\times \langle h z \rangle^{N_0''} (1 + M_0(\xi)^{-\kappa} |y - z|)^{-N} dz d\zeta
$$

\n
$$
\le CM(x, \xi) (1 + \beta h^{\beta} M_0(\xi))^{-N} M_0(\xi)^{(2 + N_0'')\kappa} (1 + M_0(\xi)^{-\kappa} |y|)^{-N}
$$
\n(B.35)

if $N_1 \gg N_2 \gg N + N_0 + N_0''$. We thus get an estimate of the form [\(B.13\)](#page-2-1), with $\alpha_0 = 0, \alpha = 0$, and the order function M replaced by $M(x, \xi)M_0(\xi)^{\kappa(2+N_0')}$.

If we make the same computation after taking a $\partial_x^{\alpha_0}$ and a ∂_{ξ}^{α} -derivative of [\(B.31\)](#page-6-0), we replace, according to estimate [\(B.29\)](#page-5-3), the factor $(M_0(\xi) + \langle \zeta \rangle)^k$ in [\(B.34\)](#page-6-2) by $(M_0(\xi) + \langle \zeta \rangle)^{\kappa(1+\alpha_0+\alpha_0)}$, so that we obtain again a bound of the form [\(B.13\)](#page-2-1), with still M replaced by $M(x, \xi)M_0(\xi)^{v\kappa}$ with $v = 2 + N_0''$.

Study of [\(B.32\)](#page-6-1). The difference with the preceding case is that the ∂_x -derivative acting on b makes lose an extra factor $M_0(\xi)^k$, and that we do not have in [\(B.34\)](#page-6-2) the factor in $(1 + M_0(\xi)^{-\kappa} |y - z|)^{-N}$. Instead of [\(B.35\)](#page-7-0), we thus get a bound in

$$
CM(x,\xi)M_0(\xi)^{\nu\kappa}\big(1+\beta h^\beta M_0(\xi)\big)^{-N}
$$

for some v depending only on N_0'' . On the other hand, if one takes a ∂_y -derivative of [\(B.32\)](#page-6-1), either it falls on b , which reduces one to an expression of the form [\(B.31\)](#page-6-0), or on \tilde{a} , so that one gains a factor [\(B.30\)](#page-6-3) in the estimates. In both cases, it shows that a bound of form [\(B.13\)](#page-2-1) holds. One studies in the same way the derivatives, and shows that [\(B.32\)](#page-6-1) provides the hc_1 contribution in [\(B.22\)](#page-4-1).

If b does not depend on y, then [\(B.31\)](#page-6-0) vanishes identically so that there is no c_1 1 contribution in [\(B.33\)](#page-6-4). If it is independent of x, the term hc_1 given by [\(B.32\)](#page-6-1) vanishes.

Finally, if one assumes that b is in $S'_{\kappa,\beta}(M'', n'')$, then estimates of the form [\(B.35\)](#page-7-0), i.e. with the factor $(1 + M_0(\xi)^{-\kappa} |y - z|)^{-N}$, hold also for the study of term [\(B.32\)](#page-6-1), so that we get that c_1 in [\(B.22\)](#page-4-1) is also in $S'_{\kappa,\beta}(MM_0^{\nu}, n)$. In the same way, if a is in $S'_{\kappa,\beta}(M', n')$, one gets in [\(B.29\)](#page-5-3) an extra factor of the form [\(B.30\)](#page-6-3) on the right-hand side, so that [\(B.32\)](#page-6-1) is again in $S'_{\kappa,\beta}(M,n)$. This concludes the proof.

Let us write a special case of Proposition [B.2.1.](#page-4-4)

Corollary B.2.3. Let $p(\xi) = \langle \xi \rangle$ and let $b(y, \xi_1, \ldots, \xi_n)$ be a function satisfying *estimates*

$$
|\partial_{\xi}^{\alpha}b(y,\xi)| \le C \prod_{j=1}^{n} \langle \xi_{j} \rangle^{-1} M_{0}(\xi)^{1+|\alpha|},
$$

\n
$$
|\partial_{y}^{\alpha'}\partial_{\xi}^{\alpha}b(y,\xi)| \le C_{N} \prod_{j=1}^{n} \langle \xi_{j} \rangle^{-1} M_{0}(\xi)^{1+|\alpha|} \langle y \rangle^{-N}
$$
\n(B.36)

for all $\alpha'_0 \in \mathbb{N}^*$, $\alpha \in \mathbb{N}^n$, $N \in \mathbb{N}$. Then

$$
Op_h(p(\xi)) [Op_h(b)(v_1, ..., v_n)]
$$

= $Op_h(p(\xi)b(y, \xi))(v_1, ..., v_n) + Op_h(c'_1)(v_1, ..., v_n),$ (B.37)

where c_1' 1 *satisfies*

$$
|\partial_{\mathcal{Y}}^{\alpha_0'} \partial_{\xi}^{\alpha} c_1'(y,\xi)| \le C_N \prod_{j=1}^n \langle \xi_j \rangle^{-1} M_0(\xi)^{1+|\alpha|} \langle y \rangle^{-N}
$$
 (B.38)

for all α_0' $'_{0}$, α , N .

Proof. We may not directly apply the proposition, as the order function it would provide on the right-hand side of [\(B.38\)](#page-8-0) would not be the right one. Though, we may apply its proof that shows that the composed operator $(B.37)$ is given by $(B.31)$ with \tilde{a} given by [\(B.27\)](#page-5-4), i.e.

$$
-\frac{i}{2\pi}\int_0^1\int e^{-iz\xi}p'(\xi_1+\cdots+\xi_n-\lambda\zeta)\frac{\partial b}{\partial y}(y-z,\xi_1,\ldots,\xi_n)\,dz\,d\zeta\,d\lambda. \tag{B.39}
$$

Performing integrations by parts in z, ζ , we may bound the modulus of [\(B.39\)](#page-8-2) by

$$
C\int \langle z \rangle^{-N} \langle \zeta \rangle^{-N} \langle y - z \rangle^{-N} \, dz \, d\zeta \prod_{j=1}^n \langle \xi_j \rangle^{-1} M_0(\xi)
$$

which gives [\(B.38\)](#page-8-0) performing the same computations for the derivatives.

We shall use also the following corollary.

Corollary B.2.4. *Let* b be a symbol in $S_{\kappa, \beta}(M, n)$ for some order function M, some n in \mathbb{N}^* , with (κ, β) satisfying the assumptions of Proposition [B.2.1](#page-4-4)*.* Assume more*over that* $b(y, x, \xi_1, \ldots, \xi_n)$ *is supported inside* $|\xi_1| + \cdots + |\xi_{n-1}| \leq C \langle \xi_n \rangle$ *. There is* $v \geq 0$ *such that for any* $s \geq 0$ *, one may write*

$$
\langle hD \rangle^s \text{Op}_h(b \langle \xi_n \rangle^{-s}) = \text{Op}_h(c) \tag{B.40}
$$

with a symbol c in $S_{\kappa,\beta}(MM_0^{\nu}, n)$. The result holds also if b (and then c) satisfy [\(B.13\)](#page-2-1) with the last exponent N replaced by 2, i.e. if b is in $S'^{2}_{\kappa,\beta}(M,n)$, then c lies *in* $S'_{\kappa,\beta}^2(MM_0^{\nu}, n)$ *.*

Proof. We apply Proposition [B.2.1](#page-4-4) with $a(\xi) = \langle \xi \rangle^s \in S_{\kappa,\beta}(\langle \xi \rangle^s, 1)$ (for any (κ, β)) and for second symbol $b(y, x, \xi_1, ..., \xi_n)(\xi_n)^{-s}$. Notice that, because of the support assumption on b, this symbol belongs to the class $S_{\kappa,\beta}(M(x,\xi)(\sum_{j=1}^n \langle \xi_j \rangle)^{-s}, n)$. Then by [\(B.20\)](#page-4-7), c in [\(B.40\)](#page-8-3) belongs to $S_{\kappa,\beta}(\tilde{M}(x,\xi)M_0^{(\kappa)},n)$, where v depends only on the exponent N_0'' in [\(B.18\)](#page-4-0), which is independent of s, and where \overrightarrow{M} is given, according to [\(B.19\)](#page-4-6), by

$$
\tilde{M}(x,\xi_1,\ldots,\xi_n)=\langle \xi_1+\cdots+\xi_n\rangle^s M(x,\xi)\bigg(\sum_{j=1}^n\langle \xi_j\rangle\bigg)^{-s}\leq CM(x,\xi).
$$

The conclusion follows, as the last statement of the corollary comes from the fact that when taking a ∂_y -derivative of c given by [\(B.25\)](#page-5-2), it falls on the b factor as $a(\xi) = \langle \xi \rangle^s$ and makes appear a gain $(1 + M_0(\xi)^{-\kappa} |y - z|)^{-2}$ if we assume that [\(B.13\)](#page-2-1) holds with last exponent equal to 2. \blacksquare

Let us state a result on the adjoint. Since we shall need it only for linear operators, we limit ourselves to that case.

Proposition B.2.5. Let $M(x, \xi)$ be an order function on $\mathbb{R} \times \mathbb{R}$ and let a be an ele*ment of* $S_{0.0}(M, 1)$ *. Define*

$$
a^*(y, x, \xi) = \frac{1}{2\pi} \int e^{-iz\xi} \bar{a}(y - z, x - hz, \xi - \zeta) dz d\zeta.
$$
 (B.41)

Then a^* *belongs to* $S_{0,0}(M, 1)$ *and* $(\text{Op}_h(a))^* = \text{Op}_h(a^*)$ *.*

Proof. By a direct computation $\left(\text{Op}_h(a)\right)^*$ is given by $\text{Op}_h(a^*)$ if a^* is defined by [\(B.41\)](#page-9-0). Making ∂_z and ∂_ζ integrations by parts, one checks that a^* belongs to the wanted class.

Remark. It follows from $(B.25)$, $(B.31)$, $(B.32)$, that if a, b in the statement of Proposition [B.2.1](#page-4-4) satisfy

$$
a(-y, -x, -\xi_1, \dots, -\xi_{n'}) = (-1)^{n'-1} a(y, x, \xi_1, \dots, \xi_{n'}),
$$

\n
$$
b(-y, -x, -\xi_1, \dots, -\xi_{n''}) = (-1)^{n''-1} b(y, x, \xi_1, \dots, \xi_{n''}),
$$
\n(B.42)

then symbol c in [\(B.22\)](#page-4-1) satisfies

$$
c(-y, -x, -\xi_1, \dots, -\xi_n) = (-1)^{n-1} a(y, x, \xi_1, \dots, \xi_n)
$$
 (B.43)

and a similar statement for c_1, c'_1 . One has an analogous property for a^* .

To conclude this appendix, let us translate Propositions [B.2.1](#page-4-4) and [B.2.5](#page-9-1) in the framework of the non-semiclassical quantization introduced in $(B.16)$ and $(B.17)$.

Corollary B.2.6. *The following statements hold.*

(i) Let n', n'' be in \mathbb{N}^* , $n = n' + n'' - 1$, M', M'' two order functions on $\mathbb{R} \times \mathbb{R}^{n'}$ and $\mathbb{R} \times \mathbb{R}^{n''}$, respectively. Let (κ, β) be in $\mathbb{N} \times [0, 1]$, a in $S_{\kappa, \beta}(M', n')$, b in $S_{\kappa,\beta}(M'',n'')$. Assume that either $(\kappa,\beta)=(0,0)$ or $0<\kappa\beta\leq 1$ or that b is *independent of* x*. Then if* M *is defined in* [\(B.19\)](#page-4-6)*, there are in* N*, symbols* c_1 in $S_{\kappa,\beta}(MM_0^{\nu\kappa},n)$, c'_1 \int_1^{\prime} in $S'_{\kappa,\beta}(MM_0^{\nu\kappa},n)$ such that if

$$
c(y, x, \xi_1, ..., \xi_n) = a(y, x, \xi_1, ..., \xi_{n'-1}, \xi_{n'} + \dots + \xi_n)
$$

\n
$$
\times b(y, x, \xi_{n'}, ..., \xi_n)
$$

\n
$$
+ t^{-1} c_1(y, x, \xi_1, ..., \xi_n)
$$

\n
$$
+ c'_1(y, x, \xi_1, ..., \xi_n),
$$

\n(B.44)

then for any functions v_1, \ldots, v_n *,*

$$
Opt(a)[v1,...,vn'-1, Opt(b)(vn',...,vn)] = Opt(c)[v1,...,vn]. (B.45)
$$

Moreover, if b is independent of x, then c_1 *vanishes in* [\(B.44\)](#page-9-2)*. Finally, if a is in* $S'_{\kappa,\beta}(M',n')$ or *b is in* $S'_{\kappa,\beta}(M'',n'')$, then *c is in* $S'_{\kappa,\beta}(MM_0^{\nu\kappa},n)$.

(ii) In the same way, if a is in $S_{0,0}(M,1)$, then $\text{Op}^t(a)^* = \text{Op}^t(a^*)$, for a symbol a *in the same class. Moreover, if* a *satisfies* [\(B.42\)](#page-9-3)*, so does* a *.*

Proof. Statement (i) is just the translation of Proposition [B.2.1.](#page-4-4) Statement (ii) follows from Proposition [B.2.5.](#page-9-1)

We get also translating Corollary [B.2.3:](#page-7-1)

Corollary B.2.7. *Under the assumptions and notation of Corollary* [B.2.3](#page-7-1)*, one has*

$$
Op(p(\xi))Op(b)(v_1,...,v_n) = Op(p(\xi_1 + \cdots + \xi_n)b)(v_1,...,v_n) + Op(c'_1)(v_1,...,v_n)
$$

with c_1' \int_{1}^{∞} in the class $\tilde{S}'_{1,0}(\prod_{j=1}^{n} \langle \xi_{j} \rangle^{-1} M_{0}(\xi), n)$ of Definition [3.1.1](#page--1-6)*.*

We shall use also:

Corollary B.2.8. Let $n \geq 2$. Let $M(\xi_1, \ldots, \xi_n)$ be an order function on \mathbb{R}^n (indepen*dent of* x) and let $a(y, \xi_1, \ldots, \xi_n)$ be a symbol in $S_{k,0}(M, n)$, independent of x, for *some* κ *in* $\mathbb N$ *. Let* Z *be a function in* $S(\mathbb R)$ *. Denote*

$$
\tilde{M}(\xi_1,\ldots,\xi_{n-1})=M(\xi_1,\ldots,\xi_{n-1},0).
$$

There is a symbol a' in $S'_{\kappa,0}(\tilde{M},n-1)$, independent of x, such that for any test func*tions* v_1, \ldots, v_{n-1} ,

$$
Op(a)[v_1, \ldots, v_{n-1}, Z] = Op(a')[v_1, \ldots, v_{n-1}].
$$
 (B.46)

Moreover, if Z is odd and $a(-y, -\xi_1, \ldots, -\xi_n) = (-1)^{n-1}a(y, \xi_1, \ldots, \xi_n)$ *, then*

$$
a'(-y, -\xi_1, \ldots, -\xi_{n-1}) = (-1)^{n-2} a(y, \xi_1, \ldots, \xi_{n-1}).
$$

Proof. By [\(B.17\)](#page-3-3), we have that [\(B.46\)](#page-10-0) holds if we define

$$
a'(y,\xi_1,\ldots,\xi_{n-1}) = \frac{1}{2\pi} \int e^{iy\xi_n} a(y,\xi_1,\ldots,\xi_{n-1},\xi_n) \hat{Z}(\xi_n) d\xi_n.
$$
 (B.47)

If $\alpha' = (\alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{N}^{n-1}$ and $\xi' = (\xi_1, \ldots, \xi_{n-1})$, we deduce from [\(B.12\)](#page-2-3) with $\beta = 0$ that

$$
|\partial_{\xi'}^{\alpha'} a'(y,\xi_1,\ldots,\xi_{n-1})| \le C \int M(\xi',\xi_n) M_0(\xi',\xi_n)^{k|\alpha'|} |\hat{Z}(\xi_n)| d\xi_n.
$$

Using [\(B.9\)](#page-2-2) both for M and M_0 , we obtain a bound in $\tilde{M}(\xi')M_0(\xi')^{\kappa|\alpha'|}$. To check that actually our symbol a' is in $S'_{\kappa,0}(\tilde{M},n-1)$, i.e. that it is rapidly decaying in $(1 + M_0(\xi')^{-\kappa}|y|)^{-N}$, we just make in [\(B.47\)](#page-10-1) ∂_{ξ_n} -integrations by parts, and perform the same estimate. One bounds ∂_y -derivatives in the same way. Finally, the last statement of the corollary follows from $(B.47)$ and the oddness of \hat{Z} . Ē