
Appendix C

Bounds for forced linear Klein–Gordon equations

The goal of this appendix is to obtain some Sobolev or L1 estimates of solutions
of half-Klein–Gordon equations with zero initial data and force term that is time
oscillating. The kind of equations we want to study is of the form�
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where M is in �.R/, t�1" D
"2

1Ct"2
and � is a real number different from one. This

restriction means that the right-hand side of the equation oscillates at a frequency
which is non-characteristic when one restricts the symbol

p
1C �2 of the opera-

tor on the left-hand side to frequency zero. Our goal is to prove estimates for U
or LCU D .x C t DxhDxi /U for large times. Actually, we shall split the solution as
U D U 0 C U 00, where U 0 is obtained writing the Duhamel formula to express U
and restricting the time integral to times that are O.

p
t /. It turns out that, when

time t stays smaller than "�4C0, LCU 0.t; � / has L2 estimates that are o.t
1
4 /, which

is acceptable for our applications. On the other hand LCU 00 would not enjoy such
bounds, but it has good estimates in L1-like spaces.

Equation (C.1) is actually just a simplified model of the problem we study in
this Appendix. For the applications to our main problem, i.e. the description of some
approximate solutions (see Section 2.5 of Chapter 2), we need more general right-
hand sides than in (C.1). Though, the method of proof of our estimates is quite the
same as for the model above. It relies on the explicit writing of the solution using
Duhamel formula and the stationary phase formula.

We shall close this appendix with explicit computations that are used in the main
part of this text to check Fermi’s golden rule.

C.1 Linear solutions to half-Klein–Gordon equations

We consider a function .t; x/ 7!M.t; x/ that is C 1 in time, with values in �.R/. If �
is in R, � ¤ 1, we denote by U.t; x/ the solution to

.Dt � p.Dx//U D e
i�tM.t; x/;

U jtD1 D 0;
(C.2)

where p.Dx/ D
p
1CD2

x , and where we study the solution for t in an interval
Œ1; T �. We write the solution by Duhamel formula as
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We fix some function � in C1.R/, equal to one close to ��1; 1
4
�, supported in

��1; 1
2
�. Then for t larger than some constant (say t � 16), we may write (C.3) as
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Our goal is to obtain Sobolev and L1 estimates for U 0; U 00 and for the result of the
action on U 0; U 00 of the operator

L˙ D x ˙ tp
0.Dx/ D x ˙ t

Dx

hDxi
; (C.5)

under two sets of assumptions on M , that we describe now. We shall take " in �0; 1�
and for t � 1, we recall that we defined in (4.1)
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For ! in Œ1;C1Œ, � 0 2 �0; 1
2
Œ, close to 1

2
, we introduce the following:

Assumption (H1)! . For any ˛;N in N, any t in Œ1; T �, x in R, " in �0; 1�, one has
bounds
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The second type of assumption we shall make on M is more technical. If � > 1,
we denote by˙�� the two roots of

p
1C �2 D � (with �� > 0) and set W� for a small

open neighborhood of the set ¹��;���º. We introduce:

Assumption (H2). For any ˛;N , the x-Fourier transform ofM.t; x/ satisfies bounds
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Moreover, for � in W�, one may decompose
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p
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where ˆ;‰ satisfy the following bounds:

jˆ.t; �/j � Ct�
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(C.10)

and a similar decomposition holds for xM instead of M . Of course, conditions (C.9)
and (C.10) are void if � < 1.
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For future reference, let us state some elementary inequalities that hold if � 0 < 1
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Let us state two propositions giving the bounds we shall get for U 0, U 00 under either
Assumption (H1)! or Assumption (H2). We denote below

kvkW �;1 D khDxi
�vkL1 (C.17)

for any � � 0.

Proposition C.1.1. The following statements hold.

(i) Assume that (H1)! holds for some ! � 1. Then for any r � 0, there isCr > 0
such that U 0 given by (C.4) satisfies for any " 2 �0; 1�, t 2 Œ1; "�4�,
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(ii) Under Assumption (H2), there is, for any r � 1, a constant Cr > 0 such that
U 0 satisfies for any " 2 �0; 1�, t 2 Œ1; "�4�,
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Let us state now the bounds we shall prove for U 00.

Proposition C.1.2. The following statements hold.

(i) Under Assumption (H1)! with ! � 1, one has for any r � 0, the following
bounds:
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(ii) Under Assumption (H2), one has for any r � 0, the following bounds:
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Remark. Notice that we obtain Sobolev estimates for LCU 0.t; � / in (C.20), (C.23),
while we bound LCU 00.t; � / in W r;1 spaces in (C.26), (C.27), (C.30). Actually, we
could not obtain for the LCU 00 contribution to LCU as good Sobolev estimates as
those that hold for LCU 0, and this is the reason for our splitting U D U 0 C U 00.

Study of the U 0 contribution. We shall prove Proposition C.1.1. By (C.4) and (C.5)
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We shall estimate first the above integrals when either � < 1, so that the coefficient of
� in the phase � �

p
1C �2 never vanishes, or when � > 1 but OM.�; �/ is supported

outside a neighborhood of the two roots˙�� of that expression.
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Lemma C.1.3. Assume that either � < 1 or � > 1 and there is a neighborhood W�

of ¹���; ��º such that OM. � ; �/ vanishes for � in W�. Assume also t � "�4.

(i) Under Assumption (H1)! , estimates (C.18)–(C.20) hold true.

(ii) Under Assumption (H2), estimates (C.21)–(C.23) hold true.

Proof. Let us prove first the Sobolev bounds (C.18), (C.20), (C.21) and (C.23). By
(C.31), OU 0.t; �/ may be written as
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where N.�; �/ satisfies for any N , any ˛, according to (C.7) and (C.8),

j@˛� @
j
�N.�; �/j � C˛;N �

�!C j2
"

�
�
� 32
" C ��

3
2 ."2
p
�/
3
2 �
0�j
h�i�N ; j D 0; 1; (C.34)

under Assumption (H1)! and
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under Assumption (H2). In the same way, by (C.32), 1LCU 0.t; �/may be written under
the form (C.33), where N satisfies, according to (C.7) and (C.8),
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under Assumption (H2).
Since N.�; �/ is supported outside a neighborhood of the zeros of

p
1C �2 � �,

we may perform in integral (C.33) one @� -integration by parts. Taking moreover an
L2.h�ird�/ norm, we obtain quantities bounded in the following way:
� IfN satisfies (C.34), we obtain a control of (C.33) in terms ofC"2! and of (C.11).

This gives an "2! estimate, better than the right-hand side (C.18).
� If N satisfies (C.35), we obtain an upper bound by the right-hand side of (C.13),

which is better than (C.21).
� If N satisfies (C.36), the L2.h�ird�/ norm of (C.33) is bounded by (C.13) with

a D 0, so by (C.20).
� IfN satisfies (C.37), that same norm is bounded by (C.13), thus by the right-hand

side of (C.23).

We have thus proved Lemma C.1.3 for Sobolev estimates. It remains to establish
(C.19) and (C.22). Since OM is rapidly decaying in � , it is sufficient to estimate the
L1 norm of U 0. Notice that the d�-integral in (C.31) may be written asZ
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and that on the support of �.�=
p
t /, j�=t j � 1, so that the stationary phase for-

mula implies that (C.38) is smaller in modulus thanCt�
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4 /, respectively, as in (C.19) and (C.22). This concludes the

proof.

Lemma C.1.3 provides Proposition C.1.1 when either � < 1 or � > 1 and OM in
(C.31) and (C.32) is cut-off outside a neighborhood of

p
1C �2 D �. We have thus

to study now the case when � > 1 and OM is supported in a small neighborhood of
one of the roots ˙�� of that equation. More precisely, we have to study, in order to
estimate the contribution to U 0, the expressions
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where N˙ is supported close to ˙�� and satisfies (C.34) or (C.35), and, in order
to estimate the contribution to LCU 0, an expression of the form (C.39) with N˙
satisfying (C.36) or (C.37). We shall show actually the more precise result:

Proposition C.1.4. For any ˛ in N, we have the following bounds:
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if N˙ satisfies (C.35),
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if N˙ satisfies (C.36), and
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if N˙ satisfies (C.37).

It follows immediately from (C.40) (resp. (C.41)) that (C.18) and (C.19) (resp.
(C.21) and (C.22)) hold true. In the same way, computing the L2 norms of (C.42)
(resp. (C.43)) we obtain upper bounds by (C.20) (resp. (C.23)). Consequently, Propo-
sition C.1.1 will be proved if we establish Proposition C.1.4.

Lemma C.1.5. One may write the derivatives of QU 0
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where  ˙.�; t; z˙/ satisfies
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if N˙ satisfies (C.34), and
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if N˙ satisfies (C.35).
In the same way, @˛x QU

0
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if N˙ satisfies (C.37). Finally, the remainder R˙˛ in (C.44) satisfies
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for any N in N.

Proof. For t bounded, estimates of the form (C.51) follow from (C.34), (C.36) and
@� -integration by parts. Assume t � 1. We treat the case of sign C and set z for zC
in (C.45). We consider the d� integral in (C.39), expressed in terms of z instead of x.
The oscillatory phase may be written as t�.t; �; z; �/ with
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Since we assume t � 1, �
t
�

1p
t
� 1 in (C.52). If jzj � c > 0, under this condition

on t , and for j� � ��j � 1, we see from (C.52) that
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performing @� -integration by parts, we get again estimates of the form (C.51).
We may thus assume from now on that t � 1, jzj � 1. For z D 0, �

t
D 0, (C.52)

vanishes at � D ��, and since the @� -derivative at this point is ��3 ¤ 0, we have for
t � 1, jzj � 1, a unique critical point �.t; �; z/ close to ��. Moreover, it follows
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from (C.52) that
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We rewrite the phase � as
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where the critical value �c.t; �; z/ satisfies
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We introduce the change of variables � D A.t; �; z; �/.� � �.t; �; z// for � close to ��
and its inverse � D „.t; �; z; �/. By (C.53) and (C.56), we have
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for any  . Then the expression of @˛x QU
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if N˙ in (C.39) satisfies (C.34),
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if N˙ satisfies (C.35),
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if N˙ satisfies (C.37). If we apply the stationary phase formula to equation (C.59),
we gain a factor t�

1
2 , which, according to (C.60)–(C.63) provides bounds of the

form (C.47)–(C.50). To get expressions of the form (C.44), we still have to replace
the phase t�c of (C.58) by  C. By the Taylor–Lagrange formula relatively to �
and (C.55),
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We define
 C.t; �; z/ D t
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Plugging (C.64) in (C.58), we deduce from (C.65) that for jzj � 1, the properties of
Q�C;  C in (C.45), (C.46) do hold. This concludes the proof of the lemma.

Proof of Proposition C.1.4. SinceR˙˛ in (C.44) satisfy better estimates than those we
want, by (C.51), we just consider the integral in the expansion of @˛x QU

0
˙

.
Under condition (C.34), J˛ satisfies (C.47). It follows from (C.13) that the mod-

ulus of the integral in (C.44) is O."2!/. On the other hand, if we multiply (C.44)
by z˙, use (C.46), integrate by parts in � in (C.44) and use (C.45), we deduce from
(C.11) and (C.13) a bound in t�

1
2 "2! for the resulting expression. Together with the

definition (C.45) of z˙, this brings (C.40).
To prove (C.41), we proceed in the same way. Under estimates (C.35), (C.48)

holds for J˛ . By (C.13), this provides for (C.44) an estimate in "2t�
1
4 . On the other

hand, if we multiply equation (C.44) by z˙ and integrate by parts, we get using (C.48)
and (C.13) an estimate in "2t�

3
8 . Together with the first one, this implies (C.41).

One obtains (C.42) (resp. (C.43)) in the same way from (C.49) (resp. (C.50))
and (C.13).
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Study of the U 00 contribution. According to (C.4) and (C.5) we have
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and

LCU
00.t; x/ D

i

2�

Z t

�1

Z
ei..t��/

p
1C�2C��Cx�/.1 � �/

� �
p
t

�
�

�
�
�

h�i
OM.�; �/CbxM.�; �/

�
d� d�:

(C.67)

We treat first the case when � < 1 or � > 1 and OM is supported for � outside a neigh-
borhood of˙��.

Lemma C.1.6. Assume � < 1 or � > 1 and OM supported outside a neighborhood
of ¹���; ��º.

(i) Under Assumption (H1)! , estimates (C.24)–(C.27) hold true.

(ii) Under Assumption (H2), estimates (C.28)–(C.30) hold true.

Proof. We write OU 00.t; �/ asZ t
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p
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with N satisfying condition (C.34) under Assumption (H1)! and condition (C.35)
under Assumption (H2). In the same way, 1LCU 00 is given by (C.68) withN satisfying
(C.36) when Assumption (H1)! holds and (C.37) under Assumption (H2).

We perform one @� -integration by parts in (C.68) and compute theL2.h�ir/ norm.
When N satisfies (C.34), we obtain from (C.12) (and from (C.13) if @� falls on
.1 � �/.�=

p
t /) a bound of the form (C.24). If instead of computing the L2.h�ird�/

norm, we estimate the L1.h�ird�/ one, we get (C.25) from (C.12) and (C.13).
Under condition (C.35) we get an estimate of the L2.h�ird�/ norm of (C.68) by
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which is smaller than the right-hand side of (C.28) by (C.14).
We are left with proving (C.26), (C.27), (C.29) and (C.30). Integrating by parts

in � in (C.66) and (C.67), we have thus to bound the integralsZ
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where N satisfies (C.35) (to get (C.29)) or (C.36) (to obtain (C.26)–(C.27)) or (C.37)
(to get (C.30)). The W r;1 norm of (C.69) is bounded from above by the L1 norm of
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h�irN.�; �/, that has immediately the wanted estimates. Let us study (C.70). Since
the integrand is in �.R/ relatively to � , stationary phase shows that the d�-integral
is O.ht � �i�

1
2 /, with bounds given by the right-hand side of (C.35)–(C.37). Conse-

quently, the contribution of (C.70) to (C.29) will be estimated by
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its contribution to (C.26)–(C.27) will be bounded by
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and its contribution to (C.30) will be controlled by
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One checks that (C.71) (resp. (C.72), resp. (C.73)) is bounded from above by the
right-hand side of (C.29) (resp. (C.26)–(C.27), resp. (C.30)). This concludes the proof
of the lemma.

We have obtained estimates (C.24)–(C.30) when OM in (C.66)–(C.67) is supported
away from the zeros of � �

p
1C �2. We shall next obtain these bounds for OM

supported in a small neighborhood of this set. We prove first these estimates under
Assumption (H1)! , i.e. those of (i) in the statement of Proposition C.1.2. We have to
study again the integralZ t
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where N will satisfy (C.34) or (C.36) and is supported close to˙��.

Lemma C.1.7. Assume � > 1 and N supported in a small enough neighborhood of
¹��;���º. Then ifN satisfies (C.34) (resp. (C.36)), estimates (C.24) and (C.25) (resp.
(C.26)–(C.27)) hold true.

Proof. Introduce �.�; �/ D ei���1
i�

and write (C.74), after making a @� -integration
by parts, as the sum of the following quantities:Z
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Assume for instance that � stays in a small neighborhood of �� on the support of N ,
and make the change of variables � D � �

p
1C �2 in the integrals, with � staying

close to zero.
Consider first the case when N satisfies (C.34) and let us prove (C.25). We esti-

mate the modulus of (C.75) byZ
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j�.t; �/j
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which is controlled by the right-hand side of (C.25). In the same way, we bound the
modulus of (C.76) by
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we obtain using (C.12) and (C.13) a bound in "2! log.1C t / as wanted. Assume next
that N satisfies (C.36), and let us show (C.26)–(C.27). We estimate then (C.75) by
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that is bounded by (C.26) if ! D 1, (C.27) if ! > 1.
To finish the proof of the lemma, we still need to get (C.24). The H r norm of

(C.75) and (C.76) is bounded from above respectively by��t; � �p1C �2�N.t; �/
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and byZ t
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We consider again the case when N is supported in a small neighborhood of �� and
use � D � �

p
1C �2 as the variable of integration. Since

k�.�; �/1j� j�1kL2.d�/ D O.
p
�/;

we estimate, in view of (C.34), (C.77) and (C.78) by (C.24) again using (C.15) and
(C.13). This concludes the proof.

Lemma C.1.7 concludes the proof of (i) of Proposition C.1.2. In order to finish
the proof of (ii), we need to show the following.
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Lemma C.1.8. Consider equation (C.66) (resp. (C.67)) when OM is supported close
to ¹���; ��º and when Assumption (H2) holds i.e. under conditions (C.8)–(C.10).
Then estimates (C.28) and (C.29) (resp. (C.30)) hold true.

Proof. Notice first that the term bxM under the integral (C.67) satisfies the same
hypothesis as OM under integral (C.66) (see the lines below (C.10)). Since the right-
hand side of (C.30) is larger than the one in (C.29), it suffices to show (C.28) and
(C.29) for expression (C.66), and (C.30) for (C.67) where one forgets the bxM term.
We thus have to study an expressionZ t
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where, according to conditions (C.8)–(C.10),N is supported in a small neighborhood
of ¹���; ��º and there are functions �; such that the following estimates hold:
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and where j D 0 in the case of bounds (C.28)–(C.29) and j D 1 for (C.30).
Let �0 be in C10 .R/, equal to one close to zero, and write the integral in (C.79)

as I jL C I
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Since � > 1, the d� integral isO.t�
1
2 /, and using the estimate ofN in (C.80), we get

by (C.14) and (C.16)
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which are better than the right-hand side of (C.29), (C.30), respectively. To study I jR,
we make a @� -integration by parts and write this term as a sum of
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We plug the last equality (C.80) in (C.84). We get on the one hand
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and, after another integration by parts, the terms
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Notice that sinceN and � satisfy the same bound (C.80), a bound for (C.82) will also
provide a bound for (C.86). In the same way, an estimate for (C.83) will bring one
for (C.87). We are just reduced, in order to get (C.29) and (C.30), to estimate the L1

norms of (C.82), (C.83) and (C.85).
We estimate the modulus of (C.82) by
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which is better than the right-hand side of (C.29) (resp. (C.30)) if j D 0 (resp. j D 1).
We bound (C.83) by
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If j D 0, we get a bound in log.1C t /"2t�
1
4 , better than (C.29), and if j D 1, we

obtain using (C.13), a bound in
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which is better than (C.30) since t � "�4.
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Finally, we estimate (C.85) by, using (C.80),

log.1C t /
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which is bounded by (C.29) if j D 0 and by (C.30) if j D 1. We have thus established
these two estimates. To get the remaining bound (C.28), we just plug inside (C.66)
bound (C.8) of OM and use (C.14). This concludes the proof.

C.2 Action of linear and bilinear operators

The goal of this section is to study the action of some operators on a function of the
form (C.3), and on its decomposition U D U 0 C U 00 given by (C.4). These operators
will be of the form Op.m0/, given by the non-semiclassical quantization (B.17), for
symbolsm0.y; �/ that do not depend on x and belong to the class QS 0�;0.1; j /, j D 1; 2,
defined in Definition 3.1.1.

We study first linear operators.

Proposition C.2.1. Let .t; x/ 7!M.t; x/ be a function satisfying Assumption (H1)! ,
i.e. inequalities (C.7). Assume moreover that M is an odd function of x. Let m0 be
a symbol in the class QS 00;0.1; 1/ of Definition 3.1.1, i.e. a function m0.y; �/ on R �R
such that
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for any N; ˛00; ˛, and that m0 satisfies m0.�y;��/ D m0.y; �/, so that Op.m0/ will
preserve odd functions. Then, for U 00 defined from M by (C.4), we have
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where M1.t; x/ is an odd function of x, satisfying for any ˛;N 2 N,

j@˛xM1.t; x/j � C˛;N t
�!
" hxi

�N ;

j@˛x@tM1.t; x/j � C˛;N t
�!C 12
"

�
t
� 32
" C t�

3
2 ."2
p
t /
3
2 �
0
�
hxi�N

(C.90)

and where r.t; x/ is such that for any ˛;N ,
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Moreover, if LC is the operator (C.5), for any ˛ 2 N, k D 0; 1,Z 1
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Proof. The definition (B.17) of Op.m0/ and the expression (C.4) of U 00 imply that
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We decompose OM.�; �/ D OM 0.�; �/C OM 00.�; �/, where OM 0 is supported for � in
a small neighborhood of the two roots ˙�� of

p
1C �2 D � and OM 00 vanishes close

to that set when � > 1, and OM 0 D 0 if � < 1. Moreover, OM 0.�; �/; OM 00.�; �/ are odd
in � , because M is odd in x. We define then

B 0.x; �; �/ D eix�m0.x; �/ OM 0.�; �/;

B 00.x; �; �/ D eix�m0.x; �/ OM 00.�; �/:
(C.94)

By the evenness of m0, we have

B 0.�x; �;��/ D �B 0.x; �; �/; B 00.�x; �;��/ D �B 00.x; �; �/: (C.95)

Let us study first the contribution of OM 00 to (C.93), given by
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We perform one @� -integration by parts, that provides on the one hand ei�tM1.t; x/,
where
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satisfies (C.90) by (C.94), (C.88) and (C.7), and is odd in x by (C.95), and on the
other hand a contribution
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By the oddness of OM in � , N.x; �; 0/ � 0. Consequently, if we apply the stationary
phase formula to the @� -integral in (C.97) at the unique (non-degenerate) critical point
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� D 0, we gain a decaying factor in ht � �i�1 instead of ht � �i�
1
2 . Taking (C.98)

into account, and using (C.12), we obtain for (C.97) and its @x-derivatives a bound in
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which is bounded by (C.91).
Let us study next the contribution of OM 0 to (C.93). We getZ t

1

Z
ei..t��/

p
1C�2C��/B 0.x; �; �/.1 � �/

� �
p
t

�
d� d�: (C.99)

Write for 1 � � � t

B 0.x; �; �/ D B 0.x; t; �/C .� � t / QB 0.x; �; t; �/; (C.100)

where QB 0 satisfies by (C.7) and (C.88)
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and is supported for � close to ¹���; ��º. If we substitute in the integral (C.99) expres-
sion .� � t / QB 0 to B 0, and use that, since �� ¤ 0, QB 0 is supported far away the critical
point � D 0 of the phase, we may gain a factor ht � �i�N for anyN by @� -integration
by parts. We thus get a contribution to (C.99) and to its @x-derivatives bounded by
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This again provides a contribution to (C.91). We are left with studying (C.99) with
B 0.x; �; �/ replaced by B 0.x; t; �/ according to (C.100), i.e.Z t
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Note that if ' 2 �.R/,Z
T1.t; �/'.�/ d� D

Z t�1

0

O'.��/ d� D

Z C1
0

O'.��/ d� CO.t�1/;Z
T2.t; �/'.�/ d� D O.t

�1/:

(C.102)

Using that B 0 is supported close to � D ˙��, and that �� ¤ 0, we may use in the
last integral in (C.101) � D

p
1C �2 � � as a variable of integration close to this

point. We express thus (C.101) from integrals of the form (C.102), with ' expressed
from B 0. The definition (C.94) of B 0 and (C.88), (C.7) imply that the principal term
on the first line (C.102) brings to (C.101) a contribution in ei�tM1.t; x/ with M1

satisfying estimates (C.90). The other contributions, as well as their @x-derivatives,
are O.t�!" t�N hxi�N / for any N , so satisfy (C.91).

It remains to prove (C.92). We express LCU 0 from (C.32), which allows us to
write Op.m0/..LCU 0/.�� // as the sum of two expressions
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Z
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1C�2C��/�

� �
p
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�
j .x; �; �/ d� d�; j D 1; 2; (C.103)

with
B
�
1 .x; �; �/ D e

ix��m0.x; ��/bxM.�; �/;

B
�
2 .x; �; �/ D e

ix��m0.x; ��/�
�

h�i
OM.�; �/:

(C.104)

When j D 1, we use the stationary phase formula in � to make appear a ht � �i�
1
2

factor. Using also (C.7) and (C.88), we get for any @x-derivative of (C.103) with
j D 1 a bound in

C

Z pt
1

ht � �i�
1
2 ��!" d�hxi�N � C"2!hxi�N : (C.105)

When j D 2, we notice that because OM is odd in � , B�2 .x; �; �/ vanishes at second
order at � D 0. Consequently, stationary phase formula in (C.103) makes gain a factor
in ht � �i�

3
2 , so that (C.103) is controlled, using again (C.13), by

C

Z pt
1

ht � �i�
3
2 ���!" d�hxi�N � C"2!hxi�N :

Bounds (C.92) follow from this inequality and (C.105). This concludes the proof of
(C.92) when k D 1. If k D 0, the estimate is similar to the one with B�1 above.

Let us prove a similar result to Proposition C.2.1 for some bilinear operators.

Proposition C.2.2. Let M and U 00 be as in the statement of Proposition C.2.1. Let
m0 be a symbol in QS 0�;0.

Q2
jD1h�j i

�1; 2/ for some � � 0, satisfying

m0.�y;��1;��1/ D �m
0.y; �1; �2/:
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Then for any function v,

Op.m0/.U 00; v/ D ei�tOp.b1/v C Op.b2/v; (C.106)

where b1; b2 satisfy for any ˛00; ˛;N the following estimates:
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(C.107)

Moreover, bj .t;�y;��/ D bj .t; y; �/.

Proof. By expression (C.4) of U 00, we have
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(C.108)

We notice that if we consider � as a parameter, the function

.y; �1/ 7! m0.y; �1; �/ OM.�; �1/

satisfies estimates of the form (C.88) for every � , as the losses in

M0.�1; �/
�
D O.h�1i

�/

appearing when one takes derivatives in the definition of symbol classes in (B.13)
are compensated by the rapid decay of OM.�; �1/. We obtain thus an integral of the
form (C.93) (with � replaced by �1), depending on an extra parameter � . By (the
proof of) Proposition C.2.1, we obtain thus that (C.108) has an expression of the
form (C.89), i.e. ei�tb1 C b2, with b1, (resp. b2) satisfying bounds of the form (C.90)
(resp. (C.91)), which gives (C.107), using also that m0.x; �1; �/ in equation (C.108)
isO.h�i�1/. The evenness of bj in .y; �/ comes from the oddness ofm0 and OM . This
concludes the proof.

Corollary C.2.3. Under the assumptions of Proposition C.2.2, one has the following
estimates for any ˛;N :

j@˛xOp.m0/.U 00; U 00/j � C hxi�N
�
t�2!" C "4! t�2.log.1C t //2

�
: (C.109)
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Proof. By (C.106), we may write

Op.m0/.U 00; U 00/ D ei�tOp.b1/U 00 C Op.b2/U 00

with b1; b2 satisfying (C.107). We may apply (C.89) to each term above, using that
b1; b2 satisfy estimates of the form (C.88), with an extra pre-factor given by the first
and last estimates (C.107). Using the first bound (C.90) and (C.91), we reach the
conclusion.

We have obtained in the preceding results estimates under assumptions of the
form (C.7) for the function M in (C.4), i.e. under Assumption (H1)! . We shall need
also variants of the preceding results when Assumption (H2), i.e. (C.8) holds instead.
In this case, we shall split the function U defined in (C.3) in a different way than
in (C.4), cutting at time of order � � ct instead of � �

p
t . More precisely, we set

U D U 01 C U
00
1 ;
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(C.110)

Proposition C.2.4. Let us assume that M is odd in x, satisfies the first inequality
of (C.8) and that m0 satisfies (C.88). We have then the following estimates for any
˛;N 2 N:
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(C.112)

Estimate (C.112) holds as soon as (C.88) is true for some large enough N .

Proof. We denote
B.x; �; �1/ D e

ix�1m0.x; �1/ OM.�; �1/;

that satisfies by the first inequality of (C.8) and (C.88)
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and that vanishes at �1 D 0 as M is odd. Then as in (C.93), (C.96)
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(C.113)
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Using stationary phase in �1 and the fact that B vanishes at �1 D 0, we get for some
a 2 �0; 1Œ,

j@˛xOp.m0/U 001 .t; x/j � C
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ht � �i�1��1" ��
1
2 d�hxi�N

which is bounded by the right-hand side of (C.111).
To prove estimate (C.112) with ` D 1, we express Op.m0/..LCU 0/.�� // under

form (C.103), except that the cut-off �.�=
p
t / has to be replaced by �.�=t/, i.e. we

have to study
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where B�j , j D 1; 2, is given by (C.104). If j D 1, we get from the first inequality
of (C.8), (C.88) and stationary phase in �1 a bound of @x-derivatives of (C.114) by

C hxi�N
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ht � �i�
1
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2 ��1" d� (C.115)

for some a 2 �0; 1Œ, whence the O."2/ wanted bound for the L2 and L1 norms.
If j D 2, using stationary phase and the fact that B�2 vanishes at order 2 at � D 0, we
get an estimate in

C hxi�N
Z at
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ht � �i�
3
2 �

1
2 ��1" d� (C.116)

which is also O."2/. This concludes the proof of (C.112) when ` D 1. If ` D 0, we
may use directly (C.115) to get the estimate. Notice that to get (C.112), we do not
need that (C.115) and (C.116) hold for any N , but just for a large enough N (actually
N D 1 suffices), so that (C.88) has to be assumed only for some large enough N .

Let us write a version of Proposition C.2.2 under Assumption (H2) as well.

Proposition C.2.5. LetM be as in Proposition C.2.4 andm0 in QS 0�;0.
Q2
jD1h�j i

�1; 2/.
Then Op.m0/.U 01; v/ and Op.m0/.U 001 ; v/ may be written as Op.b/v for all symbols
b.t; y; �/ satisfying the estimates
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Proof. Consider first Op.m0/.U 001 ; v/ that may be written using expression (C.110)
of U 001 as

Op.m0/.U 001 ; v/ D
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Z
eix�b.t; x; �/ Ov.�/ d� (C.118)

with
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Using again stationary phase with respect to �1 and the fact that OM.�; 0/ D 0 to gain
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a decaying factor in ht � �i�1, we obtain for the @
˛0
0
x @

˛
�

-derivatives of b an upper
bound in
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since, as seen at the beginning of the proof of Proposition C.2.2,

.y; �1/ 7!m0.y; �1; �/ OM.�; �1/

and its derivatives have bounds in

C hyi�N ��
1
2 ��1" h�1i

�N
h�i�1

according to (C.8). As (C.119) is bounded by the right-hand side of (C.117), we get
the wanted conclusion for Op.m0/.U 001 ; v/.

Consider now the case of Op.m0/.U 01; v/, i.e.
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We may rewrite it as
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with, for any N ,

b.t; x; �/ D

Z
KN .t; x � y; x; �/hDyi

2N�1U 01.y/ dy; (C.120)

where
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By the assumption onm0, estimates of the form (B.13) hold (with y on the right-hand
side of this inequality replaced by x) whence
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for any N 0. We conclude that for any ˛; ˇ;N 0; N 00, one has estimates
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if N is taken large enough relatively to N 0; N 00; ˛; ˇ. Plugging this in (C.120), we
conclude that for any N 0; N 00; ˛; ˇ, there is N such that
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Since U 01 is odd, we may write
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using the definition (C.5) of LC. We get finally
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(C.122)

We may apply estimate (C.112) with U 01 replaced by hDxi2NU 01 (as hDxi2NM.�; � /
in (C.110) satisfies the same assumption as M.�; � /), and the pre-factor hyi�N

00C1,
hyi�N

00C2 on the right-hand side of (C.122) satisfies estimates of the form (C.88) with
some large fixedN (instead of for anyN ). By the last statement in Proposition C.2.4,
this is enough to apply (C.112). Plugging this in (C.121), we get for that expression
a bound in "2t�1hxi�N

0

h�i�1, which is controlled by the right-hand side of (C.117)
since t � "�4. This concludes the proof.

C.3 An explicit computation

In this last section of this chapter, we make an explicit computation that will be used
in relation with Fermi’s golden rule.

Let � be in C10 .R/, even, equal to one close to zero. If � > 1 and if˙�� are still
the two roots of

p
1C �2 � � D 0, set

��.�/ D �.� � ��/C �.� C ��/: (C.123)

If � < 1, set �� � 0.

Proposition C.3.1. LetM be a function satisfying (C.7) with ! D 1, that is odd in x.
Let U be defined from M by (C.3) ant let Z be an odd function in �.R/. ThenZ
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where r satisfies
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Remark. It is clear that the limit on the right-hand side of (C.124) exists and may
be computed from .

p
1C �2 � �C i0/�1. We keep it nevertheless under the form

(C.124) as this will be more convenient for us when using the proposition.

To prove the proposition, we shall write the left-hand side of (C.124), according
to (C.3), under the form
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Z
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p
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We decompose

OM.�; �/ D OM 0.�; �/C OM 00.�; �/;

OM 0.�; �/ D OM.�; �/��.�/;

OM 00.�; �/ D OM.�; �/.1 � ��/.�/:

(C.127)

We notice that OM 00 vanishes at order one at � D 0 by the oddness assumption on M .

Lemma C.3.2. Expression (C.126) with OM replaced by OM 00 may be written as
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modulo a remainder satisfying (C.125).

Proof. The expression under study is the sum of (C.128) and of
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In (C.129) and (C.130), the integrand vanishes at order 2 at � D 0 by the oddness
of M and Z. The stationary phase formula in � allows thus to gain a factor t�
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(using t � "�4). We thus get quantities controlled as in (C.125).

The lemma implies the proposition when � < 1. We shall assume from now on
that � > 1 and study (C.126) with OM replaced by OM 0.

End of the proof of Proposition C.3.1. By the Taylor formula, we write for 1� � � t ,
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Integral (C.126) with OM replaced by OM 0 may be written as the sum J1 C J2, where
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(C.131)

Since H is supported close to ˙��, so far away from zero, we can make in J2 any
number of integrations by parts in � in order to gain a decaying factor in ht � �i�N

for any N , so that
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which is better than the right-hand side of (C.125). On the other hand, we may write
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(C.132)

where

J 01 D �ie
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Z C1
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p
1C�2��Ci�/ OM 0.t; �/ OZ.�/ d� d�:

The first term on the right-hand side of (C.132) provides the first term on the right-
hand side of (C.124). Moreover, in the expression of J 01, we can make as many
integrations by parts in � as we want to get a decaying factor in h�i�N for anyN . This
shows that J 01 is O."2t�N /, so may be incorporated to r in (C.124). This concludes
the proof.


