
Appendix D

Action of multilinear operators on Sobolev and Hölder
spaces

In Appendix B, we have introduced multilinear operators that generalize the linear
operators (B.3). In this appendix, we want to discussed Sobolev boundedness proper-
ties of such operators. For linear ones like (B.3), given in terms of symbols satisfying
(B.1) with M.x; �/ � 1, such bounds are well known: see for instance Dimassi and
Sjöstrand [24]. We generalize these bounds to multilinear operators, under the form

kOph.a/.v1; : : : ; vn/kH sh � C
nX
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Y
`¤j
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kvj kH sh
; (D.1)

where kvk
W
�0;1

h

D khhDxi
�0vkL1 and kvkH s

h
D khhDxi

svkL2 with s � 0 and �0
a large enough number independent of s. Notice that such an estimate is the natural
generalization of the standard bound kuvkH s � kukL1kvkH s C kukH skvkL1 , that
holds for any s � 0, to a framework of multilinear operators more general than the
product.

We give also, in the case when the symbol a.x
h
; x; �1; : : : ; �n/ in (D.1) is rapidly

decaying in x
h

, other estimates of the form

kOph.a/.v1; : : : ; vn/kL2 � Ch
n�1Y
jD1

kvj kW �0;1

h

.kL˙vnkL2 C kvnkL2/ (D.2)

for any odd functions v1; : : : ; vn, where

L˙ D x ˙
Dx

hDxi
:

The important point here is that the rapid decay in x
h

of the symbol a allows one
to gain on the right-hand side a small factor h. We have already explained in Chap-
ter 2 where this gain comes from: The quantity inside the norm on the left-hand side
of (D.2) is h D t�1 times a generalization of expression (2.64). We have seen that
thanks to (2.65), one may express any of the functions vj , say vn, from L˙vn, up
to a loss of x

h
that is compensated by the rapid decay of a relatively to that variable.

Such properties explain why terms like r 01 in (B.8) may be considered somewhat as
remainders: they do not involve a factor h in their estimate, but the fact that they
decay rapidly in x

h
allows one to use (D.2) and thus to recover in that way an O.h/

bound.
Let us indicate more precisely what are the Sobolev bounds we shall get with

respect to the symbols defined in Appendix B. Recall that we introduced classes of
symbols QS�;0.M; p/, QS 0�;0.M; p/ in Definition 3.1.1 and their (generalized) semiclas-
sical counterparts S�;ˇ .M; p/, S 0�;ˇ .M; p/ in Definition B.1.2. We shall study first
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the action of operators associated to the QS�;0.M; p/, S�;ˇ .M; p/ classes and then,
in the second section of this appendix, the case of operators associated to classes of
decaying symbols QS 0�;0.M; p/, S

0
�;ˇ
.M; p/.

D.1 Action of quantization of non-space-decaying symbols

We introduce the following notation. If v is a function depending on the semiclassical
parameter h 2 �0; 1�, we set

kvkH s
h
D khhDxi

svkL2 (D.3)

for any s 2 R. For � in N, we define

kvkW �;1

h
D khhDxi

�vkL1 : (D.4)

Proposition D.1.1. Let n be in N�, � in N, � � 0. There is �0 in N such that, for
any ˇ � 0, any symbol a in the class S�;ˇ .M �

0 ; n/ of Definition B.1.2 (withM0 given
by (B.10)), the following holds true, under the restriction that, for (i) and (ii), either
.�; ˇ/ D .0; 0/ or 0 < �ˇ � 1 or a.y; x; �1; : : : ; �n/ is independent of x:

(i) Assume moreover that a.y; x; �1; : : : ; �n/ is supported in the domain

j�1j C � � � C j�n�1j � K.1C j�nj/

for some constantK. Then, for any s � 0, there is C > 0 such that, for any
test functions v1; : : : ; vn,

kOph.a/.v1; : : : ; vn/kH sh � C
n�1Y
jD1

kvj kW �0;1

h

kvnkH sh
(D.5)

uniformly in h 2 �0; 1�.

(ii) Without any support condition on the symbol, we have instead

kOph.a/.v1; : : : ; vn/kH sh � C
nX

jD1

Y
`¤j

kv`kW �0;1

h

kvj kH sh
: (D.6)

(iii) For any j D 1; : : : ; n, we have also the estimate (without any restriction on
.�; ˇ/ or a)

kOph.a/.v1; : : : ; vn/kL2 � C
Y
`¤j

kv`kW �0;1

h

kvj kL2 : (D.7)

Moreover, the above estimates hold true under a weaker assumption than in Defini-
tion B.1.2 of the symbols: namely it is enough to assume that bounds (B.13) hold with
N D 2 (instead of for all N ) for the last exponent in this formula.

Before giving the proof, we establish a lemma.
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Lemma D.1.2. Let a be in the class S 0�;0.M
�
0 ; n/ of Definition B.1.2 (or more gen-

erally a symbol satisfying (B.13) for any ˛00; ˛0; k 2 N; ˛ 2 Np , with the last factor
replaced by .1CM��0 jyj/

�2). There are �0 in N depending only on �, and a fam-
ily of functions ak1;:::;kn�1.v1; : : : ; vn�1; y; x; �/ indexed by .k1; : : : ; kn�1/ 2 Nn�1

satisfying bounds

j@˛x@
˛0

� ak1;:::;kn�1.v1; : : : ; vn�1; y; x; �/j

� C2�max.k1;:::;kn�1/hyi�2
n�1Y
jD1

kvj kW �0;1

h

(D.8)

for 0 � ˛; ˛0 � 2, such that if we set for any y

a.y; x; hD1; : : : ; hDn/.v1; : : : ; vn�1; vn/

D
1

.2�/n

Z
eix.�1C���C�n/a.y; x; h�1; : : : ; h�n/

nY
jD1

Ovj .�j / d�1 � � � d�n
(D.9)

and use a similar notation for ak1;:::;kn�1.v1; : : : ; vn�1; y; x; hDx/vn, then

a.y; x; hD1; : : : ; hDn/.v1; : : : ; vn�1; vn/

D

C1X
k1D0

� � �

C1X
kn�1D0

ak1;:::;kn�1.v1; : : : ; vn�1; y; x; hDx/vn:
(D.10)

Proof. We take a Littlewood–Paley decomposition of the identity, Id D
PC1
kD0�

h
k

,
where �h0 D Oph. .�//, �

h
k
D Oph.'.2

�k�// for k > 0, with convenient functions
 2 C10 .R/, ' 2 C

1
0 .R � ¹0º/. We also take Q in C10 .R/, Q' in C10 .R � ¹0º/with

Q  D  , Q'' D '. We set Q'k.�/ D Q'.2�k�/ for k > 0, Q'0.�/ D Q .�/. Plugging this
decomposition on each factor vj , j D 1; : : : ; n � 1 in (D.9), we obtain an expression
of the form (D.10) if we define

ak1;:::;kn�1.v1; : : : ; vn�1; y; x; �/

D
1

.2�/n�1

Z
eix.�1C���C�n�1/a.y; x; h�1; : : : ; h�n�1; �/

�

n�1Y
jD1

Q'kj .h�j /
1
�hkj vj .�j / d�1 � � � d�n�1:

(D.11)

We may rewrite this as

ak1;:::;kn�1.v1; : : : ; vn�1; y; x; �/

D h�.n�1/
Z
Kk1;:::;kn�1

�
y; x;

x � x01
h

; : : : ;
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h
; �
�

�
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0
j / dx

0
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0
n�1

(D.12)
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with

Kk1;:::;kn�1
�
y; x; z1; : : : ; zn�1; �

�
D

1

.2�/n�1

Z
ei.z1�1C���Czn�1�n�1/a.y; x; �1; : : : ; �n�1; �/

�

n�1Y
jD1

Q'kj .�j / d�1 � � � d�n�1:

(D.13)

By the definition of M0.�1; : : : ; �n�1; �n/, on the support of
Qn�1
jD1 Q'kj .�j /, one has

M0.�1; : : : ; �n�1; �n/ D O.2
Ok/ if Ok D max.k1; : : : ; kn�1/.

As a is in the class S 0�;0.M
�
0 ; n/, this implies that a in (D.13) is O.2� Ok/. Moreover,

if we perform two @�j -integrations by parts in (D.13), we gain a factor in h2� Ok�zj i�2

under the integral, for j D 1; : : : ; n � 1, according to (B.13). In addition, we have
also a decaying factor in h2� Ok� jyji�2. It follows that for ˛; ˛0 � 1,

j@˛x@
˛0

� Kk1;:::;kn�1
�
y; x; z1; : : : ; zn�1; �

�
j

� C2.�.˛C˛
0C2/C�Cn�1/ Ok

n�1Y
jD1

h2��
Okzj i

�2
hyi�2:

(D.14)

Plugging this estimate in (D.12) and using

j�hkj vj .x
0
j /j � C2

�kj �0khhDxi
�0vj kL1

we see that if �0 has been taken large enough relatively to �; �, we get bounds of the
form (D.8). This concludes the proof.

Proof of Proposition D.1.1. (i) We reduce first to the case s D 0. Actually, by Corol-
lary B.2.4, that applies under the restrictions in the statement on .�; ˇ/ or a, the
operator

.v1; : : : ; vn/ 7! hhDxi
sOph.a/.v1; : : : ; vn�1; hhDxi

�svn/

may be written as Oph. Qa/.v1; : : : ; vn/ for some symbol Qa in S�;ˇ .M �0

0 ; n/ for some
�0 that does not depend on s. It is thus sufficient to show that

kOph. Qa/.v1; : : : ; vn/kL2 � C
n�1Y
jD1

kvj kW �0;1

h

kvnkL2 : (D.15)

By expression (B.14), we have

Oph. Qa/.v1; : : : ; vn/ D Qa
�x
h
; x; hD1; : : : ; hDn

�
.v1; : : : ; vn/

D Qa.�1; x; hD1; : : : ; hDn/.v1; : : : ; vn/

C

Z x
h

�1

.@y Qa/.y; x; hD1; : : : ; hDn/.v1; : : : ; vn/ dy:

(D.16)
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As @y Qa is in S 0�;0.M
�
0 ; n/ (for some �), we may apply at any fixed y expansion (D.10)

to @y Qa. The symbols ak1;:::;kn�1 on the right-hand side satisfy (D.8), so that we may
apply to them the Calderón–Vaillancourt theorem [9] in the version of Cordes [12],
considering y; v1; : : : ; vn�1 as parameters. One gets in that way for any y; v1; : : : ; vn,

k@y Qa.y; x; hD1; : : : ; hDn/.v1; : : : ; vn/kL2

� C
X
k1

� � �

X
kn�1

2�max.k1;:::;kn�1/hyi�2
n�1Y
jD1

kvj kW �0;1

h

kvnkL2 :
(D.17)

The fact that the L2 norm of the last term in (D.16) is bounded from above by the
right-hand side of (D.5) (with s D 0) follows from that inequality. If we apply the
version of Lemma D.1.2 without parameter y to Qa.�1; x; �1; : : : ; �n/, we obtain
also an inequality of the form (D.17) (without factor hyi�2 on the right-hand side),
which implies for the first term on the right-hand side of (D.16) the wanted estimate.
This concludes the proof.

(ii) We just split a as a sum of symbols for whichX
`¤j

j�`j � K.1C j�j j/; j D 1; : : : ; n;

and apply (i) to each of them.
(iii) It is enough to prove (D.7) with j D n for instance. Remember that in the

proof of (i), we use that the support condition on a and the restrictions on .�; ˇ/ or
a only to reduce the case of H s

h
to L2 estimates. Once this has been done, inequality

(D.15) has been proved without any support condition on Qa, nor on .�; ˇ/, so that it
implies (D.7). This concludes the proof, the last statement of the Proposition coming
from the fact that Lemma D.1.2 has been proved for symbols satisfying the indicated
property and that Corollary B.2.4 used at the beginning of the proof holds also under
such a condition.

It will be useful to be able to decompose a symbol belonging to S�;0.M �
0 ; n/

as a sum of a symbol in S�;ˇ .M �
0 ; n/ for some small ˇ > 0 and a symbol whose

quantization satisfies better estimates than (D.6) and (D.7). Define

L˙ D
1

h
Oph.x ˙ p

0.�//: (D.18)

Corollary D.1.3. Let a.y; x; �1; : : : ; �n/ be in S�;0.M �
0 ; n/ for some � � 0, some

� � 0, some n � 2. Let ˇ > 0 (small), r 2 RC. One may decompose a D a1 C a2,
where a1 is in S�;ˇ .M �

0 ; n/ and a2 is such that if s satisfies .s � �0 � 1/ˇ � r C nC1
2

,

kOph.a2/.v1; : : : ; vn/kH sh � Ch
r

nY
jD1

kvj kH sh
; (D.19)

kL˙Oph.a2/.v1; : : : ; vn/kL2 � Ch
r

n�1Y
jD1

kvj kH sh
.kvnkL2 C kL˙vnkL2/ (D.20)
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and

kL˙Oph.a2/.v1; : : : ; vn/kL2 � Ch
r

n�1Y
jD1

kvj kH sh
.kvnkL2CkL˙vnkW �0;1

h

/: (D.21)

(In the last two estimates, we could make play the special role devoted to n to any
other index).

A similar statement holds replacing classes S�;0 (resp. S�;ˇ ) by S 0�;0 (resp. S 0
�;ˇ

).

Proof. Take � in C10 .R/ equal to one close to zero and define a1 D a�.hˇM0.�//,
a2 D a.1 � �/.h

ˇM0.�//. Then a1 is in S�;ˇ .M �
0 ; n/ as it satisfies (B.12)–(B.13).

Let us show that a2 obeys (D.19)–(D.20). Decomposing a2 in a sum of several sym-
bols, we may assume for instance that it is supported for j�1j C � � � C j�n�1j � Kh�ni.
Then, by the definition of a2, there is at least one index j , 1 � j � n � 1, such that
j�j j � ch

�ˇ on the support of a2, for instance j D n � 1. Applying (D.5), we get

kOph.a2/.v1; : : : ; vn/kH sh

� C

n�1Y
jD1

kvj kW �0;1

h

kOph..1 � Q�/.h
�ˇ �//vn�1kW �0;1

h

kvnkH sh

(D.22)

for some new function Q� equal to one close to zero. By semiclassical Sobolev injec-
tion,

kvj kW �0;1

h

� Ch�
1
2 kvj kH sh

if s > �0 C 1
2

, and

kOph..1 � Q�/.h
ˇ �//vn�1kW �0;1

h

� Ch�
1
2 kOph..1 � Q�/.h

�ˇ �//vn�1kH�0C1
h

� Ch�
1
2C.s��0�1/ˇkvn�1kH sh

:

(D.23)

If s is as in the statement, we get (D.19).
To obtain (D.20), we notice that

L˙Oph.a2/.v1; : : : ; vn/ D˙
1

h
Oph.p

0.�//Oph.a2/.v1; : : : ; vn/

C iOph
�@a2
@�n

�
.v1; : : : ; vn/

C Oph.a2/
�
v1; : : : ; vn�1;

x

h
vn

�
:

(D.24)

The L2 norm of the first two terms on the right-hand side is bounded from above
by Chr

Qn�1
jD1kvj kH sh

kvnkL2 if we use (D.7) and (D.23), for s as in the statement.
On the other hand, in the third term, the last argument of Oph.a2/ in (D.24) may be
written L˙vn �

1
h

Oph.p
0.�//, so that we get an upper bound by the right-hand side

of (D.20) using again (D.7) and (D.23).
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We may also estimate the last term in (D.24) using (D.7), but putting the L2 norm
on vn�1, i.e. writing

kOph.a2/.v1; : : : ; vn�1;L˙vn/kL2

� C

n�2Y
jD1

kvj kW �0;1

h

kOph..1 � Q�/.h
ˇ �//vn�1kL2kL˙vnkW �0;1

h

:

Bounding the last but one factor by hˇskvn�1kH sh , we get as well (D.21). The last
statement of the corollary concerning classes S 0�;0; S

0
�;ˇ

holds in the same way.

Let us state next a corollary of Proposition D.1.1.

Corollary D.1.4. Let � � 0; n 2 N�. There is �0 2 N such that for any � � 0, any
ˇ � 0, for any j D 1; : : : ; n, any a in S�;ˇ .M �

0 ; n/, there is C > 0 such that for any
v1; : : : ; vn,


x
h

Oph.a/.v1; : : : ; vn/




L2
� C

Y
`¤j

kv`kW �0;1

h

.h�1kvj kL2 C kL˙vj kL2/ (D.25)

and for any j ¤ j 0, 1 � j; j 0 � n,


x
h

Oph.a/.v1; : : : ; vn/




L2
� C

� Y
`¤j;j 0

kv`kW �0;1

h

�
kvj 0kL2

�
�
h�1kvj kW �0;1

h

C kL˙vj kW �0;1

h

�
:

(D.26)

Proof. Let us prove (D.25) with j D n for instance. By the definition of the quanti-
zation

x

h
Oph.a/.v1; : : : ; vn/ D Oph.a/

�
v1; : : : ; vn�1;

x

h
vn

�
C iOph

� @a
@�n

�
.v1; : : : ; vn/:

If we write x
h
D L˙ � h

�1p0.Dx/, and apply (D.7) with j D n, we obtain (D.25).
One obtains (D.26) in the same way, applying estimate (D.7) with j replaced by j 0,
and using that p0.hDx/ is bounded fromW �0

0
;1

h
toW �0;1

h
if �00 > �0. This concludes

the proof.

We shall also use some L1 estimates.

Proposition D.1.5. Let � 2 Œ0;C1Œ, � � 0, n 2 N�, ˇ � 0. Let q > 1 and let a
be a symbol in S�;ˇ .M �

0

Qn
jD1h�j i

�q; n/. (It is actually enough to assume that in
estimates (B.13), the last exponent N is equal to 2). Assume that .�; ˇ/ D .0; 0/ or
0 < �ˇ � 1, or that a.y; x; �/ is independent of x. Then there are �0 in N and, for
any integer � � �0, a constant C > 0 such that for any v1; : : : ; vn,

kOph.a/.v1; : : : ; vn/kW �;1

h
� C

nY
jD1

kvj kW �;1

h
: (D.27)
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If we have just a 2 S�ˇ .M �
0

Qn
jD1h�j i

�1; n/, we get for any r in N, any � > 0, any
s; � with .s � � � 1/� � r C 1

2
and � � �0, the bound

kOph.a/.v1; : : : ; vn/kW �;1

h

� Ch��
nY

jD1

kvj kW �;1

h
C Chr

nX
jD1

Y
`¤j

kv`kW �;1

h
kvj kH sh

:
(D.28)

Proof. One may assume that a is supported for j�1j C � � � C j�n�1j � K.1C j�nj/.
One may use Corollary B.2.4, whose assumptions are satisfied, in order to reduce
(D.27) to estimate

kOph.a/.v1; : : : ; vn/kL1 � C
n�1Y
jD1

kvj kW �0;1

h

kvnkL1 : (D.29)

We apply (D.16) to reduce (D.29) to bounds of the form

ka.�1; x; hD1; : : : ; hDn/.v1; : : : ; vn/kL1

� C

n�1Y
jD1

kvj kW �0;1

h

kvnkL1 ;Z C1
�1

k@ya.y; x; hD1; : : : ; hDn/.v1; : : : ; vn/kL1

� C

n�1Y
jD1

kvj kW �0;1

h

kvnkL1 :

(D.30)

We may decompose @ya.y; x; hD1; : : : ; hDn/ using equality (D.10). Each contri-
bution in the sum is given by a symbol satisfying estimate (D.8), with an extra
factor h�ni�q on the right-hand side, coming from the fact that our symbol a was
in S�;ˇ .M �

0

Qn
jD1h�j i

�q; n/. The kernel of the corresponding operator will then be
bounded in modulus by

Ch�1G
�x � x0

h

�
2�max.k1;:::;kn�1/hyi�2

n�1Y
jD1

kvj kW �0;1

h

with some L1 function G. The second estimate (D.30) follows from that. The first
one is proved in the same way.

Finally, to get (D.28), we assume again a supported as above and decompose it
as a D a1 C a2, with a1 D a�.h��n/ for some � > 0 and � in C10 .R/ equal to one
close to zero. Then a1 is in h��S�ˇ .M �

0

Qn
jD1h�j i

�2; n/ (for a new value of �), so
that (D.27) applies, with a loss h�� , which provides the first term on the right-hand
side of (D.28). On the other hand, we estimate kOph.a2/.v1; : : : ; vn/kW �;1

h
from

Ch�
1
2 kOph.a2/.v1; : : : ; vn/kH�C1h

by semiclassical Sobolev injection, and then this
quantity by the last term on the right-hand side of (D.28) with r D �.s � � � 1/ � 1

2
.

This concludes the proof.
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Let us translate the preceding results in the non-semiclassical case using the
transformation ‚t defined in (B.15) and (B.16)–(B.17). We translate first Proposi-
tion D.1.1.

Proposition D.1.6. Let a be a symbol satisfying the assumptions of Proposition D.1.1
and .�; ˇ/ satisfying also the assumptions of that proposition in the case of statements
(i) and (ii) below (in particular, if a is independent of x, these statements hold for any
.�; ˇ/ with � � 0; ˇ � 0).

(i) If moreover a is supported for j�1j C � � � C j�n�1j � K.1C j�nj/, one has
for any s � 0 the bound

kOpt .a/.v1; : : : ; vn/kH s � C
n�1Y
jD1

kvj kW �0;1kvnkH s (D.31)

with some �0 independent of s, Opt being defined in (B.16).

(ii) Without any support assumption on the symbol of a, one has

kOpt .a/.v1; : : : ; vn/kH s � C
nX

jD1

Y
`¤j

kv`kW �0;1kvj kH s : (D.32)

(iii) For any j D 1; : : : ; n, one has also

kOpt .a/.v1; : : : ; vn/kL2 � C
Y
`¤j

kv`kW �0;1kvj kL2 : (D.33)

Proof. One combines Proposition D.1.1, (B.16) and the fact that by (B.15),

k‚tvkH s D kvkH s
h

and
k‚tvkW �;1 D h

1
2 kvkW �;1

h

if h D t�1.

To get non-semiclassical versions of Corollaries D.1.3 and D.1.4, let us notice
that by (B.15)

L˙‚tv D
1
p
t
.L˙v/

�x
t

�
is L˙ is defined by (D.18) and

L˙ D x ˙ tp
0.Dx/: (D.34)

We have then:

Corollary D.1.7. Let a.y; x; �1; : : : ; �n/ be a symbol in S�;0.M �
0 ; n/ for some � � 0,

some � � 0, some n � 2. Let ˇ > 0 be small and r in RC. One may decompose
a D a1 C a2, where a1 is in S�;ˇ .M �

0 ; n/ and a2 satisfies, if .s � �0/ˇ is large
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enough relatively to r; n,

kOpt .a2/.v1; : : : ; vn/kH s � Ct�r
nY

jD1

kvj kH s ;

kL˙Opt .a2/.v1; : : : ; vn/kL2 � Ct
�r

n�1Y
jD1

kvj kH s
�
kvnkL2 C kL˙vnkL2

�
;

kL˙Opt .a2/.v1; : : : ; vn/kL2 � Ct
�r

�n�1Y
jD1

kvj kH s

��
kvnkL2 C kL˙vnkW �;1

�
:

(D.35)

Moreover, in the last two estimates, one may make play the special role devoted to n
to any other index.

Proof. Again, we combine (B.15)–(B.16) and the estimates in (D.19)–(D.21) (up to
a change of notation for r).

In the same way, we get from Corollary D.1.4:

Corollary D.1.8. With the notation of Corollary D.1.4, we have

kxOpt .a/.v1; : : : ; vn/kL2 � C
Y
`¤j

kv`kW �0;1.tkvj kL2 C kL˙vj kL2/ (D.36)

for any 1 � j � n. Moreover, for any j ¤ j 0, 1 � j; j 0 � n,

kxOpt .a/.v1; : : : ; vn/kL2

� C
Y
`¤j;j 0

kv`kW �0;1kvj 0kL2.tkvj kW �0;1 C kL˙vj kW �0;1/: (D.37)

Finally, it follows from Proposition D.1.5:

Proposition D.1.9. Under the assumptions and with notation of Proposition D.1.5,
one has for � � �0,

kOpt .a/.v1; : : : ; vn/kW �;1 � C

nY
jD1

kvj kW �;1 (D.38)

if a is in S�;ˇ .M �
0

Qn
jD1h�j i

�q; n/ for some q > 1 and

kOpt .a/.v1; : : : ; vn/kW �;1

� Ct�
nY

jD1

kvj kW �;1 C Ct�r
nX

jD1

Y
`¤j

kv`kW �;1kvj kH s
(D.39)

if q D 1, � > 0 and .s � �/� is large enough relatively to r .
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D.2 Action of quantization of space decaying symbols

In this section we study the action of operators associated to symbols belonging to
the classes S 0

�;ˇ
.M �

0 ; n/ on Sobolev or Hölder spaces of odd functions. The odd-
ness of the functions, together with the fact that elements in the S 0 class are symbols
a.y; x; �/ rapidly decaying in y, will allow us to re-express the functions v on which
acts the operator from hL˙v (using notation (D.18)), thus gaining a power of h. Actu-
ally, it is not necessary that a be rapidly decaying in y, and we shall give statements
with less stringent decay assumptions.

Proposition D.2.1. Let n be in N�, � in N, � � 0. There is �0 in N such that, for
any ˇ � 0, any symbol a.y; x; �1; : : : ; �n/, supported in the domain

j�1j C � � � C j�n�1j � K.1C j�nj/

for some constant K, and such that for some `, 1 � ` � n � 1, a belongs to the
class S 02`C2

�;ˇ
.M �

0 ; n/ introduced at the end of Definition B.1.2, with � � 0 and either
.�; ˇ/ D .0; 0/ or 0 < �ˇ � 1 or a is independent of x, the following holds true:

(i) For any s � 0, any odd test functions v1; : : : ; vn, and any choice of signs
"j 2 ¹�;Cº, j D 1; : : : ; `,

kOph.a/.v1; : : : ; vn/kH sh

� Ch`
Ỳ
jD1

�
kL"j vj kW �0;1

h

C kvj kW �0;1

h

�
�

n�1Y
jD`C1

kvj kW �0;1

h

kvnkH sh
:

(D.40)

(ii) Assume in addition to the preceding assumptions that ˇ > 0. Then, for any
0 � `0 � `, one has

kOph.a/.v1; : : : ; vn/kH sh

� Ch`�
1
2 `
0��.ˇ/

`0Y
jD1

�
kL"j vj kL2 C kvj kL2

�
�

Ỳ
jD`0C1

�
kL"j vj kW �0;1

h

C kvj kW �0;1

h

�
�

n�1Y
jD`C1

kvj kW �0;1

h

kvnkH sh
;

(D.41)

where �.ˇ/ > 0 goes to zero when ˇ goes to zero (�.ˇ/ D `0.�0 C 1
2
/ˇ

holds).
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Proof. We shall prove (i) and (ii) simultaneously. We notice first that, by our support
condition on .�1; : : : ; �n/, M0.�/ � 1C j�1j C � � � C j�n�1j, so that, up to chang-
ing �, we may study the H s

h
norm of

Oph. Qa/
�
Oph.h�i

�1/v1; : : : ;Oph.h�i
�1/v`; v`C1; : : : ; vn

�
(D.42)

for a new symbol Qa satisfying the same assumptions as a. Moreover, when ˇ > 0, this
symbol is rapidly decaying in hˇM0.�/ according to (B.12)–(B.13), so that, modify-
ing again Qa, we rewrite (D.42) as

Oph. Qa/
�
Oph.h�i

�1
hˇhˇ �i�
 /v1; : : : ;Oph.h�i

�1
hˇhˇ �i�
 /v`;

v`C1; : : : ; vn
� (D.43)

with 
 > 0 to be chosen. We use now that if f is an odd function, we may write

f .x/ D
x

2

Z 1

�1

.@f /.�x/ d�:

Consequently, for j D 1; : : : ; `,

Oph
�
h�i�1hˇhˇ �i�


�
vj D

ix

2h

Z 1

�1

�
Oph

�
hˇhˇ �i�


�

h�i

�
vj

�
.�jx/ d�j ; (D.44)

that we rewrite using (D.18)

Oph
�
h�i�1hˇhˇ �i�


�
vj

D ih
"j

2

x

h

Z 1

�1

�
Oph

�
hˇhˇ �i�


�
L"j vj

�
.�jx/ d�j

� ih
"j

2

x

h

Z 1

�1

�
Oph

�
hˇhˇ �i�


�x
h
vj

�
.�jx/ d�j :

(D.45)

We may thus write (D.45) as a linear combination of expressions of the form

h
�x
h

�q Z 1

�1

�
q0

j Vj .�jx/ d�j ; (D.46)

where q D 0; 1; 2, q0 2 N and Vj .x/ is of the form

Vj .x/ D Oph
�
bj .ˇh

ˇ �/
�
L"j vj or Vj .x/ D Oph

�
bj .ˇh

ˇ �/
�
vj (D.47)

with j@kbj .�/j D O.h�i�
�k/. We plug these expressions inside (D.43). We remark
that when we commute each factor x

h
with Qa, we get again an operator given by a sym-

bol similar to Qa, up to changing �. Moreover, the hM��0 yi�2`�2 decay of Qa.y; x; �/
that we assume shows that for q � 2`, .x

h
/q Qa.x

h
; x; �/ may be written Qa1.xh ; x; �/

with Qa1.y; x; �/ in S 02
�;ˇ
.M �

0 ; n/ (for a new �). Consequently, we may write (D.43)
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as a combination of quantities of the form

h`
Z 1

�1

� � �

Z 1

�1

Oph. Qa1/
�
V1.�1� /; : : : ; V`.�`� /; v`C1; : : : ; vn

�
� P.�1; : : : ; �`/ d�1 � � � d�`;

(D.48)

where Vj are given by (D.47) and P is some polynomial.
If we apply (D.5) (together with the remark at the end of the statement of Proposi-

tion D.1.1) and use that Oph.bj .ˇh
ˇ �// is bounded from W

�0;1

h
to itself, uniformly

in h, we obtain (D.40). To prove (D.41), we apply again (D.5) and use that, for factors
indexed by j D 1; : : : ; `0, we may write if 
 � �0 C 1 and ˇ > 0

kOph
�
bj .ˇh

ˇ �/
�
wk

W
�0;1

h

D kOph
�
h�i�0bj .ˇh

ˇ �/
�
wkL1

� Ch�
1
2 kOph

�
h�i�0hˇhˇ �i�


�
wk

1
2

L2

� kOph
�
h�i�0�hˇhˇ �i�


�
wk

1
2

L2

� Ch�
1
2�ˇ.�0C

1
2 /kwkL2

if 
 � �0. This brings (D.41) with �.ˇ/ D `0.�0 C 1
2
/ˇ.

When we want to estimate only the L2 norms, instead of the H s ones, we have
the following statement:

Proposition D.2.2. Let n be in N�, � 2 N, ˇ � 0; � � 0. There is �0 2 N such that,
for any symbol a in S 0

�;ˇ
.M �

0

Qn
jD1h�j i

�1; n/ and for any odd functions v1; : : : ; vn,
one has the following estimate:

kOph.a/.v1; : : : ; vn/kL2 � Ch
n�1Y
jD1

kvj kW �0;1

h

ŒkL˙vnkL2 C kvnkL2 �: (D.49)

Moreover, when n � 2, we have also the bound

kOph.a/.v1; : : : ; vn/kL2

� Ch

n�2Y
jD1

kvj kW �0;1

h

�
kL˙vn�1kW �0;1

h

C kvnkW �0;1

h

�
kvnkL2 :

(D.50)

Estimate (D.49) (resp. (D.50)) holds as well for n (resp. .n � 1; n/) replaced by any
j 2 ¹1; : : : ; nº (resp. j; j 0 2 ¹1; : : : ; nº; j ¤ j 0). Moreover, it suffices to assume that
a is in S 04

�;ˇ
.M �

0

Qn
jD1h�j i

�1; n/ instead of a 2 S 0
�;ˇ
.M �

0

Qn
jD1h�j i

�1; n/.

Proof. Because of the assumption on a, we may write

Oph.a/.v1; : : : ; vn/ D Oph. Qa/.v1; : : : ; vn�1;Oph.h�i
�1/vn// (D.51)
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with Qa in S 0
�;ˇ
.M �

0

Qn�1
jD1h�j i

�1; n/ (or Qa in S 04
�;ˇ
.M �

0

Qn�1
jD1h�j i

�1; n/). We use next
equation (D.45) (with 
 D 0) in order to express Oph.h�i

�1/vn as a combination of
terms of the form (D.46) with j D n and Vn given by (D.47). We obtain thus for
(D.51) an expression in terms of integrals

h

Z 1

�1

Oph. Qa1/Œv1; : : : ; vn�1; Vn.�n� /�P.�n/ d�n (D.52)

for some polynomial P , some Qa1 2 S 02�;ˇ .M
�
0

Qn�1
jD1h�j i

�1; n/. Applying (D.7), we
get (D.49).

To obtain (D.50), we make appear the Oph.h�i
�1/ operator on argument vn�1

instead of vn in (D.51), use (D.45) with j D n � 1, obtain an expression of the form
(D.52) with the roles of n and n � 1 interchanged, and apply again (D.7).

Let us also establish some corollaries and variants of the above results.

Corollary D.2.3. Let n; �; ˇ; � be as in Proposition D.2.2. Let a be a symbol in the
class S�;ˇ .M �

0

QnC1
jD1h�j i

�1; nC 1/. Let Z be in �.R/. Then for any odd functions
v1; : : : ; vn, 


Oph.a/

h
Z
�x
h

�
; v1; : : : ; vn

i



L2

� Ch

n�1Y
jD1

kvj kW �0;1

h

�
kL˙vnkL2 C kvnkL2

�
:

(D.53)

If n � 2, we have also


Oph.a/
h
Z
�x
h

�
; v1; : : : ; vn

i



L2

� Ch

n�2Y
jD1

kvj kW �0;1

h

�
kL˙vn�1kW �0;1

h

C kvn�1kW �0;1

h

�
kvnkL2 :

(D.54)

Proof. We write
a.y; x; �/ D hyi4 Qa.y; x; �/:

Then, according to the last remark in the statement, Proposition D.2.2 applies to Qa.
Moreover, we may write Oph.a/ŒZ.

x
h
/; v1; : : : ; vn� as a sum of expressions�x

h

�q
Oph. Qa/

h
Z
�x
h

�
; v1; : : : ; vn

i
; 0 � q � 4: (D.55)

The commutator
x

h
Oph. Qa/

h
Z
�x
h

�
; v1; : : : ; vn

i
� Oph. Qa/

hx
h
Z
�x
h

�
; v1; : : : ; vn

i
is again of the form Oph. Qa1/ŒZ.

x
h
/; v1; : : : ; vn�, for a new symbol satisfying the same

assumptions as a, eventually with a different �. Finally, we express (D.55) as a sum
of expressions Oph. Qa1/ŒZ1.

x
h
/; v1; : : : ; vn�, for new symbols Qa1 and a new �.R/

function Z1. If we apply (D.49) (resp. (D.50)), we get (D.53) (resp. (D.54)).
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We have also the following variant of Proposition D.2.2, that we state only for
bilinear operators.

Proposition D.2.4. Let �; � � 0. There is �0 2 N such that, for any a in the class
S 0�;0.M

�
0

Q2
jD1h�j i

�1; 2/, any odd functions v1; v2, one has the following estimates:

kOph.a/.v1; v2/kL2

� Ch2
�
kL˙v1kW �0;1

h

C kv1kW �0;1

h

��
kL˙v2kL2 C kv2kL2

� (D.56)

for any choice of the signs ˙ on the right-hand side. The symmetric inequality holds
as well.

If moreover s; � are positive with s� � 2.�0 C 1/, we get

kOph.a/.v1; v2/kL2 � Ch
3
2��

2Y
jD1

�
kL˙vj kL2 C kvj kH sh

�
: (D.57)

Proof. To get (D.56), we write

Oph.a/.v1; v2/ D Oph. Qa/
�
Oph.h�i

�1/v1;Oph.h�i
�1/v2

�
with some Qa in S�;0.M �

0 ; 2/. We use next (D.45) (with 
 D 0) for j D 1; 2 in order
to reduce ourselves to expressions of the form (D.48) with ` D 2. Applying (D.7), we
get the conclusion.

To obtain (D.57), we may assume that a is supported for j�1j � 2.1C j�2j/ for
instance. Let ˇ > 0, � 2 C10 .R/, equal to one close to zero and decompose

a.y; x; �1; �2/ D a.y; x; �1; �2/�.h
�ˇ �1/C a.y; x; �1; �2/.1 � �/.h

�ˇ �1/:

If we apply (D.7) to the second symbol, we obtain an estimate to the corresponding
contribution to (D.57) by

CkOph..1 � �/.h
ˇ �//v1kW �0;1

h

kv2kL2 :

By semiclassical Sobolev injection, this is bounded from above by

Ch�
1
2Cˇ.s��0�1/kv1kH sh

kv2kL2 ;

so by the right-hand side of (D.57) if ˇ.s � .�0 C 1// � 2 � � .
Consider next Oph.a1/.v1; v2/ with a1 D a�.h�ˇ �1/, so that a1 is in the class

S 0
�;ˇ
.M �

0

Q2
jD1h�j i

�1; 2/. Since ˇ > 0, we may rewrite as in (D.43), Oph.a1/.v1; v2/
as

Oph. Qa1/
�
Oph

�
h�i�1hhˇ �i�


�
v1;Oph

�
h�i�1

�
v2
�

with Qa1 in S 02
�;ˇ
.M �

0 ; 2/, hence under form (D.48) with ` D 2, V1 (resp. V2) being
given by (D.47) with bj D O.h�i�
 / (resp. O.1/). Applying (D.7), we get, in view


