Appendix D

Action of multilinear operators on Sobolev and Holder
spaces

In Appendix B, we have introduced multilinear operators that generalize the linear
operators (B.3). In this appendix, we want to discussed Sobolev boundedness proper-
ties of such operators. For linear ones like (B.3), given in terms of symbols satisfying
(B.1) with M(x, &) = 1, such bounds are well known: see for instance Dimassi and
Sjostrand [24]. We generalize these bounds to multilinear operators, under the form

n
10ps @@y - )y = € 3 [luelyrolyylag, D
J=14#]
where [[u]l 0 = [[(hDx)?0u]lzo0 and o]y = [1{hDx)*vl> with s > 0 and po

a large enough number independent of s. Notice that such an estimate is the natural
generalization of the standard bound ||uv||gs < ||u|lzee||v]as + |u|lms]|v|Lee, that
holds for any s > 0, to a framework of multilinear operators more general than the
product.

We give also, in the case when the symbol a (7, x, 1, ..., &,) in (D.1) is rapidly
decaying in 7, other estimates of the form

n—1

1Opp(@) (s, -, v,) 2 < Ch H”Q]'”W;O’oo(”i:l:QnHLz + lvall2)  (D.2)
Jj=1

for any odd functions v, ...,v,, where

P

(Dx)’

The important point here is that the rapid decay in ;l—‘ of the symbol a allows one
to gain on the right-hand side a small factor #. We have already explained in Chap-
ter 2 where this gain comes from: The quantity inside the norm on the left-hand side
of (D.2) is h = t~! times a generalization of expression (2.64). We have seen that
thanks to (2.65), one may express any of the functions v;, say v,,, from £+v,, up
to a loss of 7 that is compensated by the rapid decay of a relatively to that variable.
Such properties explain why terms like 7| in (B.8) may be considered somewhat as
remainders: they do not involve a factor % in their estimate, but the fact that they
decay rapidly in 3 allows one to use (D.2) and thus to recover in that way an O(h)
bound.

Let us indicate more precisely what are the Sobolev bounds we shall get with
respect to the symbols defined in Appendix B. Recall that we introduced classes of
symbols SK,O(M , D) S :/c,o(M , p) in Definition 3.1.1 and their (generalized) semiclas-
sical counterparts Sy g(M, p), S, B (M, p) in Definition B.1.2. We shall study first

L+ =x=+
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the action of operators associated to the S‘K,O(M . D)s Se,p(M, p) classes and then,
in the second section of this appendix, the case of operators associated to classes of
decaying symbols S, ,(M, p), S, 5(M. p).

D.1 Action of quantization of non-space-decaying symbols

We introduce the following notation. If v is a function depending on the semiclassical
parameter 1 € 0, 1], we set

lvlly = I(hDx) vl L2 (D.3)
for any s € R. For p in N, we define
I2llpoe = [I{hDx) v Loo. (D.4)

Proposition D.1.1. Let n be in N*, k in N, v > 0. There is po in N such that, for
any B > 0, any symbol a in the class S, g(M ,n) of Definition B.1.2 (with M given
by (B.10)), the following holds true, under the restriction that, for (i) and (ii), either
(x,8) =(0,0)0r0 <k <lora(y,x,&1,...,&,) is independent of x:

(1)  Assume moreover that a(y, x, &1, ..., &) is supported in the domain
1l + -+ [§n—1] = K(1 + [&al)

for some constant K. Then, for any s > 0, there is C > 0 such that, for any

test functions vy, ..., U,

n—1
10PR@ @y vy = € [Tl llypo-os o g (D.5)
j=1

uniformly in h € 10, 1].

(1)  Without any support condition on the symbol, we have instead

n
10ph @@y, - vl = € [luelysoosle; g D6

J=1U]
(i) Forany j = 1,...,n, we have also the estimate (without any restriction on
(x,B) ora)
0py(@)(Wy, ..., v )2 =C l_[||2@||W:0~°°||E,'||L2- (D.7)
L#j

Moreover, the above estimates hold true under a weaker assumption than in Defini-
tion B.1.2 of the symbols: namely it is enough to assume that bounds (B.13) hold with
N = 2 (instead of for all N ) for the last exponent in this formula.

Before giving the proof, we establish a lemma.
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Lemma D.1.2. Let a be in the class S, O(M", n) of Definition B.1.2 (or more gen-
erally a symbol satisfying (B.13) for any ag, a9,k € N, € NP, with the last factor
replaced by (1 + My™*|y|)~2). There are po in N depending only on v, and a fam-
ily of functions ag, ...k, (V1. V,y_1, v, X, E) indexed by (ki, ..., kn—1) € N*71
satisfying bounds

19208 @k oy (Ve g 9,
n—
B B (D.8)
= C2m ke ()72 [ M lypo-ee
Jfor 0 < a, o’ <2, such that if we set for any y
a(y,)@th,-- th)(_lv"'v “n— 1,U
1 ; (D.9)
— E1++En)
= G [ At xR H b (&) dr - d
and use a similar notation for ag, . k,_,(Vy,...,V,_1, ¥, X,hDy)v,, then
a(y,x,hDy,....hDp)(vy. ... .01, 0,)
+o00 400 (D.10)
= Z Z Ak ek Wi -+ Vg5 Y5 X, D)0y,
k1=0 kjp—1=0
Proof. We take a Littlewood—Paley decomposition of the identity, Id = Ah

where Ag = Op, (¥ (£)), A" = Op,(p(27%§)) for k > 0, with convenient functlons
¥ € Ci°(R), ¢ € Cg°(R —{0}). We also take ¥ in Co°(R), ¢ in Cg°(R — {0}) with
YU =¥, §p = ¢. We set G (§) = ¢(27%) fork > 0, Go(£) = ¥ (£). Plugging this
decomposition on each factor v;, j = 1,...,n — 1 in (D.9), we obtain an expression
of the form (D.10) if we define

akl,...,kn71 (217 L ﬂyn—ls y,X, S)
1 ;
= — /elx(él-i- +§”“)a(y,x,h51,...,hén_l,é)
(2m) (D.11)
n—1 P
x [T ox; ()AL ;&) d&r - dEnr.
j=1
We may rewrite this as
ey ooy U1 Vg ¥, X, )
=17 [ Ky (0. e, )
h h (D.12)
n—1

h ’ ’ /
X 1_[ A, v (xj)dxy -+ dx,
Jj=1
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with
Kkl,...,kn_l (ya X,Z1,+-45Zn—1, g)

1 ;
= @t / G a(y, x B, )
(2n) (D.13)

n—1
< [T, ) dér - dén.
j=1
By the definition of My(£1,...,&,—1, &), on the support of ]_[7;} @x; (&), one has
Mo(E1. ... 6n1.60) = OQ2F) ifk = max(ky.... . ky_y).

As a is in the class S;é,o (M}, n), this implies that a in (D.13) is O(2"¥). Moreover,
if we perform two J¢; -integrations by parts in (D.13), we gain a factor in (27K ;)2
under the integral, for j = 1,...,n — 1, according to (B.13). In addition, we have
also a decaying factor in (27%¢|y|)~2. It follows that for o, &’ < 1,

|8§‘8‘§"Kk1,...,k,1_1 (y.x.z1,. ... zn—1.§)|

n—1
, A A (D.14)
< C2(K(a+a +2)+v+n—1)k | |<2_Kij)_2(y>_2-

j=1
Plugging this estimate in (D.12) and using
AL v (x))] < C27RP0)| (hD ), || oo

we see that if pg has been taken large enough relatively to v, k, we get bounds of the
form (D.8). This concludes the proof. ]

Proof of Proposition D.1.1. (i) We reduce first to the case s = 0. Actually, by Corol-
lary B.2.4, that applies under the restrictions in the statement on («, 8) or a, the
operator

V..., 0,) = (hDx)*Opy (@) (vy, ..., 0,1, (hDx) " v,)

may be written as Op,(a)(v, ..., v,) for some symbol a in S, g (MY, n) for some
Vv’ that does not depend on s. It is thus sufficient to show that

n—1

10pn(@) (s, ... 0,2 =C nllziIIW;o-wllynllLZ- (D.15)
j=1

By expression (B.14), we have

~ (X
OPA(@(v,. - v,) = &(Z X D1 Dy ) vy 0,)

=d(—OO,)C,th,...,th)(Ql,...,Qn) (D16)

%
+ / (0ya)(y,x,hDy,...,hDy)(vq,...,v,)dy.
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As dyd isin S, o(My, n) (for some v), we may apply at any fixed y expansion (D.10)
to dya. The symbols a, .. k,_, on the right-hand side satisfy (D.8), so that we may
apply to them the Calderén—Vaillancourt theorem [9] in the version of Cordes [12],
considering y,v;,...,,_; as parameters. One gets in that way forany y, v;,...,v

s Yns
[0ya(y,x,hDy,...,hDp)(Vy, ..., 0,12

n—1
= C Y e Y0 2D ()72 Ty ymoce o, .2
j=1

k1 kn—1

(D.17)

The fact that the L? norm of the last term in (D.16) is bounded from above by the
right-hand side of (D.5) (with s = 0) follows from that inequality. If we apply the
version of Lemma D.1.2 without parameter y to a(—oo, x, &1,...,§&,), we obtain
also an inequality of the form (D.17) (without factor (y)~2 on the right-hand side),
which implies for the first term on the right-hand side of (D.16) the wanted estimate.
This concludes the proof.

(i1) We just split a as a sum of symbols for which

DolEl < KA+gD, j=1....n
L#£j

and apply (i) to each of them.

(iii) It is enough to prove (D.7) with j = n for instance. Remember that in the
proof of (i), we use that the support condition on a and the restrictions on (k, ) or
a only to reduce the case of H} to L? estimates. Once this has been done, inequality
(D.15) has been proved without any support condition on &, nor on (k, 8), so that it
implies (D.7). This concludes the proof, the last statement of the Proposition coming
from the fact that Lemma D.1.2 has been proved for symbols satisfying the indicated
property and that Corollary B.2.4 used at the beginning of the proof holds also under
such a condition. |

It will be useful to be able to decompose a symbol belonging to S o(My, n)
as a sum of a symbol in S, g(M,n) for some small B > 0 and a symbol whose
quantization satisfies better estimates than (D.6) and (D.7). Define

1
Ly = Eoph(x + p'(§)). (D.18)

Corollary D.1.3. Let a(y,x,&1,...,&) be in Sco(MJ, n) for some k > 0, some
v >0, somen >2. Let B >0 (small), r € Ry. One may decompose a = a; + a»,

where ay isin S, g(My , n) and ay is such that if s satisfies (s — po — 1) > r + ”erl,
n
10ps(@2) @y, .-, v ) s < Ch™ [Tl s, (D.19)

Jj=1
n—1

[£+0ppy(az)(y, ..., v,) L2 < Ch Hllzj e o,z + [€+v,l22)  (D-20)
i=1
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and

n—1
1£0py(a2) @y - )2 < CA™ [ Tl g (I, 2+ [ €20, llyp0-0). (D.21)
=1
(In the last two estimates, we could make play the special role devoted to n to any
other index).

A similar statement holds replacing classes Sy (resp. Sc,g) by S, ,’6,0 (resp. S :: 8 ).

Proof. Take y in C§°(IR) equal to one close to zero and define a; = ay(h? My(§)),
a = a(l — y)(hB My(£)). Then a; is in Si,p (M, n) as it satisfies (B.12)—~(B.13).
Let us show that a, obeys (D.19)-(D.20). Decomposing a; in a sum of several sym-
bols, we may assume for instance that it is supported for |&1| 4+ -+ + |En—1| < K ().
Then, by the definition of a,, there is at least one index j, | < j <n — 1, such that
€] > ch™ on the support of a5, for instance j = n — 1. Applying (D.5), we get

||Oph (aZ)(213 e ’En)”Hz

n—1
g — (D.22)
< C [Tl llyro10ps (1 = DYEPE)w, lIyrooe vyl

J=1
for some new function j equal to one close to zero. By semiclassical Sobolev injec-
tion,

1
vl p0-0 = Ch™2 v, [l

if s > po + %,and
10pA (1 = DR E) v,y oo
_1 ~ _
= Ch=2]10py (1 = DU EDL, 1 oo+ (D.23)

< CH3F6=0= DBy | .

If s is as in the statement, we get (D.19).
To obtain (D.20), we notice that

L2094 @)y, ;) = % 3 Opy (7 €)OP4 @) 1. 1,)

+i0ph(gaT2)(le""Qn) (D.24)

+ Oph(az)(gl,...,gn_l, %Qn)

The L? norm of the first two terms on the right-hand side is bounded from above
by Ch" ]_[7;} v L3 v, I L2 if we use (D.7) and (D.23), for s as in the statement.
On the other hand, in the third term, the last argument of Opj,(az) in (D.24) may be
written £+v,, F 10p;,(p'(£)), so that we get an upper bound by the right-hand side
of (D.20) using again (D.7) and (D.23).
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We may also estimate the last term in (D.24) using (D.7), but putting the L? norm
ony,_,i.e. writing

|IOpy(az2)(Vys .- 0y—q, L1V, |12
n—2

< C [T o 1004 (1 = DEP )0,y 210, 0.
j=1

Bounding the last but one factor by 2#5|v, || my» we get as well (D.21). The last
statement of the corollary concerning classes S//<,07 S 8 holds in the same way. |

Let us state next a corollary of Proposition D.1.1.

Corollary D.1.4. Let v > 0,n € N*. There is po € N such that for any k > 0, any
B =0, forany j =1,...,n,anyain Scg(My,n), there is C > 0 such that for any

Visoo e Uy

” %Oph (@) (vy.....v,)

=€ };[.Ilyellwhéom(h_lllyjllm + I€+;(r2) (D.25)
J

andforany j # j', 1< j,j' <n,

= C(TT Meelyeo=) oy lie
L#£7,J’

—1

X

| Fop @),

(D.26)

Proof. Let us prove (D.25) with j = n for instance. By the definition of the quanti-
zation

%Oph(a)(zl, e ly) = Oph(a)(yl, ce Vs %En) + iOph(;)—a)(yl, e Up)-
En

If we write ¥ = £+ F h~'p/(Dx), and apply (D.7) with j = n, we obtain (D.25).

One obtains (D.26) in the same way, applying estimate (D.7) with j replaced by j’,

and using that p’(h D) is bounded from Whp6’°° to WPo-if py > po. This concludes

the proof. |

‘We shall also use some L°° estimates.

Proposition D.1.5. Let v € [0, +o0, « >0, n e N*, >0. Let ¢ > | and let a
be a symbol in S, g(M 1_[7:1 (§;)79,n). (It is actually enough to assume that in
estimates (B.13), the last exponent N is equal to 2). Assume that (k, ) = (0,0) or
0 <k <1, orthat a(y, x, §) is independent of x. Then there are pg in N and, for

any integer p > po, a constant C > 0 such that for any v, ..., v,

n
10ph@) ;... )l < C [Tlly; lpoe- (D27)
j=1
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If we havejusta € Sep(My ]—[]_1 £,)71,n), we get for any r in N, any o > 0, any
s,pwith(s—p—1)a >r+ > andp > po, the bound

IIOPh(a)(vl, ce Uy [lwpeee

<Ch™ Gl‘[||v [P +Ch’Z]_[|| oo 10 1y

=y

Proof. One may assume that a is supported for |&1] + -+ + |En—1| < K(1 + |&4]).
One may use Corollary B.2.4, whose assumptions are satisfied, in order to reduce
(D.27) to estimate

(D.28)

n—1

10p (@) ;... v,)llLoe < C H|| ligpo.22 [yl (D.29)

We apply (D.16) to reduce (D.29) to bounds of the form
la(—o0,x,hDy,...,hDy)(Vy,...,0,) Lo

n—1

= € [Tl oo, e,
j=1

too (D.30)

/ 0ya(y,x,hDy,....,hDy)(;,...,v,)||lLoe
—00

n—1

=< € [Tlos oo vy iz
j=1

We may decompose dya(y,x,hDy,...,hD,) using equality (D.10). Each contri-
bution in the sum is given by a symbol satisfying estimate (D.8), with an extra
factor (&,)7¢ on the right-hand side, coming from the fact that our symbol a was
in S g(My T = 1(&;)74, n). The kernel of the corresponding operator will then be
bounded in modulus by

n—1
1 —max(kq,..., kn—1) -2
G (X Yok ()72 Ty s

Jj=1

with some L! function G. The second estimate (D.30) follows from that. The first
one is proved in the same way.

Finally, to get (D.28), we assume again a supported as above and decompose it
asa = ay + ap, witha; = ay(h?§,) for some o > 0 and y in C5°(R) equal to one
close to zero. Then ay is in h™%S,g(My ]_[;’Zl (§,)72,n) (for a new value of v), so
that (D.27) applies, with a loss 7%, which provides the first term on the right-hand

side of (D.28). On the other hand, we estimate ||Opy(a2)(vy,...,v,)[wp-> from
Ch™z 0py(a2)(vy, . ... v,) [l HA*! by semiclassical Sobolev mjectlon and then th1s
quantity by the last term on the rlght hand side of (D.28) withr = o(s —p—1) — 5

This concludes the proof. l
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Let us translate the preceding results in the non-semiclassical case using the
transformation ®; defined in (B.15) and (B.16)—(B.17). We translate first Proposi-
tion D.1.1.

Proposition D.1.6. Let a be a symbol satisfying the assumptions of Proposition D.1.1
and (k, B) satisfying also the assumptions of that proposition in the case of statements
(i) and (i1) below (in particular, if a is independent of x, these statements hold for any
(k, B) withk > 0,8 > 0).

(i)  If moreover a is supported for |E1| + -+ + |En—1| < K(1 + |&,|), one has
for any s > 0 the bound
n—1
lop’ @) (v1......v)llas < C [ [llvjllweoos llvallms (D.31)
j=1

with some pg independent of s, Op' being defined in (B.16).

(i)  Without any support assumption on the symbol of a, one has

n
10p @1, va)lars < € 3 [T lvellwooelivs s, (D32)

J=10#]
(iii)) Forany j = 1,...,n, one has also
10p @ (@1, va)llz2 < € [Tlvellwoooelivyll2. (D33)
L#j

Proof. One combines Proposition D.1.1, (B.16) and the fact that by (B.15),
1©wlas = llvllag

and )
1©:p]lweoo = h2||ulyp.co
ifh =1 ]

To get non-semiclassical versions of Corollaries D.1.3 and D.1.4, let us notice
that by (B.15)
1 X
Li®;v = —(L+yv —)
+Y9:U «/;( i_)( P
is L4 is defined by (D.18) and

Li = xZ1p'(Dy). (D.34)
We have then:

Corollary D.1.7. Leta(y,x.&1,...,&,) be asymbolin S, o(My,n) for some k > 0,
some v >0, some n > 2. Let B > 0 be small and r in Ry. One may decompose
a = ay + az, where ay is in S, g(My,n) and ay satisfies, if (s — po)p is large
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enough relatively to r, n,

n
10p* (@2)(v1, ..., va)lars < Ct 7" [ [llvsllms,

j=1
n—1
IL+Op (a2) (v1.....va)llr2 < Ct7" [ Tllvillms (lvallz2 + 1L +vallz2).  (D.35)
j=1
n—1
|L£0p" (@2)(vr.... va) 2 < Ct—’(l‘[||v,»||Hs)(||vn||Lz + 1L 2vnllwoss).
j=1

Moreover, in the last two estimates, one may make play the special role devoted to n
to any other index.

Proof. Again, we combine (B.15)—(B.16) and the estimates in (D.19)—(D.21) (up to
a change of notation for r). ]

In the same way, we get from Corollary D.1.4:

Corollary D.1.8. With the notation of Corollary D.1.4, we have

IXOp’ (@)(v1,-. - v L2 < € [ llvellweoso (tllvj L2 + [1L4vjll2)  (D36)
L#j

forany 1 < j < n. Moreover, forany j # j', 1< j,j <n,

1x0p" (@) (v1, - - -, va) I 2

<C [T lvellwrooelvjllz2(llvjllweoos + 1) weo-oo).
L#£j,J’

(D.37)

Finally, it follows from Proposition D.1.5:

Proposition D.1.9. Under the assumptions and with notation of Proposition D.1.5,
one has for p > po,

n
Iop! @)(v1...... v)llwoe < C [ lvjllwoeo (D.38)
j=1

ifaisin Sep(My [1;=,(&)"%, n) for some g > 1 and

10p* (@) (v1, .., v) | wo.ce

n n
< 1o [Tlvslweee + € 3 [Tlvellwooo v llas

j=1 J=1L#]

(D.39)

ifg=1,0 > 0and (s — p)o is large enough relatively to r.
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D.2 Action of quantization of space decaying symbols

In this section we study the action of operators associated to symbols belonging to
the classes S:/c, 8 (M ,n) on Sobolev or Holder spaces of odd functions. The odd-
ness of the functions, together with the fact that elements in the S’ class are symbols
a(y, x, §) rapidly decaying in y, will allow us to re-express the functions v on which
acts the operator from 4 + v (using notation (D.18)), thus gaining a power of /. Actu-
ally, it is not necessary that a be rapidly decaying in y, and we shall give statements
with less stringent decay assumptions.

Proposition D.2.1. Let n be in N*, x in N, v > 0. There is pg in N such that, for
any B > 0, any symbol a(y, x,&1, ..., &), supported in the domain

1] + -+ [En—1] = KA + [En])

for some constant K, and such that for some £, 1 <{ <n —1, a belongs to the
class S’2€+2(M”, n) introduced at the end of Definition B.1.2, with k > 0 and either
(x,B) = (0 0) or 0 < kB < 1 ora is independent of x, the following holds true:

(1) For any s > 0, any odd test functions v;,...,v,,
&j € {—,+}, j = 1,...,6,

”Oph(a)(yh cee vyn)”HhS

and any choice of signs

L
< Ch T T(I1€s; v, llyeoe + 11y [l yro0.)
1'1:[1 S . (D.40)
x H 2110022 12l ;-
j={+1

(ii) Assume in addition to the preceding assumptions that B > 0. Then, for any
0 </{ <, one has

10ps (@) (s, - - - v) | g
e/
i 7
< CRE B T (6,02 + N, 022)
Jj=1

¢

(D.41)
< T (12605 o0 + vyl 050)
j=e/+1 '

x 1‘[ I o 2, 5
j=L+1

where a(B) > 0 goes to zero when B goes to zero (o(B) = €' (po + %)ﬁ
holds).
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Proof. We shall prove (i) and (ii) simultaneously. We notice first that, by our support
condition on (&§1,...,&,), Mo(§) ~ 1 + |&1| + -+ + |€4,—1], so that, up to chang-
ing v, we may study the H} norm of

Op;, (@) (0p; ((6) vy, . ... 0P, ((E) g vy y.-- - 1,) (D.42)

for a new symbol a satisfying the same assumptions as a. Moreover, when 8 > 0, this
symbol is rapidly decaying in h# My (&) according to (B.12)—~(B.13), so that, modify-
ing again a, we rewrite (D.42) as

Opy (@) (Op;, ((§) " (BRP£) vy, ... Op,((€) " (BRPE) ")y,

(D.43)
Vyyqs--- ,yn)

with y > 0 to be chosen. We use now that if f is an odd function, we may write

x 1
f@=3 /_ (@) d

Consequently, for j = 1,...,7,

ix (!

Opy((6)~ (BHPE) V), = o _1(Oph(whﬂsr%)y,-)(mx) dpj, (D.44)
that we rewrite using (D.18)
Opy ((6)""(BRP§) 77 ),
_ .hiffl(o ((,Bhﬁg)_”)éﬁ )( x)du;
=1 20 ), Ph g; Vi ){LjX) AL (D.45)

1

=iny g [ (Oma((BA8) )5 v, ) ) .

We may thus write (D.45) as a linear combination of expressions of the form

xX\4 1 q/
h(>) /_ V) . (D.46)

where ¢ = 0,1,2, ¢’ € N and V;(x) is of the form
Vi(x) = Opy (b; (BRP§))Le,v; or  Vi(x) = Opy (b (BRPE))y; (D.47)

with |8kbj ()] = O((€)777%). We plug these expressions inside (D.43). We remark
that when we commute each factor 3 with &, we get again an operator given by a sym-
bol similar to @, up to changing v. Moreover, the (M()_"y)_”_2 decay of a(y, x, &)
that we assume shows that for ¢ < 2¢, (%)q&(%,x, £) may be written &1(%,)@5)
with @1 (y, x, ) in S’i B(MU’ n) (for a new v). Consequently, we may write (D.43)
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as a combination of quantities of the form

1 1
ht /_1"'/_1 Opp (@) (Vi(ur)s .- Ve(ie ) vgyqs- .-, 0,)

X P(p1,.. ., pme)dpy -+ dpg,

(D.48)

where V; are given by (D.47) and P is some polynomial.

If we apply (D.5) (together with the remark at the end of the statement of Proposi-
tion D.1.1) and use that Opy, (b; (BhP€)) is bounded from Whp 0:%° to itself, uniformly
in i1, we obtain (D.40). To prove (D.41), we apply again (D.5) and use that, for factors
indexed by j = 1,...,¢', we may write if y > pg + 1 and § > 0

10p (b; (BRP&))wl 0.0 = 10p, ((£)7°b; (BhP§))w]| o0
< Ch |0, ()™ (B &) w2,
X [0p, ((£)70E (BRBEY ™ Yw 2,
< Ch—%—ﬂ(po+%)”w”L2
if y > po. This brings (D.41) with o(8) = £'(po + %),B [

When we want to estimate only the L? norms, instead of the H® ones, we have
the following statement:

Proposition D.2.2. Letn bein N*, k € N, 8 > 0,v > 0. There is py € N such that,
for any symbol a in S|, 5 (Mg ]_[;-'=1 (£,)7Y,n) and for any odd functions v, ..., v,
one has the following estimate:

n—1
10ps(@) @y, - 0,2 = Ch HIIQJIIW;o-w[IIiiinle + lvplle2l (D.49)
j=1

Moreover, when n > 2, we have also the bound

10px(a@) vy, -+ v, 2

n—2
(D.50)
< Ch [Ty oo (1220, 1 lroe + g llyeo.0 T2y -

Jj=1

Estimate (D.49) (resp. (D.50)) holds as well for n (resp. (n — 1,n)) replaced by any
je{l,....n}(resp. j,j' €{1,...,n}, j # j'). Moreover, it suffices to assume that
aisin S/i,ﬂ(M(;) H;?:l(éj)_l,n) instead of a € S,Q,ﬁ(M(;) ]_[;;1(5]-)_1,11).

Proof. Because of the assumption on a, we may write

Opy(@)(vy.....v,) = Op,(@)(Vy.....V,u_1. Op,((€) "Hv,)) (D.51)
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with @ in S’ s (Mg J_I(Ej) ,n) (ordin S’# g (Mg J_I(Ej) ,n)). We use next
equation (D 45) (with y = 0) in order to express Op;, ({(§)~ 1)v as a combination of
terms of the form (D.46) with j = n and V}, given by (D.47). We obtain thus for
(D.51) an expression in terms of integrals

1
h /_ 0@y Vo )P ) (D.52)

for some polynomial P, some a; € S'7 5 (Mg ]_[;';}(Sj)_l,n). Applying (D.7), we
get (D.49).

To obtain (D.50), we make appear the Opj,({(§)~!) operator on argument v,_,
instead of v,, in (D.51), use (D.45) with j = n — 1, obtain an expression of the form
(D.52) with the roles of n and n — 1 interchanged, and apply again (D.7). ]

Let us also establish some corollaries and variants of the above results.

Corollary D.2.3. Let n, k, /3 v be as in Proposition D.2.2. Let a be a symbol in the
class Sc.g(My ]_["H(Sj) ,n+1). Let Z be in $(R). Then for any odd functions

Viseonr Uy .
onal ()],
n—1 (D.53)
< Ch [ Tlwyllgeoes (1 €22, lz2 + lugllz2)-
j=1
Ifn > 2, we have also
X
Jom@ {20
n_>2 (D.54)
=<Ch nllv IIWﬂow(lliivn 000 + 1wyl eo- o) |vnl 2

j=1

Proof. We write
a(y,x.§) = (y)*a(y, x.§).

Then, according to the last remark in the statement, Proposition D.2.2 applies to a.
Moreover, we may write Op,,(a)[Z(3), vy, ...,v,] as a sum of expressions

(h) Oph(“)[ (h) vl""’yn]’ 0<g=<4. (D.55)

The commutator

—Oph(a)[ (x) vlv---,yn] _Oph(&)[%z(%)’glv”"yn]

is again of the form Opy,(d1)[Z(3).v,. . ... v,], for a new symbol satisfying the same
assumptions as a, eventually with a different v. Finally, we express (D.55) as a sum
of expressions Opy(d1)[Z1(3).v;....,v,], for new symbols a; and a new S(R)

function Z;. If we apply (D.49) (resp. (D.50)), we get (D.53) (resp. (D.54)). ]
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We have also the following variant of Proposition D.2.2, that we state only for
bilinear operators.
Proposition D.2.4. Let v,k > 0. There is pg € N such that, for any a in the class
Se.o(Mg ]_[Jz-zl (§/)71,2), any odd functions v, v,, one has the following estimates:
10p; (@) (vy, vy)llz2

(D.56)
< Ch*(||Lxv, I eoee + s llgroo) (1 €425 l122 + lvallz2)

for any choice of the signs & on the right-hand side. The symmetric inequality holds
as well.
If moreover s, o are positive with so > 2(pg + 1), we get

2

3_
10p;, (@) (v, v)llz2 < Ch> [T (I €2)llz2 + ) 13)- (D.57)
j=1

Proof. To get (D.56), we write

Opy,(a)(vy, v,) = Op,(@)(Op, ((€) vy, Opy ((6)Huy)

with some a in Si,0(My,2). We use next (D.45) (with y = 0) for j = 1,2 in order
to reduce ourselves to expressions of the form (D.48) with £ = 2. Applying (D.7), we
get the conclusion.

To obtain (D.57), we may assume that a is supported for |&1| < 2(1 + |&;|) for
instance. Let B > 0, y € C§°(R), equal to one close to zero and decompose

a(y,x,&1,6) = a(y,x, &1, &) x(WPE) +a(y, x, &1, &)1 — ) (hPE).

If we apply (D.7) to the second symbol, we obtain an estimate to the corresponding
contribution to (D.57) by

CllOpA((1 = B, llyypoo2 12, 2.

By semiclassical Sobolev injection, this is bounded from above by
1 —po—
Ch=3+B6=20=D 1y, s v, 2.

so by the right-hand side of (D.57) if B(s — (po + 1)) = 2 — 0.
Consider next Op,Z (a1)(vq,v,) witha; = ayx(h™ ﬂgl) so that a; is in the class
Sx,ﬂ (My H/:l £;)71,2). Since B > 0, we may rewrite as in (D.43), Opj,(a1) (v, v,)

Op;,(@1)[Opy, (€)™ (hPE) 7 vy, Opy, () ™") v, ]

with a; in S’2 (M", 2), hence under form (D.48) with £ = 2, V; (resp. V>) being
given by (D. 47) with b; = O((§)™7) (resp. O(1)). Applying (D.7), we get, in view



