Appendix E

Wave operators for time dependent potentials

The goal of this chapter is to construct wave operators for some time dependent per-
turbations of a constant coefficients operator. We consider a reference operator Py
independent of time, and a perturbation of Py of the form P(¢) = Py + V(¢), given
in terms of a time depending potential V(¢). Our goal is to construct a “wave opera-
tor” B(t) such that

(D¢ — P(1))B(t) = B(t)(D: — Po). (E.D

We did something similar in Appendix A in the autonomous case, when V(¢) does
not depend on time, and is given by a potential smooth and decaying in space. Here,
we shall have to consider a potential V(¢) that depends on time. As mentioned in the
introduction of Chapter 6, a scalar model for the kind of operators P(¢) we want to
consider is given by

3
2

Dy — p(Dy) — 172 Re(c(x)(Dy) "¢ 5, (E2)

where p(§) = /14 £2 and c is in §(R). The potential perturbing the autonomous
problem is given here in terms of

(S

te c(x)(Dx)_leiité.

As a function of Xx, this is still a smooth rapidly decaying function, but we have now
also ¢ dependence. On the one hand, this time dependence might be considered as
an advantage, since it makes the potential smaller and smaller as time growth. On
the other side, it makes impossible to use stationary arguments in order to construct
wave operators. Of course, there are well known results concerning scattering by time
dependent potentials. We refer for instance to the book of Derezinski and Gérard [23],
in particular Sections 3.3 and 3.4. Though, these results would not apply to our prob-
lem, as they demand better time decay of the potential and of its space derivatives
as the one we have in (E.2). We thus have to construct B(¢) by hand, composing
(E.1) at the left with Fourier transform, at the right with inverse Fourier transform
and defining a wave operator through iterated integrals.

E.1 Statement of the result

In order to state the result, we have to introduce some notation.

Definition E.1.1. Let a,b be in N, m > 0, ¢ > 0. We denote by 28,"& the space of
functions (z, &, n) — ¢q(t, &, n) defined on [1, +00[xR x R, with values in C, that are
Lipschitz in time, smooth in (&, n), and satisfy for any N in N, any j = 0, 1, any
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t > 1,any (§,7) € R?, any (o, @) € N?,
17992 q(t. 1. §)| < Cawrne't™ 7 {|&] = nl) V. (E.3)

We denote by E;"Z the space of functions ¢ of the form ¢ = (%)“(%)b g1 with g1
in 370

Example. Letus give an example of functions in the preceding class. Let ¢ = q; (x.¢),
where g; (k¢) is one of the functions defined in Lemma 6.1.1. Assume that these

functions are defined and satisfy (6.18) or (6.19) for ¢ in some interval [1, 7] with
4 < T < g=*+¢_ Extend this function to [1, 4+o0[ by

g E it +9CT —1.E 111070, (E4)

where yo € C*°(R) is equal to one on |—o0, %] and to zero on [%, +ool. If we denote
this extension still by ¢, we get a Lipschitz function of time on [1, +oo[ that satisfies
(6.18) or (6.19) for any ¢t > 1. Notice that these inequalities imply estimates of the
form (E.3) when we take 7 in (E.4) smaller than e ~#7¢ for some ¢ > 0, so that (E.4) is
supported for ¢ < Ce~4+¢. Actually, writing for any m € ]0, %[, tg_l/z <t mglm2m,
it follows from (6.18) that ¢ belongs to X' if ¢ = min(1 — 2m, 3c6’/4) > 0. In the
same way, under condition (6.19), we obtain an element of E‘O”'gﬂ/ 2 The matrix 0;
of Lemma 6.1.1 has thus entries in 2’1"11

We consider in this section an operator V defined in the following way. Assume
that we are given matrices Q; with entries in 26"8 form > 0,0t >0and -2 < <2.
.3 ’
Let A; = j 5> and define

2
V(i)=Y eM'Kg,, (E.5)

j==2

where, when ¢ is in X', and f is a scalar-valued function, K, f is defined by

Ko (6) = / a(t. &) f () dn, E6)

and when Q; is a 2 x 2 matrix, and f is C2-valued, K 0, [ is defined in the natural
way. We shall assume also that operator V satisfies

V(t)No = —NoV(1) (E.7)

with No = [9 §] (see (6.9)) and that V(r) preserves the space of odd functions. If

_ p(Dx) 0
P°‘[ 0 —p(Dx)]’

we define
P(t) = Py + V(2). (E.8)
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We want to construct a family of operators B(t) so that, for any f in L?(R) such that
(D; — Py) f is in L?(R) for any ¢,

(D: = P(1))B(1) f = B(t)(Dy — Po) f. (E.9)
We shall prove:

Proposition E.1.2. Foranyt > 1, let V(t) be a bounded operator on L*(R). Assume
that t — V(t) is compactly supported and define for any t > 1, n € N*,

n
Bu(t) = (—=i)" / [[e™ PV + 1)e' " Plocr, <ocry dT1 -+ d Ty, (E.10)
ji=1

where, for non-commuting variables A1, ..., Ay, 1_[;'1=1 A;j denotes A1 Ay -+ Ap. Set
also Bo(t) = Id. Assume that for any f in L*>(R), one may find a sequence (atn)y
in €Y such that one has

su;l)lan(t)flle < an. (E.11)
t>
Define
+o0
B(t)f =Y Ba()f. (E.12)
n=0

that exists because of our assumptions. Then B(t) solves equation (E.9). Moreover,
define Co(t) = Id and for n in N*,

n
Cpu(1) =i”/]_[e—”ﬂ’ov(t+r,-)e”f”010<rn<...<ndn cdty,. (E.13)
j=1

If we assume that the analogous of (E.11) holds for C,, and define then C(t) as in
(E.12), one has
B(@)C(t) = C(¢t)B(t) = 1d. (E.14)

Proof. Let us denote A(t,s) = —ie SPoV(t 4 5)e’sF0. Then
[Dl - DSa A(t5 S)] = [P07 A(t,S)]

and by (E.10)

B,(t) = / [TAC t)l0wr,<cr, d Ty -+ d (E.15)

Jj=1

so that

n
[Dl‘ — P(), Bn] = /(Dfl + -+ Dfn)(l—[ A([’ Tj))]l0<‘51<"'<tn dTl e dTn
j=1

n
= _[ HA(ty ‘C]')(Drl + -..+ D‘L’n)]l0<rl<...<rn d‘[l ...d-[n
j=1

— i A(1,0)Bp_i (0).
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Using (E.8), and making the convention B_;(¢) = 0, we rewrite this as
(D¢ = P(1))Bu(t) = Bp(1)(D: — Po) = V(t)(Bn(t) — Ba—1(1)).

If we denote by Sy, (1) = Y_/_o Bn(¢) the partial sum, we get

n’'=

(Di = P(0))Sn(t) = Su(t)(D: — Po) = V(1) By (2). (E.16)

If we make act this on a function f in L2(R) such that (D; — Py) f is in L2, we get
when n goes to infinity, in view of (E.11) and (E.12), the conclusion (E.9).

We still have to show that C () is the inverse of B(¢). To this end, let us denote for
J=0,....n—1L¢i(tj,141) = ﬂf_i+1>t_/ and rewrite the definition of B, (¢) given
in (E.15) as

n n—1
B, (1) =/1_[A(t,rj))((t1,...,tn) [ @ t)do - du.
j=1 =1

j =
where y(t1,...,Tn) = ]_[?=1 lo<z,. In the same way, (E.13) may be written as
n n—1
Cp(t) = (—1)" / [TAC.)x@.....o) [TA =9 g dry - d .
Jj=1 Jj'=1
We thus get for 1 < £ <n,
n -1
€0 Byes) = (1 [ [TAC o)) [T 0= 0@
j=1 jr=1
n—1
X l—[ @i (T Tirv1) dty - dy
Ji=t+1
using the convention ]_[;-)=1 = 7;,11 = 1. This may be rewritten for{ =1,...,n—1,

n L
Ce(t) o By_y(t) = (—1)" [ [TAC ). o) [ =)@ 7i1)
j=1 =1

J'=

n—1
X 1_[ @i (T, tjrp1)drty ---dy
Jj/=t+1
n {—1
— (D! / [TAC. )@, ...w) [T =)@ tr41)
j=1 j'=1
n—1

X l_[ ng/(Tj/,‘Cj/+1)d‘C1 d‘Cn

jr=t
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It follows that > y_o Ce(¢) By—¢(¢) = O whenn > 1, which implies C(7) o B(r) = 1d.
In the same way B(t) o C(¢) = Id. ]

In the rest of this chapter, we shall show that the preceding proposition may be
applied to an operator of the form (E.5), if one makes convenient assumptions on
the Q;. Moreover, we shall obtain for the operators B(¢) and C(¢) estimates in other
spaces than L2. More precisely, we shall prove the proposition below, where we use
the following notation. Set, according to (D.34),

Li=x+ip'(Dy), L= [Lo+ LO_} (E.17)

so that
[D; — Py, L] =0. (E.18)
In the following sections, we shall prove:

Proposition E.1.3. Let B, (t) and C,(t) be defined respectively by (E.10) and (E.13),
in terms of 'V given by (E.5) with Q; a 2 x 2 matrix of elements of Ellnf for some
t > 0 small, some m € )0, %[, close to % Then for & small enough, (E.11) and the
corresponding inequality for C,(t) holds, so that

+o00 oo
Y Bu(t)=B(t) and Y Cp(t) =C(1)

are well defined as operators acting on L*(R). Moreover, the operators B(t), C(t)
are bounded on H* (R) for any s > 0 and satisfy for small §’' > 0,

1B(t) — Id|| gy < Cett™m 343,

o (E.19)
|C(t) = 1d||g(zsy < Ce'r™™ 5" +a,
One may also write for any f in L>(R; C?) such that Lf € L*>(R;C?),
LoC(t)f =C@)Lf +Ci(0) f, (E.20)
where
IC (1) —1d|l g 12 < Clt ™8 +4, (E21)
1C ()2 < Ce'r2 ™. (E22)
Moreover, under condition (E.7), one has
B()No = NoB(t).  C(t)No = NoC (1) (E23)

and if 'V(t) preserves the space of odd functions, so do B(t) and C(t).
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E.2 Technical lemmas

In this section, we prove some technical lemmas that will be used to obtain Proposi-
tion E.1.3.

Lemma E.2.1. For &, n, A real, denote

¢+ n.A) = () £ () + A (E.24)
There is C > 0 such that for any A in R, any t > 1,

/ (1 (E,m,2) " dy < Cr72, (E.25)
b (5.1, 1)]<1

/ (tp+ (€, n,)t))—lm dn < Ct™'log(1 +1). (E.26)
6+ (&m0, 1)|<1 (m

Proof. We compute first the integrals over the domain 1 > ¢ or n < —c for some con-
stant ¢ > 0. On these domains, n +— ¢ = ¢+ (€, 1, A) is a change of variables, whose
Jacobian has uniform lower and upper bounds. The corresponding integrals are thus
bounded by

C/ (tty v de < Ct7 log(t + 1).
[¢l<1

We compute next the integrals for |n| < c. If ¢ is small enough, we may write on this
domain

¢+ (5.0, 1) = ¢+ (5,0,1) + g(n)?,
where g(0) = 0, g’(0) # 0, so that we may bound the two integrals (E.25) and (E.26),
respectively, by

C 2 —ld , C 2\—1 d ,
[ territas [ ot

where ¢’ > 0 is some constant, and p is some real number depending on &, A, t. These
two integrals are smaller than the right-hand side of (E.25) and (E.26), respectively,
uniformly in p. |

We study now composition of operators defined by (E.6) from symbols in the
classes of Definition E.1.1, and we prove also Sobolev estimates for such operators.

Lemma E.2.2. The following statements hold.

i) Iflisin N, set u(f) = % if £ = 0 and let 1(£) be strictly smaller than 1
if £ > 1. Let N > 2. There is a constant C > 0 such that if two functions
q1,q2 satisfy estimates

b
&0l < Ky (§l = n) (—) ,
(E.27)

426 )| < Ka ] — n)~N (—) |
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where a, b are in {0, 1}, then the function given by

q3(§.n) = /ql(é, Oq2(& ) {1pe (5,8, 2) 7 d¢ (E.28)

satisfies
436 | = CK1 Kot ™0+ (1] — )=, (E29)
(ii) LetsbeinRy, 8 >0, N > s+ 2. There is C > 0 such that if a function
(§.m) = q(&,n) satisfies

g < K{E] = 1) (% ; %) (E30)

then the operator K, defined by (E.6) satisfies
1Kl 2asy < CK1=3+Y, (E31)
(i) Ifinstead of (E.30), q satisfies

- 8L Il
lg(€,m)| < K(|&] — In]) & ) (E.32)

one gets instead of (E.31)
1Kl gcarsy < CKe™'F (E.33)

Proof. (i) If in (E.28) we integrate for ¢4 (&,Z,A) > 1, then (E.29) holds trivially,
as a consequence of (E.27), with factor ! instead of t—HGFD) 1f we integrate for
|pL(€,¢,A)| < 1, the contribution to ¢3 is bounded from above by

(1960207 (2 a.

=N
CKi Kol ~ )™ [ ()

lp4 (§,¢,1)|<1

Applying Lemma E.2.1, we get (E.29).

(i) Since N > s + 2, the £ (H*) estimate is reduced to an £ (L?) one for N > 2
using the decay in (|§]| — |n|) in (E.30). If the kernel of the operator K is cut-off
for |¢+(£,1,A)| > 1, then Schur’s lemma shows that estimate (E.31) holds with ¢!
instead of £~ 375, We have thus to study

fro [ GE M (DL E 1) i entri<r £ d.

By Schur’s lemma and (E.30), the £(L?) norm of this operator is bounded from
above by

Inl
CK (Slglp/(|§| Inl)™N (&, 0, 1))~ 1( ) )
(E.34)

1

« (sup [ el = 0y~ s .02 " )
and by the symmetric quantity. Using (E.25) and (E.26), we get (E.31).
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(iii)) We make the same reasoning as above, except that (E.34) is now replaced by

CK(Sl;p/(IEI—IUI) {1+ (5,n, )" U )

m
) e el
(sup 4 = e (e ) o

We conclude by (E.26). ]

dg)

Let us define a class that will contain functions obtained from those of Defini-
tion E.1.1 by introduction of an extra variable.

Definition E.2.3. We denote by E‘ M0 the space of functions

(I’U’E’ TI) '—>CI(Z’U,§’ 71)7

defined for ¢t > 1, v > 0, &, n in R, that are Lipschitz and compactly supported in v
and satisfy forany N and j =0, 1,

107q(t, v, £, )| < Cyet'™™ (1 + v) ™0~/ (|&] — [n|) ™. (E.35)

For a, b in N, we denote by FEV;”mb’mO the space of functions that may be written
,i: a/n b
() () o
with g1 in X

We shall also allow ¢ to depend on extra parameters, estimates (E.35) being uni-
form in these parameters.

meo

Notice that if ¢ belongs to the class X" ab of Definition E.1.1 and is compactly
supported in time, then G (¢, v, £, ) = tq(t(l +v),£,n)isin EL L0 i m > my.

We shall discuss some operators constructed from functlons in 2‘ "0 In the
following discussion, we shall identify operators and their kernels.

Let O bein E‘ "0 Q@ Ma(R) (i.e. a2 x 2 matrix of elements of Z‘ T0) I A s
in R, we consider the operator from L?(R) to L?(R) given at fixed ¢, v by the kernel

in (§,7) , ,
S(t.v, 0, 1) = e PO (1 v £, )tV FoMFA), (E.36)

If we decompose

2 2
Q(I’U7$7 77) = qujk(lvvvgv n)E]k,

where

Eji = (8 8¢ hzj w2, (E37)
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we may write

2 2
S(t,v, 0, 1) = ZZ Sik(t,v, 0, 1) (E.38)
j=1k=1
with
Sjk(t’ v, Q7 A') = qjk(t’ v, g? n)eitvq}jk(g’n,A)Ejk’ (E39)
where
Gi(E.n.A) = (1)) p(§) — (=¥ p(m) + A. (E.40)

~ il ol 0l
We assume given functions Q° in E;e’n;e’mo ® M5 (R) and real numbers Ay for £

in N*. We set

Qn:(Q",...,Ql), A= A" AN, (E41)
We define inductively a sequence of operators by their kernels, starting with
+o00
M0,y = [ S0 A ay (E42)
u

and forn > 1,

Mn-i—l(ts u, gn_i__lv&n—‘r—l)

+o0 (E.43)
= / S(t,v,Q"H,)t"“)oMn(t,v,gn,&n) dv.
u

Notice that the above integrals converge since S is compactly supported in v. Accord-
ing to our convention of identification between kernels and operators, we shall set for
a function f

My (2,0, Q,.4,) f(§) = /Mn(t,v,gn,&n)(é, m.f(n)dn. (E.44)

We shall prove the following estimates:

Lemma E.2.4. Let m,m{, my,,a,b satisfy

1
mg,m6>z, a,beN,a+b>1, 1>0, m>0. (E.45)
Let Q be in Z‘L . ® M2(R), A inR, and let Ky be the best constant Cy in (E.35)
for the entries of Q. In the same way, denote by Ky 4 the best constant in (E.35) for
the entries of Qg, £ = 1,...,n. There are for any N =2, any 8’ > 0, a constant Cy
that does not depend on Ky, Ky ¢ and a symbol Q in

Jtttn,m+m't—

1 n r_1
Za,b" 2:mytmy—3 ® Ma(R)
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ifa® +b =0, and in

Sttt mAm" =8 m§ 4+-m{—

8/
Ea’bn & MZ(R)
ifa" +b > 1, whose N -th semi-norm is bounded from above by Cy Kn Kn , such

that ifn > 1,

+o0
/ S(t.v. Q. 1) o My(t,v. Q . A,)dv
u (E.46)

+o00 oL
= [ S(t,v,0,4)0 n_l(t,v,gn_l,&n_l)dv—{—Rn(t,u),
u
where A = X + A, and Ry, satisfies for any f in L>(R) and any §' > 0,

_ 1., s/
Isup| Ra (¢, ) f1l 2 < CKos't ™" 3F 5 |sup| My (1,0, @ A) fllL2. (BAT)
u u

Ifn = 0, then (E.46) holds as well without the integral term on the right-hand side.

Proof. In the left-hand side of (E.46) we plug (E.38). Then the kernel of that operator
isthe sumin j, k,1 < j, k <2, of

+o00
[ [ S0 06 0M 0.0, A E )t o, (E.43)
Let us define for 1 < j, k < 2 the operator
Liga(€.0) = (11 + v)gjx €. 8 0)
X (14 1(1 + v)gi (5., A)(1 + v)Dy),
where we used notation (E.40). Then, by (E.39),

(40 h)
A E50)
X Dogyp (1, v, .8 N PO EEN |

(E.49)

LjxaSik(.8) = Sjx(§,0) +

We plug the expression of S;; deduced from (E.50) inside (E.48). We obtain on the
one hand

_/+°°/ t(1+v)gpj¢.5. 1)
u (tA +v)gjr(§.C. 1))
x eV EEN poM, (2, v, 0 A mdSdy

14+ v)Dygir(t,v,E ¢ A
> (L +v)Dyqk(t.v.6.8,4) E51)

and on the other hand

+o00
[ [ Losutv. 0 € oM., 2)@ndsdn. @5

Using the expression (E.49) of L, we perform in (E.52) one integration by parts
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in v. We get the following contributions:

Yoo | -2 t(1+v)pjr(§.5,4)
/u / ((’(” D9jk(E.£.) D“(“+”)<z(1+v)¢z,-k(s,z,k)>2)) (E53)

X Sji(t, v, 0 W) E DM, 0, A,)(E 1) dE d,
T L)
[ (T gz ap kv 2 DED (E.54)
X(l—|—U)Dan(t,v,gn,&n)(é',ﬂ)dé'dv,
L[ R E L
/ W+ Wy E. gy ok @ ME0) E55)
X My(tu, Q| A,)(En) de.

Let us show that (E.51), (E.53), (E.54), (E.55) may be written as contributions to the
right-hand side of (E.46).

Contributions of (E.51) and (E.53). We make act (E.51) and (E.53) on a function f.
We shall get an expression

+o00
| [ kesoMer.0, 2006 v, (E.56)

where, by the fact that g;; in (E.39) is in ’i;'Zmo and (E.35), the kernel K satisfies
the bound

£y 121 \?
Kweol=chau+ose e (g) (7)) ey
e (1 v) 0 (1] — [nl) 2.
We bound the modulus of (E.56) by
+o00
| [iKeeoiumima. w0, 2 1@ dz dv.

Then the L2 norm in £ of the supremum in u of (E.56) is bounded from above by

/ H/ K. 8. D)l (suplMa(t.w. Q. 4,) f(D)]) dE dv.  (ES58)

L2(d¥)

As a+ b > 1, (E.57) shows that we may apply to the d ¢-integral, which is of the
form of the right-hand side of (E.30), estimate (E.31), with ¢ replaced by ¢(1 + v).
We obtain that (E.58) is smaller than

+o0
CK2/ 147+ (1 p) ™m0~ gy || sup| My (1, w, 0 A f 12
0 w _

with §" > 0 as small as we want. Since by assumption 1y, > %, we obtain a bound of

the form (E.47), that shows that (E.51) and (E.53) contribute to R,, in (E.46).
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Contribution of (E.55). This is an expression similar to (E.53), except that we no
not have a dv integral and have a factor (1 + u)? instead of (1 + v). Consequently,
for the L2 norm of that operator acting on f, we get a bound of the form (E.58) but
without dv-integration and an extra factor (1 + u), and with K estimated at » instead
of v. This implies again that we obtain a contribution to R,,.

Contribution of (E.54). By (E.43) at order n — 1,
Dan(t7 U’Qn’&l’l) = iS(ta U5 Qn’ A'n) o n—l(tv U5 gn_15&n—l)‘

Plugging this in (E.54), we get the expression

P (I+v)gi€.8A)
’ / // W+ g Ly kv 2 DED 59

x (L+v)S(t, v, Q" A" )My—1(t,v. Q. A,_)(n',n)dC dn dv.

We write by (E.38)

2 2
SE.v. Q" A" = > Selt.v. Q" A").

k'=14=1

By (E.39) and the fact that E;; Exry = 8’]5 E;¢, we have

2
D Skt v, @, ME O Sk e(t,v, Q" A, )

k’'=1
— C]jk(f’ v, €, é-)qzz(t’ v, ¢, n/)eitvd)jk(f,C,k)+itv¢ke(§»n’,ln)Eje’

(E.60)

where q,’: ‘ denote the entries of matrix Q”. By (E.40), the phase in the exponential is
¢ie(E, ', A + A™). Define

2
Gio(t,v,E,1, ) = —i(1+ U)/};‘]jk(lvva Ot v.8.1) (E.61)

X t(1 + )ik (€, &, ) {1 (1 + v)jx (€, m, 1)) "2 dC.

Slnce gjk is in E‘ m '”0 estimate (E.35) shows that we may write this function as
( )“ multiplied by a function that will satisfy the first estimate (E 27) w1th K,
bounded by ¢ t1 '”(1 + v)™™0. In the same way, since gy, is in s o bn’ mg | it may

replaced by a” and K, bounded by & t1="(1 + v)~™0. By (i) of Lemma E.2.2,
apphed w1th t replaced by #(1 + v), we see that (E.61) may be written as a product
of ( )“( )b times a quantity bounded from above by

CKy Ky et 137" (1 4 p)37m8=m0o (€| — /|y~
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if b + a" = 0 and by
CKy Ky e T (17m=m" 8 (| 4 yy=mo=mo+8" (| _ /|y~

for any §' > 0if b + a" > 1, according to (E.29).

If one takes a 9, -derivative of (E.61), one gains an extra decay factor in (1 + v) 1
Consequently, equation (E.61) defines a symbol in the class EH" mem'! =5 mg +"’0_i
(resp. in the class Z"‘“ mm" =8 mG+mo=8"y e p 4 gn =0 (resp b +a™ > 1). Since

the phases in equatlon (E.60) satisfy
¢jk(g7 é" A) + ¢k€(§’ 77/’ An) = ¢]€(E? ’7,, A+ An)v

this shows that (E.59) may be written under the form of the first integral on the right-
hand side of (E.46), with a matrix function Q, depending on A, but with estimates
uniform in A, whose entries are respectively in the classes of the statement of the
lemma. This concludes the proof as, in the case n = 0, one has just to estimate terms
of the form (E.51), (E.53), (E.55). ]

Our next goal will be to obtain bounds for (E.43) iterating (E.46). We introduce
some notation. .
Let p,n be in N*. Assume given for each (n, p) a sequence (X (Jn p))15 j<n, where
X (] n.p) is an element
J J J J J
Xinoy = W) M0 M, 9,0 U+ o )

of 0, +o00[ x ]%, ~+o0[ x ]Z’ +oo[ x N x N satisfying the following conditions:

(E.62)

3 .
pr<nthenm(np)0 g,]=1,...,l’l

(E.63)

pr>n+1thenm cJ=Lon—1 andmg, 4> -

.0~ g 4
Forl < j'.j" <n, a(np)+b(nl7)

j' < j” = p (this exception being void if p > n or p = 1).

> 1 except eventually if (E.64)

For any X (jn ») of the form (E.62), we denote for short by ’i(X (jn p)) the class

. i J J
Sx? )= 53 )Mo p) M ). 0
(n,p) a’ b/
(n.p)>"(n.p)

of Definition E.2.3.

If (X(n+1 p))1<j <n+1 1sCa sequence of the form (E.62), we define from it the
concatenated sequence (X . p))1< j<n and the truncated sequence (X @, p))1< j<n in
the following way: We just set

xS =x!

(n.p) wt1,py J = L...n, (E.65)

while we denote

j,.C j,.C j,.C ] C J,C
X(n,p) (L(n,p)’ Mn,p) " (n,p),0° a(n,p)’ b(n p))
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where the components of the preceding vector are defined in the following way:

n,C _ n+l »C ] .
Ynp) = t’(’n+1p)+t?n+1’p), Ynp) = Yntl.p) j=1,...,n—1. (E.66)

Ifn# p—1,wesetforj =1,...,n—1,

n,C n+1 / iCc
m(n 2 m(n+1 p) + m(n+1 p) -8, m(n p) m(n+1,p)’ (E67)
nC _ n+1 / J.C j .
Mnp),0 = Mnt1,p,0 T m(n-H P),0 -4, M 5.0 = Mnt1,p).00

where §’ > 0 is as small as wanted (in particular, §’ will be small enough so that the

lower bound (E.63) still holds with m” 1.0).0 o Teplaced by m’ (1.0).0 - 3.
Ifn=p-1, wedeﬁne1nsteadof(E67) forj=1,...,p—2,
1 ;
p—1,C P p—1 J,C ]
m =m +m - = m
(p—1,p) = "(p,p) (p.p) ’ (r—1.p) = "M(p,p)°
2 | (E.68)
mP~ 1,C _ P -1 - J C j
Mp-1.)0 = M(p.p)0o T m(p 2.0 5 Mp-1.p.0 = Mp.p).00
Finally, we set for all (n, p),
n C n+1 bn ,C bn
An,p) = Yn+1,p) 20.p) = P(n+1.p)
(E.69)
a’c  =al piC = bl =1 n—1
%n,p) n+1,p0 Pmp) T Pt1py E :

Let us check that if the sequence (X (n+1, p))1< j<n+1 satisfies (E.63)—(E.64) (with n
replaced by n + 1), then (X ))1<J <n satisfies also (E.63)—~(E.64).

Verification of condition (E.63).
Case p <n. Asn # p — 1, (E.67) applies and shows that

mj ,C mj
(n,p),0 (n+1,p),0

for j = 1,...,n — 1. On the other hand, by (E.63) with n replaced by n + 1,

j 3
Mo 1,00 = g’

so that the first condition (E.63) holds for m’ if j =1,...,n—1. To get it for

nC (n p)O
m(,, )00 W€ write by (E.67) that
3 3 3
nC )
M0 = Miat 1,0 T Mns1.p0 =8 > sts 9>3

using the first line in (E.63) with n replaced by n + 1.
Case p = n + 1. By (E.68), we have

1 C j
Mip—1,9),0 = " (p,p),0
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forj =1,...,p—2,and by the first line in (E.63) (with n replaced by n 4+ 1 = p),
this is strictly larger than 3 §» so that the second line of (E.63) holds for my pc 1.0).0°
j =1,..., p— 2. On the other hand, still by (E.68)

- 1 3 3 1 1
mP—1C P o1 1
o100 = Mo T om0 T3 7§ T3 T2 TG
so that the last condition (E.63) holds for mé’ p__ll’cp) o- We thus got (E.63) for m

whenn = p — 1.

J,C
(n,p),0

Case p > n + 2. Again, we may apply (E.67) to writefor j = 1,...,n —1,

i 3
J,C m’
M 0.0 = Mnt1,p).0 =~ 3
by the second condition of (E.63) with n replaced by n + 1. On the other hand, still
by (E.67)
1 3 3
n,C _ +1
M 22,0 = Mn1,p0.0 T Mintrpp0 =8 > 7+ g =8 >7¢
using (E.63) with n replaced by n + 1. This is better than what we need to ensure the

last condition (E.63) for m n,C 2).0° This concludes the verification.

Verification of (E.64). We assume that (E.64) holds at rank n + 1, i.e.

Forl1 <j',j" <n+ 1,a(n+1 »n T b(nJrl > 1 except eventually
if j' < j" = p.
Let us check (E.64) for a’ o ;), b(jn 1?) If both j" and j” are strictly smaller than 7, then
(E.69) shows that the wanted property holds. On the other hand, if j” < n, j’ <n,
then
_ 0
@) + Bl gy = Cusr. T Dot )
by (E.69), and this expression is larger than or equal to one, except eventually if
j’ < j” = p, whence again (E.64). It remains to study the case j’ = n. We have
then
n,C J7.C _  n+1 Jj"”
‘) + Dy = A+ Doy
The inequality n + 1 < j” = p cannot hold, so that the above quantlty is always

larger than or equal to one. This shows that (E.64) is satisfied by (X’ @, p))1< j<n-
We may state our main proposition.

Proposition E.2.5. Let n be in N, p in N*. Assume a sequence (X(j;,ﬂ p))1<] <n+1
of the form (E.62) is given, satisfying (E.63) and (E.04), with n replaced by n + 1.
For j=1,....,n41, let Q(nJrl ») be an element of E(X(nJrl p)) ® M5 (R). Denote
by K(n +1,p) the semi-norm provided by the best constant in estimate (E.35), in the
special case N = 2. Set as in (E.41),

_ +1 1
2n+1 - (Q?n+1,p)’ Tt Q(n+1,p))'
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Then there exists a universal constant Cq such that, for any function f in L?, any

App1 = AL AY) in R*Y one has when p > n + 1 or p = 1 the bounds
|| Sup|Mn+1(ta u, 2n+1v&n+1)f| HLZ
u>0 (E.70)
= G K g pystrt T b0 f |2,
where
n+1 )
_ J
Lnt1,0) = D k1)
Jj=1
n+1
, 1 (E.71)
_ J /
Mpitp) = D My — (0 F 1)(5 + 1)7
=1
— ! n+1
Kot1,p) = K(n+1,p) K(n+1 p)’
while if 2 < p <n + 1, one gets instead
H SulerH—l(t? u, 2n+1’in+l)f| ”LZ
u>0 (E.72)

<GP K g sttt e 2O £ o,
The proposition will be deduced from the following lemma.

Lemma E.2.6. Let Qn+ ) be as in the statement of Proposition E.2.5. There are
C > 0, a sequence

0" = (Q/ Nicjen:
with Q‘(Ilfp) in f(X {};’Tp)) ® Mo (R) with semi-norms K (],fp) satisfying

KT <K/

(n,p) — T (n+1,p)’ (E.73)

a sequence
0° = (Q(,, p)1<j<ns

with Q (n py in E(X ) ® M2 (R) and semi-norms K (j’;(;p) satisfying

(n, p)

J,.C J P
K(n,p) K(n+1,p)’ J =

n,C n n+1
K(n p) — = CK(n+1,p)K(n+l,p)’

1,...,n—1,
(E.74)

such that
HiliI())IMnH(t,u,gnH,&nH)leLz

< |[sup| My (t,u, Q€ A0) 1] 12

u=0 . (E.75)
m{, +i48 47 +1

+Ct™ Mn+1.p) g(+1p)K?+1p)

x supl M .. Q7. A0 /1] .2

for other sequences of real numbers )LC AT
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Proof. We apply Lemma E.2.4 with

1
Q,=Qs1.p) > Qint1.p)
_ +1
Q - Q?n-t—l D)’
1
Q (Q(n+1,p)’ "Q(n+1,p))'

The left-hand side of equation (E.46) is then, according to equation (E.43), equal to
My 41(t,u, 2n+1 . A 41)- Let us check that condition (E.45) holds. By (E.63) with n
replaced by n 4 1, we have

1
n+1 - n -
Mo 1,p),0 = 1 Me+1,p).0 > s

We have to check that
g+l 4 pntl 1.
(n+1,p) (n+1,p) —

that follows from (E.64) at order n + 1. Let us check that the first term on the right-
hand side of (E.46) may be written as M, (¢, u, QC AC) so that it will provide the
first term on the right-hand side of (E.75). We shall "define the sequence QC by

0L, =0.00C =00, . j=1l..n-1 (E.76)

where O is introduced in the statement of Lemma E.2.4. Let us check that we get
for the elements of the sequence (X o )1< j<n the expressions in (E.66)—(E.69).
For j = 1~ — 1, this follows from the definition of Q{ Cp) in (E.76). Con-
sider now Q. The class to which it belongs depends on the fact that

+1
b?n-i—l »n T a?n+1,p) > 1 (E.77)

ornot. By (E.64) atordern + 1, (E.77) holds exceptifn 4+ 1 = p > n. Consequently,
whenn # p — 1, we have accordmg to Lemma E.2.4 that (7, m™C  om™C | are

(n p)’ "1, p) "™ (n,p).0
given by (E.66)~(E.67) and a’, o, p), b:‘ncp) by (E.69).If n = p — 1, then we know only
that

bn+1 4 an > 0
(n+1,p) (n+1,p) =

n.C and m™C

and in this case, the lemma shows that m (n.p),0 AT€ given by the expres-
sions in equation (E.68). We thus obtain that the first term on the right-hand side
of equation (E.46) is M, (¢, u, QC )tc) fora convement sequence A /\C Moreover, again
by Lemma E.2.4, the semi-norm of Q Q (correspondlng to N = 2in (E.35))

is controlled according to the last 1nequahty in (E 74), the case of the semi-norms of

J .
Q(n p) Q(n+l,p)’ Jj=1...,n—-1,

being trivial.

We have next to check that the remainder R, in (E.46) provides the last contri-
bution to (E.75). This follows from (E.47) and the fact that, by definition, QT is the
truncated sequence ( Q(n p) Q(n p)) This concludes the proof. ]
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Proof of Proposition E.2.5. We proceed by induction on n. If n = 0, the last state-
ment in Lemma E.2.4 shows that we get (E.70). We assume from now on thatn > 1.
Assume that (E.70) and (E.72) have been proved at order n instead of n + 1.

Case p > n 4+ 2. We apply inequality (E 75) On its right-hand side, we may apply
the induction hypothesis to M, (¢, u, Q ) and M, (¢, u, Q ) Since p > n, it
follows that estimate (E.70) (with n —I— 1 replaced by n) for M (t,u, Q ,Cl) will

hold, with ¢, 1 ), M, 41, p)» Knt1,p) replaced by
n
C — €
*(n.p) — op)

j=1

1
m(n,p) Zm(n,p) ( +Z)

Kupy = 1—[ Ky

respectively. Using (E.66), (E.67), (E.74), we get a bound of the first term on the
right-hand side of (E.75) by

n+1
CcyC 1_[ K(]n+ljp)8£(n+1,p)[_m(n-i—l,p)||f||L2. (E.78)
Jj=1

On the other hand, if we apply inequality (E.70) (with n 4 1 replaced by n) to
M, (t,u, QT, &;) and use (E.73), we bound the last term in (E.75) by

n+1

Ct Ma+1.pTa 3 +8 ‘(n+1 p)Kz’t_ll p)CO K(n e Lon.p) ™. ) I fll2. (E.79)

where we denoted

n
T J
to,p) = ZL(H )2 Zt(nﬂ,p)’
j=1
1 8/ _ “ ] 1 8/
m(n,p)_zm(n p) (Z+ ) _Zm(n+1,p)_n(1+ )’
j=1

n

K' =[]k, = l_[K<n+1,p>
Jj=1

according to the definition of x/T o
again (E.79) by (E.78).

») in (E.65). Taking (E.71) into account, we bound

D

Case p = n + 1. We apply again (E.75). On the right-hand side, the first term may
be estimated again from (E.70) with n + 1 replaced by n = p — 1, since we have
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p > p — 1. The exponent mfn » of ¢ on the right-hand side will be here

1

m(p Lp) — Zm(p Lp) _1)<8/+Z)
; 1 1
:;m{”””‘(”‘”(?”’w)—z

according to (E.68). On the other hand, the last term in (E.75) will be estimated by
(E.70) at order n instead of n + 1, and thus by (E.79). We thus get a bound of the
form (E.72).

Case 2 < p < n. We apply again (E.75). The first term on the right-hand side may

be estimated from the induction hypothesis (E.72), applied with n + 1 replaced by n,

to M, (¢, uQS&S) Since n # p — 1, the exponent m(;l?p) are given by (E.67), so
that

C / 1 1

Mn,p) = Zm(n » ”(5 + Z) ZMeut1p) T g

which largely allows to bound the first term by
CYCK gy pysterttn ottt 5G| ). (E.80)

The second term on the right-hand side of (E.75) is estimated using the induction
assumption for M, (t, u,gz,&,f), i.e. writing for this expression (E.72) with n + 1
replaced by n. One gets again a bound of the form (E.80).

Case p = 1. Inthis case, we proceed as when p > n 4 1: We prove (E.70) by induc-
tion, using at each step (E.75), and the fact that the condition n # p — 1 = 0 holding
for all n > 1, we may use at each step (E.67). This concludes the proof. ]

E.3 Proof of Proposition E.1.3

We shall prove first Sobolev estimates.

Lemma E.3.1. Let B, (t) (resp. Cy(t)) be given by (E.10) (resp. (E.13)) with V(-)
of the form (E.5), Q; being in Etl'? Sfor some 1 > 0, some m € |0, %[ close to % (asin
the example following Definition E.1.1). There are K > 0, §' > 0 small, such that for
any n in N¥,
—(m—§'—1
IBa ()l crsy < (Ke't™ =¥ =9)",

) (E.81)
1Ca ()l 2ars) < (Kt~ =D)",

The same conclusion holds true if Q; is in 2‘2’,'3 forall j or Q;isin Ef)”'; forall j.
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Proof. We shall estimate |[(Dx)* By (t){Dx) |l ¢(L2)- By (E.10),

(D) B0} = [ [T ™ (Do) iy V(e + 1) (Dy) " P
i (E.82)
X lo<gy<zg, dT1 *** Tn.

By (E.5), this may be written as a sum of 5" terms

Z Z /1_[( iYe ' Fo(D,) K Qi i, +T)

i1=—2 ip=-2 (E.83)

itj Po+i(t+t; ))Lln—ﬁ—l—j (Dx>_

X e lo<zy <<z, dT1 -+ d Ty,

where by assumption Q;; is an element of 37"} (resp. 3577, resp. 3¢7) for all ;.
We shall set (a,b) = (1, 1) (resp. (2,0), resp. (0, 2)). Composing (E.83) by Fourier
transform on the left and inverse Fourier transform on the right, as in (E.6), we
reduce ourselves to the £ (L?) boundedness of an operator that may be written, set-

ting t; = v;t in the integral, as the sumin iy, ..., i, of
n
f [1SC v 0ipir s Aipir— ) Lo<vy <o, dvr -+ dvn, (E.84)
j=1

where Qin+1—j is defined from Qin+1—j by

Qin+]—j (t,vj,§,n) = eitli"“_”(é)sQinﬂ—j (A +vp). &)~ (E.85)

and S(z, vj, an+1 _;»Aiyyq—;) is defined in (E.36). Since Q;, ., . belongs to the
class X" of Definition E.1.1, Qi,.1_, is in the class P ap 0 of Definition E.2.3,
taking for mg any number mo < m. Since m is taken close to 5 L we may assume that
mo > g. In other words, the integral in (E.84) is of the form M (2,0, Q ,A™), with
notatlon (E.43) with Q (Q,n, .. Qll)

We shall apply Proposition E.2.5 with n 4+ 1 replaced by n and p = n + 1. This
is possible since, if in condition (E.64),a; = b; = 1 forall j,ora; = 2,b; = 0 for
all j, ora; =0,b; =2 for all j, inequality a, + b, > 1 is always satisfied. We
deduce from (E.70) that the £ (L?) norm of (E.84) is bounded from above by

(Retm=3=Dy"

for some K > 0. Since we have 5” terms in the sum (E.83), (E.81) follows for B, ().
Since according to (E.13), C,(¢) may be written as B, (¢)* for some Bj(t) of the
form (E.10), we get also the second estimate of (E.81).

This concludes the proof. |

We want next to obtain & (L?) bounds for L o C,(¢), where L is defined in equa-
tion (E.17). We compute first the composition between L and an operator of the form
e~ Py (t 4+ 1)e! ™o where V is of the form (E.5).
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Lemma E.3.2. Let Q be a 2 x 2 matrix of functions in the class El 1 of Defini-
tionE.1.1. Let A be in R and set Vg (t) = e’)”KQ according to notation (E.5)—(E.6).
Then one may find 2 x 2 matrices Q' (resp. Q") with entries in 22,0 (resp. 22’0
or Xg'7) such that

Lo (7™ (1 + 1)e' ™)

. . . . (E.86)
= (e7™P0Vo/(t + 1)e'™0) o L + (e7 POV (t + )’ TF0).

Proof. Using notation (E.37), we write

2

§ n
2 G = E
o.5.n) JE 11; lq,k(t EMEjx—~ o)

with g in Ei)’,"g. We have to compute the action of L on the operator with kernel
el AE+T)

/ ol CE=ym+it(=1)7 pE)—(=D* p(n) Eji
2
k=2 (E.87)

& n
xqujk(tJrf,E,n)dédn-

One gets, using expression (E.17) of L,

eM(t+r) ) . . X
/et(xé—yn)+zr((—1)fp(S)—(—l) p("))Ejk
- 2 ;
1<j,k<2 (ESS)
: §
x (x + (=D ep"(€)) 5 7 age (e + T E.m) dEdn.
(&) (n)
As p'(§) = , we have

§ n § (. & k
= (=) (x5 (=1 =y (=)
(&) (m (E)( (n) () )
2

O CD ),
We plug (E.89) in (E.88). The last term in (E.89) gives an expression of the form of the
first term on the right-hand side of (E.86), where the operator e oYy (t + T)elho
is given by an expression of the form (E.87), w1th )q ik replaced by

(x+ (—1)j t'(6) =
(E.89)

(-UHkifl'k
(€2

i.e. Q' is given by

OEm =3 gt b (-1 Eye é—>
j=1k=1

This is an element of X5'7 as wanted.
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On the other hand, if we plug the first term of the right-hand side of (E.89)
in (E.88) and perform one integration by parts, we get

2

. 2 1A(l+r) ) ) J A
(—1)/+1 ZZ / oI =y T(= 1) pE~(-1E p(n))

x (=17 5D + (- F é) )(%qjkoﬂs,n))dwn.

We get an operator of the form of the last term in (E.86), with a symbol Q” that may
be written as the sum of an element in X5 and an element in X'} This concludes
the proof of the lemma. ]

We may prove now the following statement.

Lemma E.3.3. For any n in N*, one may find operators Cf (t), 0 < p < n, such
that

n
LoCy(t)=Cl(t)o L+ Y CP(t) (E.90)
=1
which have the following structure: Operator C,? (2) is of the form

n
/ [Te @iVt +5)e' P locg,<cr, dT1 - d i, (E91)

where V'(t) = Z% ’“tKQ/ with Q) matrices with entries in 22 o- Operator
CP(tyforl<p<n has the structure

p—1
/ l_[ e PV (1 4 rj)e’r-/P‘) x e TPV 4 Tp)elfppo

" (E.92)
< [T eV + 1)e’ Plocr, <ocry d Ty -+ d T,
J=p+1
where V is as in (E.5), V' is as above and V" is a sum V" (t) = Z% “WKQN
with Q matrices with entries in Z‘ " 0 Or Et m . Moreover, one has the esttmates
1CY Ol 22y < (Ke' z“ Hammy, (E.93)
~ ’ 1_(s/1
1CP (O]l grz) < (Rettd+H3—m)"2 6+ 1< p<n. (E.94)

Proof. We start from expression (E.13) of C,(¢). If we compose at the left with L
and use (E.86), we obtain the sum of an expression of the form (E.92) with p =1
and a quantity of the form (E.13), with the product replaced by

n
e PV (4 1y)e P00 Lo [[e W P0iv(t + 15)e' W 7. (E.95)
j=2
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If we iterate, we obtain C2() o L with C2(¢) given by (E.91) and the sum for p
going from 1 to n of (E.92).
We have next to obtain (E.93) and (E.94). By duality, we may replace (E.91) by

n
=n" / l_[ e TPy (1 + rj)*e"r/‘p‘)]lktl <wcr, ATy - d Ty (E.96)
and (E.92) by

n—p
(_1)n/ l_le_irjPOiV(l—{—tj)*eirjPO
j=1

x e~ 1= Poi Y (¢t 4o,y ) *el Tri—p PO (E.97)
n
x [ e"@Pivie+1)t e locr<nr, drr -+ dy
Jj=n+2—p

forl < p <n.

Consider first (E.96). We have an operator of the form (E.83) (with s = 0) whose
&£ (L?) boundedness reduces to the one of an expression of the form (E.84) in terms
of symbols Qin 41—, given by (E.85) from symbols in the class Z‘O’Z because of the
definition of V'(t + t;). It follows from the last statement in Lemma E.3.1 that the
same estimate as (E.81) holds, which gives a bound of the £(L?) norm of (E.96) by
the right-hand side of (E.93).

Let us study expression (E.97) and show that its £(L?) norm is bounded from
above by the right-hand side of (E. 94) Operator (E.97) is of the form (E. 84) with

a sequence of symbols (Q,. ..., Q;,) with Q;, belonging to the classes E‘ o,
where (a;,b;)1<j<n has the followmg form:
(an.bn) = (1,1), ..., (@p+1.bp+1) = (1,1), (ap.bp) = (0,2) or (1,0), (E.98)
(ap_l,bp_l) = (0,2), euy (Cll,bl) = (0,2). )

The only couples (j’, j”) such that a;» + bj» may be eventually equal to zero are
those with j < j” = p, i.e. those for which condition (E.64) is satisfied. We thus
obtain that (E.97) is of the form (E.84) and has £ (L?) norm bounded from above by
(E.70) and (E.72), so by the right-hand side of (E.94). This concludes the proof. m

Proof of Proposition E.1.3. Since m is taken close to % and &’ close to zero, the expo-
nent of ¢ on the right-hand side of (E.81) is negative. As ¢ > 0, for ¢ small enough,
we have
1 1
IBn @l = 550 €Ol = 55
In particular, (E.11) and its counterpart for C,(¢) holds, so that B(¢) and C(¢) are
well defined, bounded on H* and satisfy (E.19)
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Since by (E.93), [|C2(1)|l ¢(72) satisfies the same estimate as || B, (¢) || ¢(z+) and
[|Cn(2) || £(ars), the operator

+o00
CH=1d+ ) Cl)

n=1

is well defined and satisfies (E.21). We notice next that if we set forn > 1,

Cin(t) =) Cl),

p=1

we have by (E.94)
1C1n ()l gz2) < Cn(Rey't D@ +5=m) 3-m

Since §’ + % —m < 0, we get after summation estimate (E.22) for

400
Cl(t) = Z Cl,n(t)-

n=1

We still have to check the last assertions of the proposition. To prove (E.23), it suf-
fices to check that for any n, No B, (t) = B, (t) Ny for any n, and the corresponding
equality for C,(¢). Because of (E.10) and (E.13), it is enough to show that

Noe  TPoV (1 + 1)el ™0 = el ™o+ 1)e~ PO N,

But this equality follows from (E.7) and the fact that Noe!?Fo = e=i7Po N
Moreover, if 'V preserves the space of odd functions, so do B, (¢) and Cy(¢)

because of their definition, and of the fact that Py preserves such spaces. This con-

cludes the proof. ]



