
Appendix F

Division lemmas and normal forms

We have discussed in Section 1.6 normal forms for an equation of the form�
Dt � p.Dx/

�
u D N.u/;

where p.�/ D
p
1C �2 andN.u/ is some polynomial in u; Nu. We distinguish among

the monomials of u the characteristic ones, that are those of the form

upC1 Nup D juj2pu

and the non-characteristics ones, of the form up Nuq with p � q ¤ 1. We have seen that
if LC D x C tp0.Dx/, a characteristic monomial will satisfy essentially an equality
of the form

LC.juj
2pu/ D .p C 1/.LCu/juj

2p
� pupC1 Nup�1LCuC remainder; (F.1)

that allows one to obtain for the L2 norm of the left side a bound in kuk2pL1kLCukL2 .
Our first goal in this appendix is to give a proof of inequalities of that form for

more general characteristic nonlinearities, given in terms of the kind of non-local
multilinear operators that we have to use in the proof of the main theorem of the book.
Section F.2 below is devoted to that, except that we put ourselves in the semiclassical
framework that is very convenient for the proofs.

For non-characteristic nonlinearities, (F.1) non-longer works, and as explained
in Section 1.6, one has then to eliminate such nonlinearities by space-time normal
forms. We perform in section (F.4) these space-time normal forms in the semiclassi-
cal framework, for general non-characteristic nonlinearities given by the multilinear
pseudo-differential operators introduced in Appendix B. The method is the one out-
lined in Section 1.6, extended to these general multilinear expressions. We make also
normal forms for quadratic contributions given in terms of symbols with space decay-
ing symbols, along the lines of the end of Section 2.7.

F.1 Division lemmas

We establish in this section some division lemmas, which are variants of similar
results obtained in [20].

Definition F.1.1. For n in N�, denote by �n the set of multi-indices I D .i1; : : : ; in/
with ij D ˙1 for j D 1; : : : ; n. Denote by �ch

n the subset of �n made by those
I D .i1; : : : ; in/ such that

Pn
jD1 ij D 1 and �nch

n D �n � �
ch
n .

Let us fix some notation. If I D .i1; : : : ; in/ is in �n and as above

p.�/ D
p
1C �2;
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we define

gI .�1; : : : ; �n/ D �p
�
�1 C � � � C �n

�
C

nX
jD1

ijp.�j /: (F.2)

Set also '.x/ D
p
1 � x2 for jxj < 1, so that by [20, Lemma 1.8], if  2 C10 .R/ has

small enough support

a˙.x; �/ D
x ˙ p0.�/

� � d'.x/

�
h�i2.x ˙ p0.�//

�
;

b˙.x; �/ D
� � d'.x/

x ˙ p0.�/

�
h�i2.x ˙ p0.�//

� (F.3)

satisfy estimates
j@˛x@

ˇ

�
a˙.x; �/j � C˛ˇ h�i

�3C2j˛j�jˇ j;

j@˛x@
ˇ

�
b˙.x; �/j � C˛ˇ h�i

3C2j˛j�jˇ j:
(F.4)

Proposition F.1.2. Recall notation (B.10) for the function M0.�1; : : : ; �n/ and the
class of symbols introduced in Definition B.1.2 for ˇ � 0, � � 0. Let � � 0.

(i) Let I be a multi-index in .i1; : : : ; i`/ be in �n and let mI be a symbol in
S1;ˇ .

Qn
jD1h�j i

�1M0.�/
� ; n/. Then we may find symbols

mI;` 2 S4;ˇ

� nY
jD1

h�j i
�1M0.�/

4C�
hxi�1; n

�
; ` D 1; : : : ; n; (F.5)

such that if  is in C10 .R/ and has small enough support, one may write

mI .y; x; �1; : : : ; �n/

D mI .y; x; �1; : : : ; �n/

nY
`D1


�
M0.�/

4.x C i`p
0.�`//

�
C

nX
`D1

.x C i`p
0.�`//mI;`.y; x; �1; : : : ; �n/:

(F.6)

(ii) Assume that I is in �nch
n . Then we may find a symbol

aI 2 S4;ˇ

� nY
jD1

h�j i
�1M0.�/

�
hxi�1; n

�
(F.7)

and symbols mI;j as in (F.5) such that

mI .y; x; �1; : : : ; �n/ D gI .�1; : : : ; �n/aI .y; x; �1; : : : ; �n/

C

nX
`D1

.x C i`p
0.�`//mI;`.y; x; �1; : : : ; �n/:

(F.8)
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Proof. Define

mI;1.y; x; �1; : : : ; �n/ D mI .y; x; �1; : : : ; �n/
.1 � /.M0.�/

4.x C i1p
0.�1///

x C i1p0.�1/
;

m
.1/
I .y; x; �1; : : : ; �n/ D mI .y; x; �1; : : : ; �n/

�
M0.�/

4.x C i1p
0.�1//

�
and write

mI .y; x; �1; : : : ; �n/Dm
.1/
1 .y; x; �1; : : : ; �n/CmI;1.y; x; �1; : : : ; �n/.xC i1p

0.�1//:

Then mI;1 satisfies (F.5), and repeating the process with mI replaced by mI;1, suc-
cessively with respect to �2; : : : ; �n, we get (F.6).

(ii) Equality (F.8) is obtained from (F.6) defining

aI D mIg
�1
I

nY
jD1


�
M0.�/

4.x C i`p
0.�`//

�
(F.9)

and showing that aI belongs to S4;ˇ
�Qn

jD1h�j i
�1M0.�/

�C1hxi�1; n/. This is done
in [20, proof of (i) of Proposition 2.2] (with the parameter � in that reference set
to 2).

F.2 Commutation results

We study now the action of the operator LC D
1
h

Oph.x C p
0.�// introduced in (D.8)

on characteristic terms.

Proposition F.2.1. Let I be in �ch
n for some (odd) n � 3 and let � be nonnegative. Let

mI be an element of S1;ˇ .
Qn
jD1h�j i

�1M0.�/
� ; n/ with ˇ > 0. Then, for some new

value of �, there are symbols mI;j in S4;ˇ .
Qn
jD1h�j i

�1M �
0 ; n/, j D 1; : : : ; n, r in

S4;ˇ .
Qn
jD1h�j i

�1M �
0 ; n/, r

0 in S 0
4;ˇ
.
Qn
jD1h�j i

�1M �
0 ; n/, such that for any functions

v1; : : : ; vn,

LCOph.mI /.v1; : : : ; vn/ D
nX

jD1

Oph.mI;j /.v1; : : : ;Lij vj ; : : : ; vn/

C Oph.r/.v1; : : : ; vn/

C
1

h
Oph.r

0/.v1; : : : ; vn/:

(F.10)

Proof. We write decomposition (F.6) of mI , denoting the first term on the right-hand
side by m.1/I . This is an element of S4;ˇ .

Qn
jD1h�j i

�1M �
0 ; n/ supported in

n\
`D1

¹.y; x; �1; : : : ; �n/ W jx C i`p
0.�`/j < ˛M0.�1; : : : ; �n/

�4
º (F.11)
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for some small ˛ > 0. It is proved in the proof of [20, Proposition 2.2] that on domain
(F.11), one has j�`j � CM0.�/ for any ` D 1; : : : ; n and that hd'.x/i �M0.�/ (see
[20, formulas (2.10)–(2.13), and the lines following them as well as Lemma 1.8]). Let
us show that

m
.1/
I .y; x; �1; : : : ; �n/

�
p0.�1 C � � � C �n/ �

nX
jD1

p0.�j /

�

D

nX
jD1

mI;j .y; x; �1; : : : ; �n/.x C ijp
0.�j //

(F.12)

for symbols mI;j in S4;ˇ .
Qn
jD1h�j i

�1M0.�/
3C�hxi�1; n/. Actually, expanding the

bracket in the left hand side of (F.12) on �j D ijd'.x/, j D 1; : : : ; n and usingPn
jD1 ij D 1, one may write the left-hand side of (F.12) as

nX
jD1

m
.1/
I .y; x; �1; : : : ; �n/.�j � ijd'.x// Qej .x; �/ (F.13)

with

Qej .x; �/ D

Z 1

0

�
p00
�
.1 � �/d'.x/C �.�1 C � � � C �n/

�
�

nX
jD1

p00
�
.1 � �/ijd'.x/C ��j

��
d�:

(F.14)

Notice that on the set (F.11) containing the support of m.1/I , x stays for any � in
a compact subset of ��1; 1Œ and that for any ˛ in N�,

h@˛d'.x/i D O
�
hd'.x/i1C2˛

�
D O

�
M0.�/

1C2˛
�
D O

�
M0.�/

3˛
�
;

so that each @˛x-derivative of Qej .x; �/ is O.M0.�/
3˛/ on that support. Moreover, we

may write using (F.3)

.�j � ijd'.x// Qej .x; �/ D .x C ijp
0.�j //bC.x; �j / Qej .x; �/

if .x; �/ stays in (F.11) and the function  in (F.3) is conveniently chosen. Plugging
this in (F.13) and defining

mI;j .y; x; �1; : : : ; �n/ D m
.1/
I .y; x; �1; : : : ; �n/bC.x; �j / Qej .x; �/;

we get (F.12), with a symbol mI;j in the wanted class because of (F.4) and of the fact
that j�j j D O.M0.�// on (F.11). We use now Proposition B.2.1 to write

Oph.p
0.�// ı Oph

�
m
.1/
I .y; x; �1; : : : ; �n/

�
D Oph

�
p0.�1 C � � � C �n/m

.1/
I .y; x; �1; : : : ; �n/

�
C hOph

�
r1.y; x; �1; : : : ; �n/

�
C Oph

�
r 01.y; x; �1; : : : ; �n/

� (F.15)
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with r1 in S4;ˇ .
Qn
jD1h�j i

�1M �
0 ; n/, and r 01 in S 0

4;ˇ
.
Qn
jD1h�j i

�1M �
0 ; n/ for some �.

Using (F.12), we may rewrite the first term on the right-hand side as
nX

jD1

Oph
�
m
.1/
I .y; x; �1; : : : ; �n/p

0.�j /
�

C

nX
jD1

Oph
�
mI;j .y; x; �1; : : : ; �n/.x C ijp

0.�j //
�
:

(F.16)

Using that
Pn
jD1 ij D 1, and that LC D

1
h

Oph.x C p
0.�//, it follows from (F.6),

(F.15), (F.16) and Proposition B.2.1 that LCOph.mI / is the sum of terms of the fol-
lowing form:

ij

h
Oph

�
m
.1/
I .y; x; �1; : : : ; �n/.x C ijp

0.�j //
�
; j D 1; : : : ; n;

1

h
Oph

�
mI;j .y; x; �1; : : : ; �n/.x C ijp

0.�j //
�
; j D 1; : : : ; n;

Oph
�
r1.y; x; �1; : : : ; �n/

�
C
1

h
Oph

�
r 01.y; x; �1; : : : ; �n/

� (F.17)

withmI;j in S4;ˇ
�Qn

jD1h�j i
�1M0.�/

�hxi�1; n/ coming from (F.6) or (F.16). To con-
clude the proof, we just have to apply again Proposition B.2.1 to the first two lines
of (F.17), in order to rewrite them as the sum on the right-hand side of (F.10), up to
new contributions to the remainders.

In the non-characteristic case, we cannot expect an equality of the form (F.10).
Instead, we shall have:

Corollary F.2.2. Let I be in �nch
n . Then there are symbols mI;j , r , r 0 as in the state-

ment of Proposition F.2.1 and a symbol r1 in S4;ˇ .
Qn
jD1h�j i

�1M �
0 ; n/ for some �,

such that

LCOph.mI /.v1; : : : ; vn/ D
nX

jD1

Oph.mI;j /.v1; : : : ;Lij vj ; : : : ; vn/

C Oph.r/.v1; : : : ; vn/

C
1

h
Oph.r

0/.v1; : : : ; vn/

C
x

h
Oph.r1/.v1; : : : ; vn/:

(F.18)

Proof. We may reproduce the proof of Proposition F.2.1, except that, when Taylor
expanding the bracket on the left-hand side of (F.12) on �j D ijd'.x/, we shall get
the right-hand side of this equality and the extra term

m
.1/
I .y; x; �1; : : : ; �n/

�
p0
� nX
jD1

ijd'.x/

�
�

nX
jD1

p0
�
ijd'.x/

��
(F.19)
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which does not vanish if
Pn
jD1 ij ¤ 1. Since

p0.�/ D
�

h�i
and d'.x/ D �xhd'.x/i;

with hd'.x/i D O.M0.�// on the support of m.1/I , we see that (F.19) may be written
as xr1 for some r1 as in the statement. This gives the last contribution to (F.18), the
preceding ones being those furnished by the proof of Proposition F.2.1.

The last term in (F.18) does not enjoy nice estimates. Because of that, non-
characteristic terms have to be eliminated by normal forms. We describe such normal
forms in next section.

F.3 Normal forms for non-characteristic terms

Proposition F.3.1. With the notation and under the assumptions of (ii) of Proposi-
tion F.1.2, one may write for any v1; : : : ; vn,�

Dt � Oph
�
x� C p.�/ � in

h

2

��
Oph.aI /.v1; : : : ; vn/

D Oph.mI /.v1; : : : ; vn/

C

nX
jD1

Oph.aI /Œv1; : : : ; .Dt � Oph.�ij //vj ; : : : ; vn�

CR.v1; : : : ; vn/;

(F.20)

where �ij .x; �/ D x� C ijp.�/ �
i
2
h, and where R is the sum of terms of the follow-

ing form
hOph.mI;j /.v1; : : : ;Lij vj ; : : : ; vn/; 1 � j � n;

Oph.r
0
I /.v1; : : : ; vn/;

hOph.rI /.v1; : : : ; vn/;

(F.21)

wheremI;j is a symbol in S4;ˇ .
Qn
jD1h�j i

�1M �
0 hxi

�1; n/, rI (resp. r 0I ) belongs to the
class S4;ˇ .

Qn
jD1h�j i

�1M �
0 hxi

�1; n/ (resp. S 0
4;ˇ
.
Qn
jD1h�j i

�1M �
0 ; n/) for some �.

The first line in (F.21) may also be written as

Oph.r
1
I /.v1; : : : ; vn/ (F.22)

for a symbol r1I in S4;ˇ .
Qn
jD1h�j i

�1M �
0 ; n/.

Proof. Notice first that by the definition (B.14) of Oph and the fact that h D 1
t
, one

has �
Dt � Oph.x�/

�
Oph.aI /.v1; : : : ; vn/

D

nX
jD1

Oph.aI /
�
v1; : : : ; .Dt � Oph.x�/

�
vj ; : : : ; vn

�
C ihOph

�
.x@xaI /.y; x; �/

�
.v1; : : : ; vn/:

(F.23)
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Moreover, by Proposition B.2.1 and the definition (F.2) of gI ,

�Oph.p.�//Oph.aI /.v1; : : : ; vn/

D Oph.aIgI /.v1; : : : ; vn/

�

nX
jD1

ijOph.aI /
�
v1; : : : ;Oph.p.�//vj ; : : : ; vn

�
C hOph.rI /.v1; : : : ; vn/C Oph.r

0
I /.v1; : : : ; vn/;

(F.24)

where rI is in S4;ˇ .
Qn
jD1h�j i

�1M �
0 hxi

�1; n/ and r 0I in S 0
4;ˇ
.
Qn
jD1h�j i

�1M �
0 ; n/.

Notice that p.�/ is in S�;ˇ .h�i; 1/ (for any �; ˇ since, this symbol depending only on
one variable � , M0.�/ D 1), so that, to get from Proposition B.2.1 symbols rI ; r 0I in
the indicated classes, we would need that aI be in S4;ˇ .M �

0

Qn
jD1h�j i

�2hxi�1; n/

instead of (F.7). But by (F.9), aI is supported in (F.11), and we have seen just after
this formula that this implies that j�`j � CM0.�/ for any `. Consequently, the above
property for aI does hold, for large enough �. If we make the sum of (F.23) and
(F.24), we get that the left-hand side of (F.20) is given by the sum on the right-hand
side of (F.20), contributions to R of the form of the last two lines in (F.21) and the
term Oph.aIgI /.v1; : : : ; vn/. By (F.8), we thus get the first term on the right-hand
side of (F.20) and expressions

�Oph
�
mI;`.y; x; �1; : : : ; �n/.x C i`p

0.�`//
�
.v1; : : : ; vn/:

Using again Proposition B.2.1, we write these terms as contributions to R given
by (F.21). This concludes the proof.

F.4 Quadratic normal forms for space decaying symbols

In Section 3.2 we have performed an easy quadratic normal form, that allowed us to
get rid of the quadratic term on the right-hand side of (3.11), given by Oph.m0;I /ŒuI �,
with jI j D 2 and m0;I in QS0;0.

Q2
jD1h�j i

�1; 2/. This procedure made appear a new
quadratic term Oph.m

0
0;I /ŒuI � on the right-hand side of equation (3.13), given in

terms of a symbolm00;I in QS 00;0.
Q2
jD1h�j i

�1; 2/. We shall have to perform also a nor-
mal form to eliminate such terms. We define a new class of operators.

Definition F.4.1. Let ! 2 Œ0; 1�, and i D .i1; i2; i3/ in ¹�1; 1º3. We denote by K�;! ,
resp. K 0�;!.i/, the space of operators of the form

.f1; f2/ 7!
1

2�

Z 1

�1

Z 1

�1

Z
eix�0k.t; �0; �1; �2; �1; �2/

� Of .�1/ Of .�2/ d�0 d�1 d�2 d�1 d�2;

(F.25)

where k is a smooth function of .t; �0; �1; �2; �1; �2/ that satisfies for some � in N,
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any N; 0; 1; 2; �1; �2; j in N,

j@
j
t @
0
�0
@
1
�1
@
2
�2
k.t; �0; �1; �2; �1; �2/j

� CM0.�1; �2/
�C.0C1C2/�h�0 � �1�1 � �2�2i

�N t!.0C1C2/�j ;
(F.26)

resp. that satisfies

j@
j
t @
0
�0
@
1
�1
@
2
�2
k.t; �0; �1; �2; �1; �2/j

� CM0.�1; �2/
�C.0C1C2/�h�0 � �1�1 � �2�2i

�N t!.0C1C2/�j

� ht!.i0h�0i � i1h�1i � i2h�2i/i
�1

(F.27)

in the case of K 0�;!.i/), whereM0.�1; �2/ still denoted the second largest among h�1i
and h�2i.

If k satisfies
k.t;��0;��1;��2/ D �k.t; �0; �1; �2/; (F.28)

then (F.25) sends a couple of two odd functions or two even functions to an odd
function. If k satisfies

k.t;��0;��1;��2/ D k.t; �0; �1; �2/; (F.29)

then (F.25) sends a couple .f1; f2/ with f1 odd, f2 even or f1 even, f2 odd to an odd
function.

Let us check first that we may express operators of the form Op.m0/.v1; v2/ with
m0 in QS 01;0.M0.�1; �2/

Q2
jD1h�j i

�1; 2/ in terms of operators K�;! .

Lemma F.4.2. Let m0 be in QS 01;0.M0

Q2
jD1h�j i

�1; 2/. Let i1; i2 2 ¹�1; 1º2 be any
choice of signs. Then ifL˙ is defined by (C.5), one may find operatorsK`1;`2 in K1;0,
0 � `1; `2 � 1, such that the action of Op.m0/ on any couple of odd functions .v1; v2/
(as defined in (3.6)) may be written as

t�2
1X

`1D0

1X
`2D0

K`1;`2.L
`1
i1
v1; L

`1
i2
v2/: (F.30)

Moreover, if m satisfies (3.7), then K`1;`2 is given by a symbol k satisfying (F.28) if
`1 C `2 D 0 or 2 and (F.29) if `1 C `1 D 1.

Proof. We may rewrite

Op.m0/.v1; v2/ D Op.m01/.hDxi
�1v1; hDxi

�1v2/

with m01 in QS1;0.M0; 2/. Using the oddness of vj , we write

hDxi
�1vj D

i

2
x

Z 1

�1

�
DxhDxi

�1vj /.�jx/ d�j

D
i

2

x

t
ij

Z 1

�1

�
.Lij vj /.�jx/ � �jxvj .�jx/

�
d�j

(F.31)
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for any choice of the signs ij D ˙. By definition (3.6) of the quantization and inequal-
ities (3.4) satisfied by elements of the class S 0, one may rewrite expressions like
Op.m01/.xf1; f2/ as sums of expressions of the form Op. Qm01/.f1; f2/, for new sym-
bols Qm01 in QS1;0.M �

0 ; 2/ for some �. Using (F.31), we thus see that Op.m0/.v1; v2/
may be rewritten as a sum of terms

t�2
Z 1

�1

Z 1

�1

�
1�`1
1 �

1�`2
2 Op. Qm0/

�
.L
`1
i1
v1/.�1� /; .L

`2
i2
v2/.�2� /

�
d�1 d�2

for some symbols Qm0 in S 01;0.M
�
0 ; 2/. By (3.6), we have

Op. Qm0/Œf1.�1� /; f2.�2� /�

D
1

.2�/2

Z
eix.�1�1C�2�2/m0.x; �1�1; �2�2/ Of1.�1/ Of2.�2/ d�1 d�2

D
1

2�

Z
eix�0k.�0; �1; �2; �1; �2/ Of1.�1/ Of2.�2/ d�1 d�2

with

k.�0; �1; �2; �1; �2/ D
1

.2�/2
Om0.�0 � �1�1 � �2�2; �1�1; �2�2/:

It follows from estimates (3.4) that hold for any ˛; ˛00, that inequalities (F.26) are true
for some �, � D 1, ! D 0, which implies the conclusion as the last statement follows
from the transfer of property (3.7) to k by inspection.

Proposition F.4.3. Let K be in K�;0. Let i D .i0; i1; i2/ 2 ¹�;Cº3. One may find
operators KL; KH in K 0

�; 12
.i/ such that for any f1; f2,

.Dt � i0p.Dx//.
p
tKH .f1; f2//

D K.f1; f2/C
p
tKH

�
.Dt � i1p.Dx//f1; f2

�
C
p
tKH

�
f1; .Dt � i2p.Dx//f2

�
CKL.f1; f2/:

(F.32)

If K satisfies (F.28) (resp. (F.29)), so do KH ; KL.

Proof. Take � in C10 .R/ equal to one close to zero and set �1.z/ D
1��.z/
z

. Define
from the function k associated to K by (F.25) a new function

kH .t; �0; �1; �2; �1; �2/ D k.�0; �1; �2; �1; �2/

� �1
�p
t .�i0h�0i C i1h�1i C i2h�2i/

�
:

(F.33)

Then kH satisfies (F.27) with ! D 1
2

. Call KH the associated operator. If we make
actDt � i0p.Dx/ on

p
tKH .f1; f2/, we get the second and third terms on the right-

hand side of (F.32), an operator associated to the function

k.�0; �1; �2; �1; �2/.1 � �/
�p
t .�i0h�0i C i1h�1i C i2h�2i/

�
(F.34)
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and contributions coming from the action ofDt on kH , that may be written as contri-
butions to KL in (F.32) (with even an extra factor t�1=2). Finally, we see that (F.34)
providesK on the right-hand side of (F.32), modulo another contribution toKL. This
concludes the proof as the last statement follows from (F.34).

Corollary F.4.4. Let m0 be in S 01;0.
Q2
jD1h�j i

�1; 2/. One may find for any i1; i2 in
¹�;Cº, any `1; `2 in ¹0; 1º operators

K
`1;`2
H;i1;i2

; K
`1;`2
L;i1;i2

in the class K 0
1; 12
.1; i1; i2/ such that for any odd functions v1; v2, if one sets

Qi1;i2.v1; v2/ D t
� 32

1X
`1D0

1X
`2D0

K
`1;`2
H;i1;i2

�
L
`1
i1
v1; L

`2
i2
v2
�
; (F.35)

then �
Dt � p.Dx/

�
Qi1;i2.v1; v2/

D Op.m0/.v1; v2/CQi1;i2
�
.Dt � i1p.Dx//v1; v2

�
CQi1;i2

�
v1; .Dt � i2p.Dx//v2

�
CRi1;i2.v1; v2/;

(F.36)

where

Ri1;i2.v1; v2/ D t
�2

1X
`1D0

1X
`2D0

K
`1;`2
L;i1;i2

�
L
`1
i1
v1; L

`2
i2
v2
�

C 2it�
5
2

1X
`1D0

1X
`2D0

K
`1;`2
H;i1;i2

�
L
`1
i1
v1; L

`2
i2
v2
�
:

(F.37)

Moreover, if m0 satisfies (3.7), K`1;`2H;i1;i2
; K

`1;`2
L;i1;i2

satisfy (F.28) if `1 C `2 D 0 or 2
and (F.29) if `1 C `2 D 1. In particular, Qi1;i2 sends a couple of odd functions to an
odd function.

Proof. By Lemma F.4.2, we may write Op.m0/.v1; v2/ under the form (F.30). We
apply to each K`1;`2 in (F.30) Proposition F.4.3. If we define K`1;`2H;i1;i2

(resp. K`1;`2L;i1;i2
)

from the operator KH (resp. KL) in equation (F.32), and use that Li` commutes to
Dt � i`p

0.Dx/, we obtain (F.36) for the Qi1;i2 defined in equation (F.35). The last
statement of the corollary follows from the last statement in Proposition F.4.3 and
Lemma F.4.2.

F.5 Sobolev estimates

We shall prove Sobolev estimates for operators introduced in Definition F.4.1.
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Proposition F.5.1. Let ! 2 Œ0; 1�, � � 0, let K be an operator in the class K 0�;!.i/

(for a triple i D .i1; i2; i3/ 2 ¹�;Cº3). Assume moreover that the function k in (F.25)
is supported for j�2j � 2h�1i. There exists �0 2 RC (depending on the exponent �
in (F.27)) such that the following estimates hold true for any s in RC, any test func-
tions f1; f2:

kK.f1; f2/kH s � Ct
�!2 kf2kH�0kf1kH s ; (F.38)

kK.f1; xf2/kH s C kK.xf1; f2/kH s C kxK.f1; f2/kH s

� Ct
!
2 kf2kH�0kf1kH s ;

(F.39)

kK.xf1; xf2/kH s � Ct
3!
2 kf2kH�0kf1kH s : (F.40)

Proof. By (F.25), we have to prove, in order to establish (F.38), that the operator

.g1; g2/ 7!

Z 1

�1

Z 1

�1

Z
h�0i

sk.t; �0; �1; �2; �1; �2/h�1i
�s
h�2i

��0

� g1.�1/g2.�2/ d�1 d�2 d�1 d�2

(F.41)

is bounded fromL2 � L2 toL2, with operator normO.t�
!
2 /. Because of our support

assumptions, M0.�1; �2/ � C h�2i, so that we may control the factor M0.�1; �2/ in
(F.27) by C h�2i, i.e. M �

0 will be bounded using h�2i��0 if �0 is taken large enough.
Moreover, as s � 0, h�0ish�0 � �1�1 � �2�2i�N h�1i�s D O.1/when j�2j � 2h�1i if
N is large enough relatively to s. The proof of (F.38) is thus reduced to the proof that
operators of the form

.g1; g2/ 7!

Z 1

�1

Z 1

�1

Z
Qk.t; �0; �1; �2; �1; �2/g1.�1/g2.�2/ d�1 d�2 d�1 d�2 (F.42)

are bounded from L2 � L2 to L2, with operator norm O.t�
!
2 /, if Qk satisfies

j Qk.t; �0; �1; �2; �1; �2/j � C h�0 � �1�1 � �2�2i
�1
h�2i

�2

� ht!.i0h�0i � i1h�1i � i2h�2i/i
�1:

(F.43)

The operator norm of (F.42) is bounded from above by

C

Z 1

�1

Z 1

�1

�
sup
�0

Z
j Qk.t; �0; �1; �2; �1; �2/j d�1 d�2

� 1
2

�

�
sup
�1;�2

Z
j Qk.t; �0; �1; �2; �1; �2/j d�0

� 1
2

d�1 d�2:

(F.44)

Notice that there is C > 0 such that for any ˛; ˇ in R, any � 2 Œ�1; 1�,Z
ht!.˛ C h�i/i�1hˇ C ��i�1 d� � C j�j�

1
2 t�

!
2 (F.45)



Division lemmas and normal forms 264

uniformly in ˛; ˇ. Actually, if we integrate for j�j � 1, we bound (F.45) by

C j�j�
1
2

�Z
j�j>1

ht!.˛ C h�i/i�2 d�

� 1
2

:

If one takes in the above integral computed either on domain � > 1 or � < �1,
� D h�i as a new variable of integration, we get a bound by the right-hand side
of (F.45). If one integrates for j�j < 1 on the left-hand side of (F.45), we bound the
corresponding quantity byZ

j�j<1

˝
t!.˛ C

p
1C �2/

˛�1
d� � C

Z
h˛0 C t!�2i�1 d� � Ct�

!
2

which is better than the bound we want. We use (F.43) and (F.45) with � D �0 to
estimate the second factor in (F.44) by t�

!
4 and (F.45) with � D �1 to estimate the

first integral factor by t�
!
2 j�1j

� 12 . We obtain that (F.44) isO.t�
!
2 / from which (F.38)

follows.
To get estimate (F.39), we notice that, by (F.25), K.xf1; f2/ (resp. K.f1; xf2/,

resp. xK.f1; f2/) may be written as K1.f1; f2/ for an operator K1 of the form
(F.25), obtained replacing k by D�1k (resp. D�2k, resp. �D�0k). Since by (F.27)
these D�j -derivatives make lose t! (and change the value of the exponent �), we get
(F.39) from (F.38) (with a new value of �0).

One obtains (F.40) in a same way.

Corollary F.5.2. LetK be an element of K 0�;!.i/ for ! 2 Œ0; 1�, � � 0, i 2 ¹�;Cº3.
The following estimates hold true for any s � 0 and some �0 independent of s:

kK.f1; f2/kH s � Ct
�!2
�
kf1kH�0kf2kH s C kf1kH skf2kH�0

�
; (F.46)

kK.f1; f2/kL2 � Ct
�!2 kf1kL2kf2kH�0 ;

kK.f1; f2/kL2 � Ct
�!2 kf1kH�0kf2kL2 ;

(F.47)

kK.xf1; f2/kL2 C kK.f1; xf2/kL2 C kxK.f1; f2/kL2

� Ct
!
2 kf1kL2kf2kH�0 ;

kK.xf1; f2/kL2 C kK.f1; xf2/kL2 C kxK.f1; f2/kL2

� Ct
!
2 kf1kH�0kf2kL2 ;

(F.48)

kK.xf1; f2/kH s C kK.f1; xf2/kH s C kxK.f1; f2/kH s

� Ct
!
2

�
kf1kH�0kf2kH s C kf1kH skf2kH�0

�
:

(F.49)

Proof. We may splitK D K< CK>, whereK> (resp.K<) is given by an expression
of the form (F.25) with k supported for j�2j � 2h�1i (resp. j�1j � 2h�2i). If we apply
(F.38) to K> and the symmetric inequality to K<, we obtain (F.46).

Let us prove (F.47). It suffices to show that the two estimates hold for K> for
instance. The first one follows from (F.38) with s D 0. To get the second one, we
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notice that it is enough to establish the L2 � L2 ! L2 boundedness of

.g1; g2/ 7!

Z 1

�1

Z 1

�1

k.t; �0; �1; �2; �1; �2/h�1i
��0g1.�1/g2.�2/ d�1 d�2 d�1 d�2

with operator norm O.t�
!
2 /. Since j�2j � 2h�1i on the support, if �0 has been taken

large enough, we see that we may rewrite this under the form (F.42), with some Qk
fulfilling (F.43) so that the conclusion follows.

Finally, estimates (F.48) follow from (F.47), noticing that, as in the proof of (F.39),
we may reduce ourselves to operator K1.f1; f2/ satisfying the same assumptions
as K, up to the loss of a factor t! . This concludes the proof, as (F.49) follows from
(F.39) and the above decomposition K D K< CK>.

Corollary F.5.3. Let ˇ > 0, K; �0 as in Corollary F.5.2 and take s large enough so
that .s � �0/ˇ � 1. Then

kK.L˙f1; f2/kL2 � Ct
�!2
�
tˇ�0kL˙f1kL2 C kf1kH s

�
kf2kL2 ; ; (F.50)

kK.f1; L˙f2/kL2 � Ct
�!2 kf1kL2

�
tˇ�0kL˙f2kL2 C kf2kH s

�
: (F.51)

Proof. Let � be in C10 .R/, � � 1 close to zero. Decompose

L˙f1 D �.t
�ˇDx/.L˙f1/C .1 � �/.t

�ˇDx/.L˙f1/:

Write

.1 � �/.t�ˇDx/.L˙f1/ D x.1 � �/.t
�ˇDx/f1 C i t

�ˇ�0.t�ˇDx/f1

˙ t .1 � �/.t�ˇDx/
Dx

hDxi
f1:

If one applies the second estimate in (F.47) and (F.48), one gets then

kK
�
.1 � �/.t�ˇDx/L˙f1; f2

�
kL2

� C
�
t
!
2 k.1 � �/.t�ˇDx/f1kH�0

C t�
!
2

�
k�0.t�ˇDx/f1kH�0 C tk.1 � �/.t

�ˇDx/f1kH�0
��
kf2kL2 :

Since .s � �0/ˇ � 1, this is bounded by Ct�
!
2 kf1kH skf2kL2 .

On the other hand, by the second estimate (F.47)

kK
�
�.t�ˇDx/L˙f1; f2

�
kL2 � Ct

�!2 k�.t�ˇDx/L˙f1kH�0kf2kL2

� Ct�
!
2 Cˇ�0kL˙f1kL2kf2kL2 :

This concludes the proof of (F.50), and thus of the corollary since (F.51) is just the
symmetric estimate.

Let us get next some Sobolev estimates for K.L˙f1; L˙f2/.
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Corollary F.5.4. Let K be in the class K 0�;!.i/. Assume moreover that k in (F.25) is
supported for j�1j � 2h�2i. Let s; �0; ˇ be as in Corollary F.5.3. Then, if .s��0/ˇ� 1,

kK.L˙f1; L˙f2/kH s � Ct
1�!2 kf2kH s

�
tˇ�0kL˙f1kL2 C kf2kH s

�
; (F.52)

kK.L˙f1; f2/kH s C kK.f1; L˙f2/kH s � Ct
1�!2 kf1kH skf2kH s ; (F.53)

kK.xf1; f2/kH s C kK.f1; xf2/kH s � Ct
!
2 kf1kH skf2kH s ;

kK.xf1; xf2/kH s � Ct
3!2 kf1kH skf2kH s :

(F.54)

Proof. Take � in C10 .R/, equal to one close to zero and write K.L˙f1; L˙f2/ as
a linear combination of the four terms

I D tK
�
�.t�ˇDx/L˙f1;

Dx

hDxi
f2

�
;

II D tK
�
.1 � �/.t�ˇDx/L˙f1;

Dx

hDxi
f2

�
;

III D K
�
�.t�ˇDx/L˙f1; xf2

�
;

IV D K
�
.1 � �/.t�ˇDx/L˙f1; xf2

�
:

(F.55)

We apply (F.38) (with f1 and f2 exchanged since we assume here j�1j � 2h�2i on the
support instead of j�2j � 2h�1i) in order to estimate the H s norm of I by

Ct1�
!
2 k�.t�ˇDx/L˙f1kH�0kf2kH s � Ct

1�!2 Cˇ�0kL˙f1kL2kf2kH s (F.56)

which is bounded by the right-hand side of (F.52).
To study II, we write it as a combination of terms

t2K
�
.1 � �/.t�ˇDx/

Dx

hDxi
f1;

Dx

hDxi
f2

�
;

tK
�
x.1 � �/.t�ˇDx/f1;

Dx

hDxi
f2

�
;

i t1�ˇK
�
�0.t�ˇDx/f1;

Dx

hDxi
f2

�
:

We estimate their H s norm using (F.38) and (F.39) (with f1 and f2 interchanged) by

Ct2�
!
2 kf2kH s

�
k.1 � �/.t�ˇDx/f1kH�0 C k�

0.t�ˇDx/f1kH�0
�

� Ct2�.s��0/ˇ�
!
2 kf1kH skf2kH s :

This implies a bound by the right-hand side of (F.52) since .s � �0/ˇ � 1.
By (F.39) (with f1 and f2 exchanged), we estimate the H s norm of III by

Ct
!
2 k�.t�ˇDx/L˙f1kH�0kf2kH s

that we bound by the right-hand side of (F.52) as in (F.56) since ! � 1.
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We write IV as a combination of terms

tK
�
.1 � �/.t�ˇDx/

Dx

hDxi
f1; xf2

�
;

K
�
x.1 � �/.t�ˇDx/f1; xf2

�
;

i t�ˇK
�
�0.t�ˇDx/f1; xf2

�
:

We estimate the H s norm of these quantities using (F.39) and (F.40) with f1 and f2
interchanged. We get

C
�
t1C

!
2 C t3

!
2

�
k.1 � �/.t�ˇDx/f1kH�0kf2kH s

C Ct�ˇC
!
2 k�0.t�ˇDx/f1kH�0kf2kH s :

As .s � �0/ˇ � !, this implies a bound by the right-hand side of (F.52). This con-
cludes the proof of (F.52)

To prove (F.53), we decompose K.L˙f1; f2/ (resp. K.f1; L˙f2/) as the sum of
˙tK. Dx

hDxi
f1; f2/ (resp.˙tK.f1; DxhDxif2/) and ofK.xf1; f2/ (resp.K.f1; xf2/) and

we apply (F.38) and (F.39) to get the conclusion.
Finally, (F.54) is just a consequence of (F.39) and (F.40).

We translate finally the preceding corollary when one does not make any assump-
tion of support on the frequencies.

Corollary F.5.5. LetK be in the class K 0�;!.i/. With the notation of Corollary F.5.4,
one has the following inequalities:

kK.L˙f1; L˙f2/kH s � Ct
1�!2

�
tˇ�0

�
kL˙f1kL2kf2kH s

C kf1kH skL˙f2kL2
�
C kf1kH skf2kH s

� (F.57)

and

kK.f1; L˙f2/kH s C kK.L˙f1; f2/kH s � Ct
1�!2 kf1kH skf2kH s ; (F.58)

(with any choice of the signs˙ in the left and right-hand side of these inequalities).

Proof. One decomposesK D K<CK> as in the proof of Corollary F.5.2 and applies
(F.52) and (F.53).


