Appendix F

Division lemmas and normal forms

We have discussed in Section 1.6 normal forms for an equation of the form
(Dt — p(Dx))u = N(u),

where p(§) = /1 + &2 and N (u) is some polynomial in u, 7. We distinguish among
the monomials of u the characteristic ones, that are those of the form

uPta? = u|*Pu

and the non-characteristics ones, of the form u?u4¢ with p — g # 1. We have seen that
if Ly = x +tp’(Dy), a characteristic monomial will satisfy essentially an equality
of the form

Ly([ul*”u) = (p + D(Lyuw)|ul?*? — pu? T 4P~ L {u + remainder, (F.1)

that allows one to obtain for the L2 norm of the left side a bound in [|u ”iléo |L+ulzz2.

Our first goal in this appendix is to give a proof of inequalities of that form for
more general characteristic nonlinearities, given in terms of the kind of non-local
multilinear operators that we have to use in the proof of the main theorem of the book.
Section F.2 below is devoted to that, except that we put ourselves in the semiclassical
framework that is very convenient for the proofs.

For non-characteristic nonlinearities, (F.1) non-longer works, and as explained
in Section 1.6, one has then to eliminate such nonlinearities by space-time normal
forms. We perform in section (F.4) these space-time normal forms in the semiclassi-
cal framework, for general non-characteristic nonlinearities given by the multilinear
pseudo-differential operators introduced in Appendix B. The method is the one out-
lined in Section 1.6, extended to these general multilinear expressions. We make also
normal forms for quadratic contributions given in terms of symbols with space decay-
ing symbols, along the lines of the end of Section 2.7.

F.1 Division lemmas

We establish in this section some division lemmas, which are variants of similar
results obtained in [20].

Definition F.1.1. For n in N*, denote by T, the set of multi-indices I = (iy,...,in)
with i; = £1 for j = 1,...,n. Denote by Fﬁh the subset of I', made by those
I =(i1....,ip)suchthat Y 7_,i; = land T)" = T, — T'".

Let us fix some notation. If I = (i1, ..., i) is in ', and as above

p¢) = V1+£2,



Division lemmas and normal forms 254

we define .

j=1
Setalso ¢(x) = ~/1 —x2 for |x| < 1, so that by [20, Lemma 1.8], if y € C§°(R) has
small enough support

_XEPO L
ax .9 = 2y (20 % 6)). -
y .
batxn§) = ST (620 £ )

satisfy estimates
|9%0F ax(x, £)| < Cop(§)~>F271AL

10208 b (x. £)] < Cap(£) 21111,

Proposition F.1.2. Recall notation (B.10) for the function My (&1, ...,&,) and the
class of symbols introduced in Definition B.1.2 for 8 > 0, k > 0. Let v > 0.

(F4)

(i) Let I be a multi-index in (iy,...,i¢) be in 'y, and let my be a symbol in
S1,8 (H7=1 (£, Y Mo(§)", n). Then we may find symbols

n
mpy € 54,/3(H<§;>—1M0(5)4+“<x>—1,n), ¢=1,....n, (F5)
J=1
such that if y is in Cg§°(R) and has small enough support, one may write

mr(y,x,€1,...,&n)

=mr(y, %, E1,. . &) | | v(Mo(®)*(x +icp (€0))
! ! e_lj[l (Mo e €0) (E6)

+ Y (xFiep EDymre(y. x. 61, En).

{=1
(ii) Assume that I is in TN, Then we may find a symbol
n
ar € Sup (1‘[ (6)" Mo(§)" (). ) (E7)
j=1
and symbols my ; as in (F.5) such that

mr (X ) = g1 Enar (7. X 1 )
+ 30+ iep Emre(y.x. b ).

=1

(F.8)
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Proof. Define

_ M. 4 . /
A x B En) = mr(rox e ) ST x°f31§f(;)”” €

mP (%, E1 e E) = mp(ox, € ED Y (Mo(©)* (x + i1 (61)))

and write

mp(y,x, 61, E) =mP o x 6 E) Fmp (X, Er ) (X Pl (E1).

Then my ; satisfies (F.5), and repeating the process with mj replaced by my 1, suc-
cessively with respect to &5, ..., &,, we get (F.6).
(i1) Equality (F.8) is obtained from (F.6) defining

ar =mrg;" [[v(Mo(®)*(x + iep' (€0)) (F.9)
=1

and showing that a; belongs to Sy p ([ 17— (&)~ Mo(§)"'(x)~°°, n). This is done
in [20, proof of (i) of Proposition 2.2] (with the parameter « in that reference set
to 2). ]

F.2 Commutation results

We study now the action of the operator £ = %Oph (x + p’'(&)) introduced in (D.8)
on characteristic terms.

Proposition F.2.1. Let I be in F,C,h for some (odd) n > 3 and let v be nonnegative. Let
my be an element of Sy (szl(gj)—lMo(g)“, n) with B > 0. Then, for some new
value of v, there are symbols my ; in S4,,3(]_[7=1(§j)_1M6’,n), j=1,....,nrin
Sap([1j=1 (&) MG, n), 1" in Si.p (ITj=1 (&))" Mg, n), such that for any functions

Vi Uy,

n
L10p(mr) @y, v,) = Y Opp(mr )@y Liy0; -, 0,)
j=1

+ Opy (1) (vy, .-, 0,) (F.10)
1
+ Eoph(”,)(ﬂl’ cU,).

Proof. We write decomposition (F.6) of m, denoting the first term on the right-hand
side by mgl). This is an element of S g(I}—; (§;)~" Mg, n) supported in

(V. x 61, E) 2 X +iep' )| < aMo(Ers ..., €))7 (F11)

{=1
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for some small & > 0. It is proved in the proof of [20, Proposition 2.2] that on domain
(F.11), one has |&;| < CMy(§) forany £ = 1,...,n and that {(dp(x)) ~ My(§) (see
[20, formulas (2.10)—(2.13), and the lines following them as well as Lemma 1.8]). Let
us show that

mP . x b, . .,s,,)(p’(a Fot ) - Zp/(s»)
/= (F.12)

=Y mp (. x B (x4 P (E))

Jj=1

for symbols my j in S4 p([17=1 (&)~  Mo(§)>*¥ (x) =%, n). Actually, expanding the
bracket in the left hand side of (F.12) on §; =i;jde(x), j =1,...,n and using

27=1 i; = 1, one may write the left-hand side of (F.12) as

S mP(yxEr . EDE — ipde(x))E (x,E) (E.13)
j=1
with .
50,0 = [ (/1= mde) +ue -+ + )
n (F.14)
= P (1= wijde(x) + //«Sj)) dp.

j=1
Notice that on the set (F.11) containing the support of mgl), x stays for any £ in
a compact subset of |—1, 1[ and that for any « in N*,

(0dp(x)) = O({dp(x))'T2%) = O(Mo(£)' %) = O(Mo(§)**).

so that each 9%-derivative of ¢; (x, £) is O(My(£)3¥) on that support. Moreover, we
may write using (F.3)

(& —ijde(x))e;(x.§) = (x +i; p'(§))b+(x,§)é; (x, §)

if (x, &) stays in (F.11) and the function y in (F.3) is conveniently chosen. Plugging
this in (F.13) and defining

My (v, X1 ) =m0, EL L B (x,E)E (x, 6,

we get (F.12), with a symbol my_ ; in the wanted class because of (F.4) and of the fact
that |§;| = O(Mo(§)) on (F.11). We use now Proposition B.2.1 to write

Opy(P'(§)) 0 Opy, (m$” (v, x, &1, ..., £n))

= Op(P' &1 + -+ EmV (v, x, 61, ... ) (F.15)
+ hOpy (r1(y. x. €1, ... &) + Opy (r{ (v, x. &1, ... &)
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with ry in Sg g([17=,(§/)~' M¢,n), and r{ in S, ﬂ(ﬂ7=1 (§7)"1M{, n) for some v.
Using (F.12), we may rewrite the first term on the right-hand side as

ZOph(mgl)(y, X, fl, D) En)P/(%_j))
= ) (E.16)
+ ) " Opy(my(y. x.E1.. .. E)(x + i1 P/ ()))).

j=1

Using that Y 7_, i; = 1, and that £y = £Opj,(x + p/(§)). it follows from (F.6),
(F.15), (F.16) and Proposition B.2.1 that £ Op,,(my) is the sum of terms of the fol-
lowing form:

I; . .
E’Oph(mgl)(y,x,él, L EX D)), =10,

1
EOph(ml,j(y,x,El, LE)+ipE)). S =1.....n, (F.17)

0P (713, . £1.-. ) + 1O ({0 x. 1. )

withmy,;j in S4p([17=1 (&)~ Mo(§)"(x)~", n) coming from (F.6) or (F.16). To con-
clude the proof, we just have to apply again Proposition B.2.1 to the first two lines
of (F.17), in order to rewrite them as the sum on the right-hand side of (F.10), up to
new contributions to the remainders. ]

In the non-characteristic case, we cannot expect an equality of the form (F.10).
Instead, we shall have:

Corollary F.2.2. Let I be in T’ ,rl‘Ch. Then there are symbols my ;, r, r’ as in the state-
ment of Proposition F.2.1 and a symbol ry in S4 g (ﬂ?zl(fg‘j)_lM(;’,n) for some v,
such that

n
£40p;, (M) (@,,....v,) =Y Opy(mr )y, ..., L0, ..., 0,)
Jj=1

+ Opy(r)(vy, ..., 0,) (E18)
1

+ Eoph(r/)@pw-,yn)
X

+ Zoph(rl)(yl,--.,yn).

Proof. We may reproduce the proof of Proposition F.2.1, except that, when Taylor
expanding the bracket on the left-hand side of (F.12) on §; = i;d¢(x), we shall get
the right-hand side of this equality and the extra term

mP (v, x, 6, én)(p/ (Z i,-dcp(x)) - P,(ijd(ﬂ(x))) (F.19)
j=1 j=1
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which does not vanish if 27=1 i; # 1. Since

p'@)zé—) and  dp(x) = —x(dp(x)).

with (dp(x)) = O(Myp(§)) on the support of mgl), we see that (F.19) may be written
as xry for some r; as in the statement. This gives the last contribution to (F.18), the
preceding ones being those furnished by the proof of Proposition F.2.1. ]

The last term in (F.18) does not enjoy nice estimates. Because of that, non-
characteristic terms have to be eliminated by normal forms. We describe such normal
forms in next section.

F.3 Normal forms for non-characteristic terms

Proposition F.3.1. With the notation and under the assumptions of (ii) of Proposi-

tion F.1.2, one may write forany v,, ..., v,,

h
(D0 =0y (xt + p®) —in3))Oprian @y .. .2,
= Op (m1)(vy -, v,)

n (F.20)
+ > 0p,@n)yy. ... (Dr = Op,(4i))y; .. ... v,]
j=1
+B(yl7 s 72;1)7

where A, (x,§) = x§ +i;p(§) — %h, and where R is the sum of terms of the follow-
ing form
hOpy(my ;)(Vy, ..., L£i;v;,...,v,), 1=j<n,

Op;, (r) (v, - -, v,), (F21)

hOpy (rr) (v, - ., v,),
where my ; is a symbolin S4 g (]‘[;Ll(gj)—lM(;’ (x)7Y,n), rf (resp. r} ) belongs to the

class Sa.p (H?zl(sj)_lM(;’ (x)™%°,n) (resp. S""ﬁ (H?zl(éj)_lMé’,n)) for some v.
The first line in (F.21) may also be written as

Op, (rp) (@, -+, v,) (F22)
for a symbol r} in S4 g (]_[7=1 ()" 1My . n).
Proof. Notice first that by the definition (B.14) of Opj, and the fact that & = % one

has
(D: — Opy(x§))Opy(an) (. ... .v,)
=Y Opy(ar)(y.....(D: — Op,(xE))y;.....v,) (F23)
j=1

+ ihoph((xaxal)(y’ X, E))(Elv s 7Rn)
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Moreover, by Proposition B.2.1 and the definition (F.2) of g7,

—Op(p(§))O0pp(ar)(vy, ..., v,)
= Opy(argr)(vy,...,v,)

= i0pu(an(vy. ... Opy(p(E))y). .. .. 1,) (F24)
j=1
+ hOpy, (r1)(vys - -+, v,) + Opp (rp) vy, ..., 0,,),

where r7 is in Sq g([17=; (&)™ Mg (x)7°°,n) and r} in Sip (T=1 (&)~ Mg, n).
Notice that p(§) isin S g({§), 1) (for any «, B since, this symbol depending only on
one variable &, Mo(§) = 1), so that, to get from Proposition B.2.1 symbols r7, r; in
the indicated classes, we would need that ay be in Sy g(My [T/, (€/)7(x)">,n)
instead of (F.7). But by (F.9), ay is supported in (F.11), and we have seen just after
this formula that this implies that |£;| < CM(§) for any £. Consequently, the above
property for a;y does hold, for large enough v. If we make the sum of (F.23) and
(F.24), we get that the left-hand side of (F.20) is given by the sum on the right-hand
side of (F.20), contributions to R of the form of the last two lines in (F.21) and the
term Opy(argr)(vy,...,v,). By (F.8), we thus get the first term on the right-hand
side of (F.20) and expressions

—Opp, (mre(y. x. 61, &) (X +iep' () @y v,).

Using again Proposition B.2.1, we write these terms as contributions to R given
by (F.21). This concludes the proof. |

F.4 Quadratic normal forms for space decaying symbols

In Section 3.2 we have performed an easy quadratic normal form, that allowed us to
get rid of the quadratic term on the right-hand side of (3.11), given by Opy, (m0,1)[u1],
with [/| = 2 and mg s in So 0(]_[]2_1 (£,)71,2). This procedure made appear a new
quadratic term Opy, (m0 p)[ur] on the right-hand side of equation (3.13), given in
terms of a symbol m0 7 in Sy, 0(]_[ _1(&/)71,2). We shall have to perform also a nor-
mal form to eliminate such terms. We define a new class of operators.

Definition F.4.1. Letw € [0, 1], and i = (i1, i2,13) in {—1, 1}>. We denote by K ws
resp. K (i), the space of operators of the form

1 1
(fl’fZ)H%/il [_1/eixsok(hfosSl,fz,m,ﬂz)
x f (1) f (&) dEo dEr d&> du dyus,

where k is a smooth function of (¢, &g, &1, &2, (41, u2) that satisfies for some v in N,

(F.25)
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any N, Yo, V1, Y2, 1, f2, j in N,

|07 010071 01k (. £0. £1. £2. 1. )|

. (F26)
< CMO(SI, 52)v+(y()+)’1 +y2)K (‘;’;0 _ M1§1 _ MZSZ)_le(y()+YI+y2)_'],

resp. that satisfies

|3{3;83§11 A k(t,E0, 61,82, 1, po)|
< CMO(&I, 52)v+(1’0+1’1+)’2)l< (EO _ MIEI . “2§2>—le(yo+yl+l’2)—j (E27)
x (t°(io(Eo) — i1(£1) — i2(£2))) "

in the case of K ,(i)), where Mo (&1, &) still denoted the second largest among (£1)

and (&).
If k satisfies

k(t,—&0,—&1,—82) = —k(t.%0.61.62), (F.28)

then (F.25) sends a couple of two odd functions or two even functions to an odd
function. If k satisfies

k(t,—&o0, —£1,—82) = k(t,%0,61.,62), (F.29)

then (F.25) sends a couple ( f1, f») with f; odd, f> even or fi even, f» odd to an odd
function.

Let us check first that we may express operators of the form Op(m’)(vy, v2) with
m'in S} o(Mo(£1, £2) ]_[12:1 (£,)71,2) in terms of operators Ky 4.

Lemma F.4.2. Let m' be in S} (M, ]_[le(éj)_l, 2). Let iy, iy € {—1,1}? be any
choice of signs. Then if L+ is defined by (C.5), one may find operators Ky, ¢, in Ko,
0 < £1,45 < 1, such that the action of Op(m’) on any couple of odd functions (v, v2)
(as defined in (3.6)) may be written as

1 1
t_z Z Z Kel’£2 (Lfll U1, szl v2)- (F30)
£1=04,=0

Moreover, if m satisfies (3.7), then Ky, ¢, is given by a symbol k satisfying (F.28) if
61 +€2 = Oor2and(F.29) lf@] +€1 = 1.

Proof. We may rewrite
Op(m')(v1,v2) = Op(m})({Dx) ' v1, (Dx) " v2)
with m{ in S~1,0 (Mo, 2). Using the oddness of v;, we write
: 1
— l -
(D)1 = 5x [ (DaD2) o) wy) s
! (F31)

. 1
=570 / ((Liy 07)(p1j%) = 00 () dps
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for any choice of the signs i; = +. By definition (3.6) of the quantization and inequal-
ities (3.4) satisfied by elements of the class S/, one may rewrite expressions like
Op(m')(xfi, f2) as sums of expressions of the form Op(i11} )(f1, f2), for new sym-
bols 1) in Sl,o(M(}), 2) for some v. Using (F.31), we thus see that Op(m’)(v1, v3)
may be rewritten as a sum of terms

1 p1

- 1-6; 1—¢ - ¢ ‘

t 2/1/1/1«1 1“2 ZOp(m’)[(L,-llm)(/'Ll-),(Ll-221)2)(M2.)] d,bLl d/L2
for some symbols 72’ in S{’O(M", 2). By (3.6), we have

Op(")[ f1(p1+), fa(pz:)]

= (2]1,)2 / ePREHIE) ! (11, 1aa) fr(61) fal62) dEr dEo

_ %/eixsok(éo,él,éz,m,uz)ﬁ(sl)f;(gz)dgl d

with
1
k(§o.51.52. p1, p2) = (2—27?/(50 — 11 — paba, i€, pabo).
)

It follows from estimates (3.4) that hold for any «, oy, that inequalities (F.26) are true
for some v, k = 1, @ = 0, which implies the conclusion as the last statement follows
from the transfer of property (3.7) to k by inspection. |

Proposition F.4.3. Let K be in K, o. Let i = (ig,i1,i2) € {—, +}>. One may find
operators Kr, Kg in ‘K,:,%(i) such that for any f1, f2,
(D: — iop(D)) (V1 Ku (f1. 12))
= K(f1. f2) + V1K ((D: — i1 p(Dx)) f1. f2) (F32)
+ ViKg (f1. (D —i2p(Dx)) f2) + KL(f1. f2).
If K satisfies (F.28) (resp. (F.29)), so do K, K.

Proof. Take y in C5°(R) equal to one close to zero and set y1(z) = 1_+(Z) Define
from the function k associated to K by (F.25) a new function

kp (t,%0,81,62, 1, u2) = k(50,61 62, 1, 2)
X Xl(\/;(—io(go) +i1(61) + i2(£2))).

Then kg satisfies (F.27) with w = % Call Ky the associated operator. If we make
act D; —igp(Dyx) on /1t K (fi1, f2), we get the second and third terms on the right-
hand side of (F.32), an operator associated to the function

k(o €1, &2, j11, p2) (1 — 1) (V1 (=io(o) + i1(E1) + i2(£2))) (F.34)

(F.33)
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and contributions coming from the action of D; on kg, that may be written as contri-
butions to K, in (F.32) (with even an extra factor 1 ~1/2). Finally, we see that (F.34)
provides K on the right-hand side of (F.32), modulo another contribution to Kz . This
concludes the proof as the last statement follows from (F.34). ]

Corollary F.4.4. Ler m’ be in S{,O(]_[?ZI(SJ-)”J). One may find for any iy, i in
{—. +}, any £1, €5 in {0, 1} operators

L1,82 L1,
Kuiin Kiivi

in the class JC; 1 (1,11, i2) such that for any odd functions vy, v,, if one sets
2

Oiin(v1.v2) =17 Z Z K2, (Lilvi. L2v,), (F.35)
£1=04£,=0
then
(Dt - p(Dx)) Qil,iz(vla v2)
= Op(m/)(vh 1)2) + Qil,ig ((Dt - ilP(Dx))Ul, UZ) (F36)
+ Qirir (V1. (D —i2p(Dx))v2) + Riy iy (v1,v2),
where

1,4 14 L
ll,lz(vlv 1)2) =1 —2 Z Z KLlllzlz L IU L 2 )

£1=04,=0

. 51,42 4 12
+2it Z Z H,iy,iz L'lvl’Lizvz)'
£1=04£,=0

(F.37)

Moreover, if m’ satisfies (3.7), Kﬁ} lez Ki'llez satisfy (F.28) if £1 + £, = 0 or 2
and (E29) if £ + £, = 1. In particular, Q;, i, sends a couple of odd functions to an

odd function.

Proof. By Lemma F.4.2, we may write Op(m’)(vy, v2) under the form (F.30). We
apply to each Ky, ¢, in (F.30) Proposition F.4.3. If we define KH1 141 ;, (resp. KLl;lez)
from the operator Ky (resp. Ky ) in equation (F.32), and use that L;, commutes to
D, —igp’'(Dy), we obtain (F.36) for the Q;, ;, defined in equation (F.35). The last
statement of the corollary follows from the last statement in Proposition F.4.3 and

Lemma F.4.2. n

F.5 Sobolev estimates

We shall prove Sobolev estimates for operators introduced in Definition F.4.1.
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Proposition F.5.1. Let w € [0, 1], k > 0, let K be an operator in the class X, (i)
(foratriplei = (i1,i2,i3) € {—, +}3). Assume moreover that the function k in (F.25)
is supported for || < 2(&1). There exists o9 € Ry (depending on the exponent v
in (F.27)) such that the following estimates hold true for any s in R4, any test func-

tions f1, fa:

IK(fio D llas < Co 2| follmoo | fillas. (E38)

”K(fl’XL{Z)”HX + | K(xf1, 2)las + IxK(f1, f2)llas 19
< Ct%| fallmooll fillms.

K fixf2) s < €8 | fallgoo | fills. (F.40)

Proof. By (F.25), we have to prove, in order to establish (F.38), that the operator

1 1
(g1.92) > [ 1 /_ 1 / (60 k(1. 0. E1. E. jin. i) (1) (£2)~0
x g1(£1)g2(52) dé1dEr dpy dps

is bounded from L2 x L2 to L2, with operator norm O(z~% ). Because of our support
assumptions, Mo(&1,&2) < C (&), so that we may control the factor My(&;,&>) in
(F.27) by C(£&3), i.e. M will be bounded using (£,) 70 if oy is taken large enough.
Moreover, as s > 0, (§0)* (€0 — 161 — 1282) "N (§1)™° = O(1) when || < 2(&,) if
N is large enough relatively to s. The proof of (F.38) is thus reduced to the proof that
operators of the form

(F41)

1 pt
@ [ [ [ R0 b b mn @086 dé ds durdua F42
-1J-1
are bounded from L? x L? to L2, with operator norm O(t_%), if k satisfies

|k (. 0. £1. 82, 1. 112)| < C (€0 — &1 — paka) ™ (£2) 72

" ' ' ) (F.43)
x (¥ (o (50) — i11(€1) —12(62))) .
The operator norm of (F.42) is bounded from above by
1,1 . 3
C/ / (Sup/|k([,SO’SI,SZ,MI,MZNdgl dgz)
R (F44)

1
~ 2
§1.62

Notice that there is C > 0 such that for any «, 8 in R, any u € [—1, 1],

/ (12 e+ (ED)1(B + pE) " dE < Clul 3% (F45)
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uniformly in «, B. Actually, if we integrate for || > 1, we bound (F.45) by

_1 _ 2
([ e+ e 2ag)
If one takes in the above integral computed either on domain & > 1 or § < —1,
n = (&) as a new variable of integration, we get a bound by the right-hand side

of (F.45). If one integrates for || < 1 on the left-hand side of (F.45), we bound the
corresponding quantity by

/|$| ((°(a+ V11 8)) 'de < C /<a’ Loy ldr <ot
<1

which is better than the bound we want. We use (F.43) and (F.45) with £ = &, to
estimate the second factor in (F.44) by t~% and (F.45) with £ = &; to estimate the
first integral factor by 1 =% |1 |_%. We obtain that (F.44) is O (¢~ %) from which (F.38)
follows.

To get estimate (F.39), we notice that, by (F.25), K(xf1, f2) (resp. K(f1,x/2),
resp. xK(f1, f2)) may be written as K;(f1, f2) for an operator K; of the form
(F.25), obtained replacing k by D¢ k (resp. Dg,k, resp. —Dg k). Since by (F.27)
these D¢, -derivatives make lose 7 (and change the value of the exponent v), we get
(F.39) from (F.38) (with a new value of o).

One obtains (F.40) in a same way. ]

Corollary F.5.2. Let K be an element of K, ,(i) forw € [0,1], k > 0,1 € {—, +)3.

The following estimates hold true for any s > 0 and some o independent of s:
IKCfrs ) lms < Ce=2 (I fill oo ll fallars + 11 files | fall oo ). (F.46)
1K1, )Nz < €2 fill 2|l foll oo,

v (F47)
IK(f1, 22 < Ctm 2| fillmoo || f2l L2,
IKCxfr, f2)lle2 + 1K, xf2)ll2 + 1xK(f1s f2)l2
= CE | fillz2ll falleo, F43)
IK(Cxfr, f2)lle2 + 1K1, xf2)ll2 + 1xK(frs f2)l2
< Ct2| filloo |l fallL2
I K(xfr, f2)lms + 1K, xf2) s + 1xK(frs f2)llms (E49)

< Ct2 (Il filmoo | ollas + 1L fills I all o).

Proof. We may split K = K- + K-, where K. (resp. K<) is given by an expression
of the form (F.25) with k supported for |&;| < 2(&1) (resp. |&1| < 2(&)). If we apply
(F.38) to K~ and the symmetric inequality to K., we obtain (F.46).

Let us prove (F.47). It suffices to show that the two estimates hold for K. for
instance. The first one follows from (F.38) with s = 0. To get the second one, we
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notice that it is enough to establish the L2 x L? — L? boundedness of

1 1
(glag2)'_)/_l /_1k(f,50,51,52,Ml,Mz)(fl)_oogl(gl)gz(&)dél dé>dpydps

with operator norm O (¢~ %). Since |€,| < 2(&1) on the support, if o has been taken
large enough, we see that we may rewrite this under the form (F.42), with some k
fulfilling (F.43) so that the conclusion follows.

Finally, estimates (F.48) follow from (F.47), noticing that, as in the proof of (F.39),
we may reduce ourselves to operator Ki( f1, f2) satisfying the same assumptions
as K, up to the loss of a factor #“. This concludes the proof, as (F.49) follows from
(F.39) and the above decomposition K = K« + K-. ]

Corollary F.5.3. Let B > 0, K, 0¢ as in Corollary F.5.2 and take s large enough so
that (s — 09)B > 1. Then

@

IK(Lx f1. )2 < Ct= 3 (PO Ly fillpz + L fillas) | 2l iz (F.50)
I K(f1, Lt f2)ll2 < C[_%||f1||L2([ﬁUO||L:I:f2”L2 + | f2 1l as)- (E51)

Proof. Let y be in Cg°(R), y = 1 close to zero. Decompose

Lifi= P Do) (Lifi)+ 0= 0P D)(Ls fr).

Write
(1= PD)Lefi) =x0 = PDy)fi+it™ Py P D) fi
D
_ -B X
+r(1 )()(t Dx)<Dx)f1.

If one applies the second estimate in (F.47) and (F.48), one gets then
IK((1— )P Dx)L f1. o)1
= (2101 = D™ D) filloo
+ 173 (10 D) fillaeo + 111 = 0GP D) fillueo) ) foll 2

Since (s — 09)B > 1, this is bounded by Ct=% || fi |l s || f2ll 2.
On the other hand, by the second estimate (F.47)

||K(X(l_ﬂDx)Lif1,f2)||L2 <Ct7 5|yt D)L+ fillgooll f2ll 12
< Cr7 8P| Ly fill 2]l ol 2

This concludes the proof of (F.50), and thus of the corollary since (F.51) is just the
symmetric estimate. |

Let us get next some Sobolev estimates for K(L 4 f1, L+ f>).
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Corollary F.5.4. Let K be in the class X, ,(i). Assume moreover that k in (F.25) is
supported for |£1| < 2(&). Let s, 0g, B be as in Corollary F.5.3. Then, if (s —09) B > 1,
IK(Ls fi. Ls fo)llas < CE7 2| fallas (PO Lx fillpz + [ falls).  (F52)
IK(Lx f1. )llas + IK(fi. Le f)llas < CO7 2| fullas | fallas. (F53)
IKGfr. ) s + IKCfroxf)llms < Ce2 | fillas| fallas
1K fioxf)llas < CE% | fillasll fallas.

Proof. Take y in C§°(R), equal to one close to zero and write K(L+ f1, L+ f>) as
a linear combination of the four terms

(F.54)

_ -8 D=
I = tK(X(t Do)L4 fi, (Dx)f2>,

1=1K((1 = e DLs f. %fz), F55)
11 = K(x(t™?Dy) Ly f1.x12).
IV = K((1 = 0P Dy)Ls fr.xfa).
We apply (F.38) (with f; and f> exchanged since we assume here |£1] < 2(&;) on the
support instead of |&2] < 2(£1)) in order to estimate the H* norm of / by

Ct'" 3|3t P D)L filluoo |l follus < Ce' =3B Ly fill 2] follas  (F56)

which is bounded by the right-hand side of (F.52).
To study /I, we write it as a combination of terms

_ Dy Dy
IZK((I -0 ﬁDx)mfl,mfz),
(K (5= 06 Do) A D55 1)

i K (LGP D) . (ZD)—i)fz).

We estimate their H* norm using (F.38) and (F.39) (with f; and f, interchanged) by
Ct* 2| fallas (11 = )P D) fill oo + I (t77 D) fillzzoo)
< CrC % fillgs | follas.

This implies a bound by the right-hand side of (F.52) since (s — 0¢)f > 1.
By (F.39) (with f; and f> exchanged), we estimate the H* norm of /I by

Ct3 |yt Dy)Ls fillgoo |l follars

that we bound by the right-hand side of (F.52) as in (F.56) since v < 1.
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‘We write IV as a combination of terms
D
_ -B x
K (=00 Do) 5 froxf).
K(x(1= )P Dy) fi.xf2).
it_ﬂK()(’(t_ﬂDx)fl, xfz).

We estimate the H* norm of these quantities using (F.39) and (F.40) with f; and f;
interchanged. We get

Ce"*% + %) = P D) fillmeol follas
+ Ct7 PR P D) fillmoo | folls.
As (s — 09)B > w, this implies a bound by the right-hand side of (F.52). This con-
cludes the proof of (F.52)

To prove (F.53), we decompose K (L f1, f>) (resp. K( f1, L+ f2)) as the sum of

itK(% f1, f2) (resp. £tK( f1, (ll;—i>f2)) and of K(x f1, f2) (resp. K(f1,xf2))and
we apply (F.38) and (F.39) to get the conclusion.
Finally, (F.54) is just a consequence of (F.39) and (F.40). ]

We translate finally the preceding corollary when one does not make any assump-
tion of support on the frequencies.

Corollary F.5.5. Let K be in the class X, ,(i). With the notation of Corollary F.5.4,
one has the following inequalities:

(23

IK(Ls fi L f)lrs = Co' =5 (PO (1L fil 2] foll s

(F.57)
Al L s follz2) + 1 filas | ol )

and

IKCfo L f)llas + IK(Ls fi, f)lms < CO7 2| fillms |l follms,  (F58)

(with any choice of the signs * in the left and right-hand side of these inequalities).

Proof. One decomposes K = K. + K- as in the proof of Corollary F.5.2 and applies
(F.52) and (F.53). ]



