
Appendix G

Verification of Fermi’s golden rule

The goal of this Appendix is to check that Fermi’s golden rule, used in Chapter 4
(see Lemma 4.2.3 and the proof of Proposition 4.2.1) does hold. We already know
that from Kowalcyk, Martel and Muñoz, who gave a numerical verification of the
condition. We shall prove here that it may actually be checked analytically.

G.1 Reductions

We want to prove the following:

Proposition G.1.1. Let Y2 be the function defined in (4.22). Then OY2.
p
2/ ¤ 0.

Let us prove here the following reduction:

Lemma G.1.2. Define the integral
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If I ¤ 0, then OY2.
p
2/ ¤ 0.

Proof. Recall that by (4.22), Y2 is given by

Y2.x/ D b.x;Dx/
�.�.x/Y.x/2/; (G.2)

where �; Y are defined in (2.5)–(2.6) and b.x;Dx/ has been introduced in Proposi-
tion A.1.1. Since b.x;Dx/� preserves real-valued functions and odd functions, we
see that Y2 is real valued and odd. By Proposition A.1.1, W �C D c.Dx/

� ı b.x;Dx/
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(when acting on odd functions), where c.�/ has modulus one. In order to show that
OY2.
p
2/ ¤ 0, it thus suffices, according to (G.2), to prove that
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Recall that by (A.33) and (A.34),
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with, by (A.35),

 C.x; �/ D 1�>0T .�/f1.x; �/C 1�<0T .��/f2.x;��/; (G.4)

where f1; f2 are the two Jost functions introduced at the beginning of Appendix A
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and T .�/ is defined in (A.26). We thus get
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Since the transmission coefficient T .
p
2/ is non-zero, it remains to prove that if I

given by (G.1) is different from zero, the same is true for the last integral in (G.5), or
since �Y 2 is real valued, thatZ
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One checks by a direct computation that the function
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solves (A.1) with � D
p
2 and is equivalent to eix

p
2 when x goes to C1, so that is

the Jost function f1.x;
p
2/. If one plugs that value in (G.6) and uses the definition

(2.5)–(2.6) of �; Y , one obtains that (G.6) is just a non-zero multiple of (G.1). This
concludes the proof.

G.2 Proof of the non-vanishing of OY2.
p

2/

In order to prove Proposition G.1.1, it remains to show that I given by (G.1) is non-
zero. We compute explicitly this integral by residues.

Lemma G.2.1. One has
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Proof. Denote
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This is a meromorphic function on C with poles zk D i �2 .2k C 1/, k 2 Z. Let Rk

be the rectangle in the complex plane with vertices at˙k� ,˙k� C ik� for k in N�.
In order to show that
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we have to check thatZ 1
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when k goes toC1. As F.�Nz/ D �F.z/, we just have to prove
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when k !C1. As F.z/ is a sum of expressions of the form e2iz
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we obtain when 0 � t � 1, k 2 N�,
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from which (G.10) follows.
Using
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Res.G; 0/ D �2. It follows that (G.9) is given by
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whence (G.7).


