Appendix G

Verification of Fermi’s golden rule

The goal of this Appendix is to check that Fermi’s golden rule, used in Chapter 4
(see Lemma 4.2.3 and the proof of Proposition 4.2.1) does hold. We already know
that from Kowalcyk, Martel and Mufioz, who gave a numerical verification of the
condition. We shall prove here that it may actually be checked analytically.

G.1 Reductions

We want to prove the following:
Proposition G.1.1. Let Y, be the function defined in (4.22). Then Y(+/2) #0.
Let us prove here the following reduction:

Lemma G.1.2. Define the integral

. 1 : h3
I = / ez”“/i(coshzx + = —l—i«/ﬁsinhxcoshx)wdx. (G.1)
R 2 cosh’ x
If I # 0, then Y»(v/2) # 0.
Proof. Recall that by (4.22), Y5 is given by
Y2(x) = b(x. Dx)*(k(x)Y (x)?), (G.2)

where k, Y are defined in (2.5)—(2.6) and b(x, D) has been introduced in Proposi-
tion A.1.1. Since b(x, Dx)* preserves real-valued functions and odd functions, we
see that Y is real valued and odd. By Proposition A.1.1, W = ¢(Dx)* o b(x, Dx)*
(when acting on odd functions), where ¢ (&) has modulus one. In order to show that
1}2(\/5) # 0, it thus suffices, according to (G.2), to prove that

W)Y )(V2) £ 0.
Recall that by (A.33) and (A.34),
1 R
Wow = / Ve (. E(E) (G3)
T
with, by (A.35),

Y (0, 8) = Le=oT(6) f1(x.§) + Le<o T (=6) fa(x. —§). (G.4)

where fi, f> are the two Jost functions introduced at the beginning of Appendix A
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and T (§) is defined in (A.26). We thus get

WY)W = [V V@Y (@2 d
(G.5)

= T(V2) / F1(6, V2 (x)Y (x)? dx.

Since the transmission coefficient 7'(+/2) is non-zero, it remains to prove that if I
given by (G.1) is different from zero, the same is true for the last integral in (G.5), or
since kY2 is real valued, that

/ Fi(x, V2)k(x)Y (x)2 dx # 0. (G.6)
One checks by a direct computation that the function
: 1
e”‘ﬁ(l + 3 cosh_z(g) + i+/2tanh %)(1 +iv/2)7!

solves (A.1) with & = +/2 and is equivalent to e'* Y2 when x goes to 4-00, so that is
the Jost function f; (x, ~/2). If one plugs that value in (G.6) and uses the definition
(2.5)—(2.6) of k, Y, one obtains that (G.6) is just a non-zero multiple of (G.1). This
concludes the proof. ]

G.2 Proof of the non-vanishing of IA/Z(«/E)

In order to prove Proposition G.1.1, it remains to show that I given by (G.1) is non-
zero. We compute explicitly this integral by residues.

Lemma G.2.1. One has

7= 2imw G7)
sinh(r+/2) .
Proof. Denote
2iz42 5 1 . . sinh? z
F(z)=e (cosh z 4 = +i~/2sinhz cosh z)—7. (G.8)
2 cosh’ z

This is a meromorphic function on C with poles zx = i 5 (2k + 1), k € Z. Let Ry
be the rectangle in the complex plane with vertices at £k, +km + ik for k in N*,

In order to show that
+o00

I =2im ) Res(F.z) (G.9)
k=0
we have to check that

1 1
/ |F(£km + itkm)k dt — 0, / |F(thkn + ikm)lk dt — 0
0 —1
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when k goes to +00. As F(—z) = —F(z), we just have to prove

1
k/ (|F(km + itkm)| + |F(tkr + ikm)|) di — 0 (G.10)
0

2iz+/2 sinh? 2
cosh? z

when k — +00. As F(z) is a sum of expressions of the form e with p, g

in N, p < ¢, and bounding
sinh? z (1—e2%)P
(14 e22)4

< e(P_q) Rez ,

cosh? z

we obtain when 0 <r < 1,k € N*,

|F(tkm +ikm)| < e—ZkN\/E—tkn’

F(ln + ithm)| < o~2knaikr L+ €207
- (1 — e—ZkTE)q

from which (G.10) follows.
Using

cosh(zx + w) = i(=1)Fsinhw and sinh(zx + w) = i(—=1)¥ coshw,
we may write

F(zx +w) = e ™V2CAD G ),
cosh® w

.h7

; 1
G(w) = e2iv2w (— sinh® w + 3" i /2 sinh w cosh w)
sinh” w

so that Res(F, zx) = e~ "V2@k+1 Res(G, 0). One checks by direct computation that
Res(G, 0) = —2. It follows that (G.9) is given by

R k3 2in
[ = —dige ™V2Y e2mhkV2 — T 7
I; sinh(77 +/2)

whence (G.7). ]



