Chapter 1

Introduction

1.1 History of the problem

One can trace the question of quantum ergodicity back to a paper [70] of Einstein
dated 1917. At the time, quantum mechanics was still in its prehistorical age. Planck,
around 1900, was at the origin of the idea that certain physical quantities might be
quantised, that is, they take values in a discrete set. In his paper [130] about the
spectrum of the “black body”, Planck introduced the constant /; however it was for
him a mathematical artefact, without physical foundation. Einstein gave this idea a
physical reality when in 1905 he introduced the notion of quantum of energy in the
exchange of energy between light and matter: the photon [69].

This idea of discreteness was transposed by Bohr [40] in 1913 to the planetary
model of the atom. Trying to explain the discrete emission/absorption spectrum of
the hydrogen, he used the Rutherford model, where the electron gravitates around
the nucleus submitted to Coulomb attraction, and postulated the quantisation of the
kinetic momentum: it must be an integer multiple of /. This in turn implies that the
energy can only take a discrete set of values, that explains perfectly well the discrete
experimental spectrum. However, setting up quantisation rules for larger atoms turned
out to be an inextricable task [47].

The aforementioned paper [70] by Einstein is a theoretical paper, that aims at
extending the quantisation rules to systems with higher degrees of freedom. Although
not his most celebrated paper, it contains deep ideas, and a remark that can be
considered to be the starting point of a whole field of research': he first corrects
the quantisation rules given earlier by Epstein and Sommerfeld, but he notes that his
new rules only make sense if (using modern vocabulary) the system is completely
integrable, that is to say, if there exists some action/angle canonical coordinates,
where the actions are invariants of motion.” He calls such systems “Type a)”, and
at the end of the paper, he notes: “on the other hand, classical statistical mechanics
is essentially only concerned with Type b) [i.e. non-integrable systems], for in this
case the microcanonical average is the same as the time average”. The equivalence
of time average with the average over phase space is the property called ergodicity.
Einstein’s point is thus the following:

!... although the physicists who revived the subject in the 80s probably had other

motivations than Einstein’s question.
’Indeed, Einstein’s rule is that the values taken by the action variables have to be integer
multiples of 4.
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If a classical dynamical system is ergodic, the quantisation rules do not apply,
so how can we describe its spectrum?

Facing the failure to find quantisation rules even for an atom as small as the
helium, Heisenberg set up in 1925 entirely new rules of mechanics [89]. These are
based on the idea that the “observable quantities” in physics should be represented by
matrices (operators), subject to certain commutation rules. The non-commutativity
of the algebra of observables is a fundamentally new idea. The basic rule is that the
momentum observable p and the position observable ¢ must satisfy

qp — pq = ihl,

where 7 is the reduced Planck constant, # = h/2x. Time evolution is governed by the
energy observable H (Heisenberg gives a recipe to build the operator H starting from
the classical expression of energy). Any other observable A evolves in time according
to the linear equation

dA
ih—— = [A, H],
dr

where [.,.] stands for the commutator of two operators. The physical spectrum
of the system (emitted or absorbed energies) is given by the differences E, — E,,,
where (E,) are the eigenvalues of H. The notions of spectrum and of eigenvalues
thus merged.

At the same time, a concurrent theory emerged. In 1923, De Broglie had
formulated the idea of wave mechanics: in the same way as light, traditionally
considered to be a wave, was discovered to have a discrete behaviour embodied by
the photons, the particles composing matter could, in the reverse direction, also be
considered to be waves.

Schrodinger [136,137] proposed in 1926 an evolution equation for a wave/particle
of mass m evolving in a force field coming from a potential V':

inY (¢ x) = (—EA+V)W(t,x) (1.1)
ot 2m
where ¢ is time, x € R? is the position of the particle, A is the Laplacian, and
Y = ¥(t, x) is a function called the “wave function”. Equation (1.1) replaces
Newton’s law of motion in classical mechanics, m¥ = —V'(x).
The linear partial differential equation (1.1) can be solved by diagonalising the

differential operator
2

h
H=——A+YV.
2m

Assume, say, that we can find an orthonormal basis of the Hilbert space L?(R3)
consisting of functions ¢, satisfying H¢, = E,¢, with E, € R. Then the general
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solution of (1.1) is

Y(t,x) =Y cngpn(x)eEn/t

where the coefficients ¢, € C are given by the initial condition at # = 0. The physical
spectrum is again given by the differences E,, — E,.

Both the Heisenberg and the Schrodinger theories yielded correct results for
the hydrogen atom, but also for larger ones. In fact, they can be shown to be
mathematically equivalent. However, as Schrodinger wrote [138], mathematical
equivalence is not the same as physical equivalence. The “wave function” v is absent
from Heisenberg’s theory, and its physical meaning was at the heart of a tense debate.
Born gave a probabilistic interpretation (called the Copenhagen interpretation) of the
function ¥: |/ (x, t)|? represents the probability, in a measurement, to find a particle
at position x, at time 7. This was in complete disagreement with Schrodinger’s views,
but this is the interpretation that has been retained.

After 1926, Einstein’s original question may be reformulated as follows:

If a classical Hamiltonian system is ergodic, and if H is the energy operator
associated to the system by the rules of quantum mechanics, how can we
describe the eigenvalues of the operator H?

One may broaden the question by asking about the properties of the wave
functions, that is, the eigenfunctions of H, or more generally the solutions ¥ (x, ) of
the time-dependent solutions of (1.1):

How are the probability densities |\r|? localised in space?

In the mid-fifties, Wigner introduce Random Matrix Theory to deal with the
scattering spectrum of heavy nuclei. In this case, although there is no doubt about
the validity of the Schrédinger equation, it seems impossible to effectively work with
it, in view of the high number of degrees of freedom of such systems. Wigner’s
hypothesis was that the spectrum of heavy nuclei resembles, statistically, that of
certain ensembles (in the sense of statistical mechanics, meaning a probabilistic
model) of large random matrices: the Gaussian Orthogonal Ensemble or the Gaussian
Unitary Ensemble. This turned out to fit the experimental data extraordinarily well:
see illustrations in Bohigas’ paper [38].

1.2 Conjectures, scope of the book
In the 80s, numerical simulations started to reveal something unexpected: the spectral

statistics of Random Matrix Theory also seem to fit extremely well with the spectra
of certain Schrodinger operators with very few degrees of freedom; for instance, the
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hydrogen atom in a strong magnetic field, as well as some 2-dimensional billiards
(in the latter case, the classical system is just a free particle bouncing on the walls of a
closed domain, and the Schrédinger operator is the Laplacian with Dirichlet boundary
condition). See [61] for illustrations. The common point of all these examples is that
the underlying classical dynamical system is ergodic, or even chaotic — meaning
a very strong sensitivity to initial conditions. Thus, it seems that the answer to
Einstein’s question could be the following:

Random matrix conjecture (Bohigas—Giannoni—Schmit [39]). If the classical
dynamics is ergodic and sufficiently chaotic, then the spectrum of the corresponding
Schrodinger operator looks like that of a large random matrix, in one of the ensembles
introduced by Wigner.

However, this statement must be qualified:

e There is to this day no mathematical proof of this fact; the question may be
considered fully open, except for the heuristic arguments given by Sieber and
Richter [140], that seem impossible to turn into a mathematical proof.

» There are some counter-examples to this assertion, given by Luo and Sarnak
[120]; and they come from very strongly chaotic classical dynamics, so the source
of the problem does not lie there.

The counter-examples are Laplacians on arithmetic hyperbolic surfaces (such as
the modular surface); these systems are special in many ways, and thus one may
conjecture that the assertions above hold for “generic” systems, whatever that means.
But even in such a weakened form, the question is fully open.

Proving anything in the direction of the Bohigas—Giannoni—Schmit conjecture
seems out of reach today. Maybe surprisingly, it seems more tractable to say
something about the wave functions: are they localised, that is to say, confined in
a small region, or are they delocalised, meaning that they occupy all space? This will
be the main topic of this book, with a focus on delocalisation phenomena.

1.2.1 High frequency delocalisation on billiards and Riemannian manifolds

In Chapters 2 and 3, we will let (M, (., .)) be a compact smooth Riemannian mani-
fold of dimension d, and A be the Laplace-Beltrami operator on M. It is a self-
adjoint operator on the Hilbert space LZ(M, Vol), where ‘Vol’ is the Riemannian
volume measure. We may diagonalise A: it is known that there is a non-decreasing
sequence

A=0<A; <A <+ — +o0,

and an orthonormal basis (¢ )xen of L2(M, Vol), such that

A = —Ai . (1.2)
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If M has a boundary, we should impose a boundary condition, for instance the
Dirichlet condition (i.e. we ask that ¢ vanishes on dM).

We shall look at notions of delocalisation defined in the high-frequency limit
Ak — +o0. The connection with the Schrodinger equation (1.1) is that (1.2) may
be rewritten as —4A2A¢ = E¢, with Ay = E#~2. We recognise equation (1.1) with
a vanishing potential V. Many statements given in this books could be generalised
to more general operators —4#2A + V, but we will only treat the case V = 0, that
already contains all the difficulties and interesting features. If we impose that E
stays away from 0, the limit Ay — 400 is equivalent to # — 0; in this régime of
small wavelength, it is expected that quantum mechanics should converge to classical
mechanics in a certain sense. This was actually a requirement of Schrodinger [137]
when he introduced his equation.

The operator —#2A corresponds in the Schrédinger description to a particle
moving on M in absence of any external force. In classical mechanics, this
corresponds to the motion along geodesics (the geodesic flow), in other words, the
motion with zero acceleration. In the presence of a smooth boundary, the geodesics
are reflected on the boundary in the usual way. If the manifold is an open subset
of euclidean R?, the particle simply moves in straight lines with constant velocity,
and is reflected on the boundary: this dynamical system is called a billiard. The fact
that the classical motion may be chaotic comes from the curvature of M (negatively
curved manifolds are typical examples of manifolds possessing a chaotic geodesic
flow) and/or from the curvature of the boundary (piecewise concave billiards are
typically chaotic).

Figure 1.1 represents twelve eigenfunctions of the Laplacian, associated with
twelve consecutive eigenvalues, in a stadium-shaped domain, with Dirichlet boundary
conditions. We see various patterns, in particular, some eigenfunctions are localised
in the inner rectangle, whereas others seem to be spread out rather uniformly in the
whole domain. We want to understand which patterns persist in the limit Ay — +o0,
possibly by relating them to some specific properties exhibited by the classical
dynamics (here the billiard flow in a stadium-shaped domain).

One of the most natural questions that comes to mind at the sight of Figure 1.1 is:
how large can the eigenfunctions be, how strongly can they be peaked, and at what
points? This may be measured by studying the growth of the L?-norms of the
eigenfunctions for p > 2 (especially p = o0); but the results surveyed in Chapter 2
will reveal that we are technically far from being able to relate delocalisation with
chaos this way. We will quickly turn to the more adapted notion of quantum ergodicity
which will be the main subject of this book.

In physics, the probability measure |¢ (x)|?>dVol(x) gives the probability to find
the particle at x in a measurement, when the system is in the state described by the
wave function ¢. For chaotic systems, it is expected that this probability is close
to the uniform probability on M if ¢ is a stationary solution (eigenfunction) of
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Figure 1.1. Plot of |¢,, (x, y)|? for the stadium billiard with odd-odd symmetry, for consecutive
states starting from n = 319. Darker shades correspond to large values of the eigenfunctions.

Most eigenfunctions look “delocalised”, meaning that they occupy all space uniformly. But a
few of them look “localised” inside the inner rectangle. Courtesy A. Bécker

the Schrodinger equation; less ambitiously we could try to exhibit delocalisation by
showing that this measure cannot be large on “small” sets (sets of small dimension for
instance). The Quantum Ergodicity theorem gives a first and almost complete answer
in case the geodesic flow is ergodic, with respect to the Liouville measure:

Theorem 1.1 (Shnirelman [142], Zelditch [152], Colin de Verdiere [56]). Let M be
a compact Riemannian manifold without boundary, with the metric normalised so
that Vol(M) = 1. Call A the Laplace—Beltrami operator on M. Assume that the
geodesic flow of M is ergodic with respect to the Liouville measure. Let (¢g)ren be
an orthonormal basis of L>(M, g) made of eigenfunctions of the Laplacian:

A¢k = _Akﬁbka Ak < /\k-f-l — +o00.

Then there exists a subset S C N of density 1 such that the sequence of measures
(|px (x)|? dVol(x))nes converges weakly to the uniform measure dVol(x).
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The subset S C N being of density 1 means that

f(SN[0,n))

n n—+o0o

1’

for this reason it is sometimes said that Theorem 1.1 concerns “almost all” the
eigenfunctions.

Actually, the full statement of the theorem says that there exists a subset S C N
of density 1 such that

(Gr-Age) > | oP(ADdL, (13)
nes

for every pseudo-differential operator A of order 0 on M.

On the right-hand side, 0%(A) is the principal symbol of A, and &£; is the
Liouville (Lebesgue) measure on the classical phase space S* M . These notions and
a proof of Theorem 1.1 will be developed in Chapter 2.

The theorem has subsequently been extended to manifolds with boundary
[83, 154]. It applies, in particular, to the stadium billiard in Figure 1.1, since this
billiard flow has been proven by Bunimovich to be ergodic. The observation of large
samples of eigenfunctions reveals indeed that most eigenfunctions are uniformly
distributed over the stadium. However, as is already seen on the small sample of
Figure 1.1, some of them look very localised inside the rectangle, and some of them
also exhibit a mild enhancement in the neighbourhood of unstable periodic orbits, a
phenomenon called ““scarring” by physicists (Heller [91]). One may wonder whether
the full sequence converges in (1.3), without having to extract the subsequence S.
Figure 1.1 (or larger samples of eigenfunctions) suggests that this is not the case for
the stadium billiard, because we see a sparse sequence of eigenfunctions that are not
at all equidistributed: they stay inside the inner rectangle. The existence of a sparse
sequence of eigenfunctions that does not equidistribute was proven by Hassell in 2008
[87], by a non-constructive method that works for “almost all” stadium billiards
(meaning, for Lebesgue-almost-all lengths of the stadium).

On the other hand, Rudnick and Sarnak’s Quantum Unique Ergodicity (QUE)
conjecture [133] predicts the following:

(QUE) Quantum Unique Ergodicity Conjecture. If M is a compact boundaryless
manifold with negative sectional curvature, then one has convergence of the full
sequence in (1.3). In other words the whole sequence of eigenfunctions becomes
equidistributed as A — +o0.

The conjecture is open, but significant progress has been made in the last twenty
years and will be described in Chapter 3. In particular, the following is known:
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Theorem 1.2 (see [8, 13] and [64, 65]).

(1) Let M be a compact Riemannian manifold with negative sectional curvature.
Let (¢n,) be a sequence of eigenfunctions of frequency going to infinity.
Assume that for every pseudo-differential operator A of order 0 on M,
for some probability measure [,

(¢”k 1A¢nk> _— O'O(A)d/.,b
S*M

nig—>+oo

Then u has positive entropy.

(i1) Let M be a compact Riemannian manifold with negative sectional curvature
and dimension d = 2. Let (¢n, ) be a sequence of eigenfunctions of frequency
going to infinity. Assume that for every pseudo-differential operator A of
order 0 on M, for some probability measure [,

(¢nk ’Ad)nk) > O'O(A)d,bb
ng—>+0o Je* s
Then w has full support, i.e. u(2) > 0 for any non-empty open subset
QCS*M.

Both results imply that p cannot be a singular measure supported on a closed
geodesic. Note that the (QUE) conjecture would consist in proving that p is
necessarily the Liouville measure £;.

Besides the Random Matrix conjecture and the Quantum Unique Ergodicity
conjecture, another central question is the following:

Random Wave Conjecture (Berry [33]). If the classical dynamics is chaotic, then
the values of ¢ (x), when x belongs to a ball B(xo, RA™'/2) of radius RA~'/2, follow
approximately the distribution of a Gaussian process, for R fixed arbitrary and in the
limit A — +o0.

This conjecture is fully open, and its mathematical formulation itself is a subject
of debate. Here we propose an interpretation where the eigenfunctions are submitted
to a local zoom of magnitude A!/2, in order to rescale the wavelength from A~1/2 to
1. After the recent work of Backhausz—Szegedy for the discrete Laplacian on regular
graphs [22], it was suggested in [2,93] that one should choose the point x¢ uniformly
at random in the Berry conjecture. One may consider the work of Backhausz—Szegedy
to prove the Berry conjecture for large regular graphs chosen at random; but this again
can be debated, since in their work there is extra randomness in the geometry itself.
The reader can learn more about this in Chapter 7; we think this result is a sign among
many others that it is instructive to turn to discrete graph models to gain some insight
into the conjectures of quantum chaos.
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1.2.2 Delocalisation on large graphs

Understanding the validity and the universality of the conjectures above is one
amongst many reasons for studying toy models. Toy models are supposed to be
simpler, either because explicit calculations of the spectrum and eigenfunctions may
be derived, or because numerical simulations are easier. Toy models often have some
built-in discreteness, for instance they can be Schrodinger operators defined on a
finite-dimensional Hilbert space, and the semiclassical limit # — 0 means that the
dimension of this Hilbert space tends to +oo.

Schrodinger operators defined on graphs are natural toy models. Originally,
models of quantum graphs were studied. By this, we mean 1-dimensional CW-
complexes with A = d?/dx? on the edges and suitable matching conditions on
the vertices. See [30,32,57,84,99, 100, 108, 109]. However, in this book we focus on
discrete graphs and the eigenfunctions of their adjacency operators. We consider finite
graphs of bounded valency, in the limit where the number of vertices go to infinity
(large scale limit). For such toy models, we deal only with (bounded) operators on
finite dimensional spaces, which avoids any difficulty from functional analysis.

Recently and in various contexts, the question of delocalisation of eigenfunctions
of the adjacency matrix of large graphs, or more generally, of large matrices has been
a subject of intense activity. Let us mention several ways of testing delocalisation that
have been used. Let My be a large symmetric matrix of size N x N, and let (¢; )jl-\’:1
be an orthonormal basis of eigenfunctions.

The eigenfunction ¢; defines on the set {1, ..., N } a probability measure

N
> (9500 8.
x=1

The goal is to compare this probability measure with the uniform measure, which puts
mass 1/N on each point. The question is considered in the asymptotic régime N —
+oo. We will say that the eigenfunction ¢; is delocalised if the associated probability
measure is close to being uniform, localised otherwise. We may use various criteria:

*  {* norms — Can we have a pointwise upper bound on |¢; (x)|, in other words, is
|4/ |oc small, and how small compared with 1/ VN?

*  £? norms — Can we compare ||¢; ||, with N/2=1/22 In [60], a state ¢; is called

non-ergodic (and multi-fractal) if ||¢; ||, behaves like N7 with f(p) # %—%.

* Scarring (We borrow the term “scarring” from the term coined by Heller
[91] in the theory of quantum chaos.) — Can we have full concentration

(X rea 19 (X)|> = 1 — &) or partial concentration (), ., |¢;j(x)[*> > ¢) on a
set A C {l..., N} of “small” cardinality?

*  Quantum ergodicity — Given a function a : {1,..., N} — C, can we compare
3 a(x)|¢;(x)* with % >, a(x)? This criterion is borrowed again from
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quantum chaos, it is inspired from the Shnirelman Theorem 1.1. It was applied to
discrete regular graphs in [9,10]. Quantum ergodicity means that the two averages
are close for most j. If they are close for all j, one may speak of quantum unique
ergodicity, in analogy with the QUE conjecture.

We will be considering the case where the matrix My in question is the adjacency
matrix of a graph with N vertices. We will consider a sequence of graphs

(Gn) = (VN. EN)

with |Vx| = N, denote its adjacency matrix by 4 y, and we shall be interested in its

eigenvectors (q’)fN), ey ¢I(VN)). Chapter 4 will be dedicated to proving the following
theorem, reminiscent of Theorem 1.1. There we focus on regular graphs of fixed

degrees (i.e. for which each point has the same number (¢ + 1) of neighbours), but
will also extend the result to non-regular graphs in Chapter 6.

Theorem 1.3 (Anantharaman—Le Masson [10]). Let
(Gn) = (VN, En)

be a sequence of (q + 1)-regular graphs with | Vx| = N. Denote by Ay the adjacency
matrix of Gy . Assume that (Gy) has few short cycles and forms an expander family.
Let (¢§N), e ¢1(VN)) be an orthonormal basis of eigenfunctions of Ay in £2(Vy).
Letay : V — C be a sequence of functions such that

sup sup |aN(x)} <1.
xeVy

Define
(an) = % > an ().

xeVy

Then for any € > 0,

Sl en

Note that

(V) (N)
(6", and; )Z2(VN)_(aN)| >8} o 0. (1.4)

(8" andf )y = 3 av @l @P,

xeVy

The interpretation of Theorem 1.3 is that we are trying to measure the distance
between the two probability measures on Vy,

1
Z |¢;N)(x)|28x and v Z 8x (uniform measure)
xe€Vy xXe€VN

in a rather weak sense, namely, by testing only one function ay against both. What
(1.4) tells us is that for large N and for most indices j, this distance is small.
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The following gives a delocalisation result valid for all eigenfunctions, under
slightly different assumptions (see Theorem 4.4 for a precise statement):

Theorem 1.4 (Brooks—Lindenstrauss [54]). Let
(Gn) = (VN, En)

be a sequence of (q + 1)-regular graphs with |V | = N. Denote by Ay the adjacency
matrix of Gy. Assume Gy has few cycles of length < clog N. Let ¢ > 0. Then, for
any {?-normalised eigenfunction ¢ on Gy, for any B C Vy, we have

S|P =e = tB>N°

X€EB
with § > 0, explicit in terms of ¢ and e.

A proof of those two theorems is sketched in Chapter 4. An extension to non-
regular graphs is discussed in Chapter 6, with a quite different proof. In Chapter 5,
we describe a paper by Brooks—Le Masson-Lindenstrauss that uses ideas coming
from graphs to study Arithmetic Quantum Ergodicity on the sphere.

1.2.3 Delocalisation on random graphs

Theorem 1.3 is about deterministic sequences of graphs satisfying certain geometric
assumptions (expansion and few short cycles, see assumptions (EXP) and (BST) in
Section 4.1). In the past years, there has been tremendous interest in spectral statistics
and delocalisation of eigenfunctions of random sequences of graphs and Schrodinger
operators. Many papers consider random regular graphs, with degree going slowly to
infinity [23,25,63, 150] or fixed [24, 82], sometimes adding a random i.i.d. potential
[82]. As was demonstrated in a recent series of papers by Yau, Erdds, Schlein,
Knowles, Bourgade, Bauerschmidt, Yin, Huang, adding some randomness may allow
to understand completely the delocalisation of eigenfunctions, at the expense of
replacing results valid for all graphs by results holding for almost all graphs. These
authors proved almost sure optimal £°°-bounds and quantum unique ergodicity for
various models of random matrices and random graphs [23-25,48,73-75].

Here again we focus on regular graphs. A (labelled) random regular graph on N
vertices is produced as follows: given the vertex set {1,..., N}, consider all the
ways to draw edges between those vertices, that produce a (¢ + 1)-regular graph
(without self-loops and multiple edges); note that (¢ + 1) N has to be an even integer.
Then pick a graph at random for the uniform probability measure on all possible
configurations.

The recent papers [23-25] show probabilistic quantum unique ergodicity for
the adjacency matrix of random regular graphs, in the following sense: given an
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observable
an . {1,...,N} —- R,

for most (¢ + 1)-regular graphs on the vertices {1, ..., N} we have that

N
Y av@)|¢M ) [

x=1
is close to {ay) for all indices j, with an excellent control of the remainder term:
Theorem 1.5 (Bauerschmidt—-Huang—Yau [24]). Let w be such that
V7 > (o + 1)2297%,
(i) With probability > 1 — o(N~°*8) on the choice of the graph,
(log N)!2!
VN

for all eigenfunctions associated to eigenvalues such that |A; £2./q | >
(log N)~3/2,

(1) (Quantum Unique Ergodicity for random regular graphs) — Given an ob-
servable ay : {1,..., N} = R, we have, with probability > 1 — o(N~2T8)
on the choice of the graph, for N large enough,

h)lloo <

N 250
S av ) [60 @ fax) | < EV (S fav 0 ) 7 )
x=1 x

for all eigenfunctions associated to eigenvalues A; € (—2./q + €,2./q — ¢€)
(bulk eigenvalues). In particular, if ay = 1p, where Ay C{l,...,N}, we
find

A 1 N250
| I wp -] < T viRy

xeAy

Note by the way that the condition @ > 8, necessary for the remainder o(N ~©*8)
to be small, implies that ¢ > 21?2, although the result is expected to hold as soon as
the valency g + 1 is greater than 3.

The conclusion (1.5) holds for all the bulk eigenvalues — hence the name (QUE)
— but for almost all graphs. This is to be compared to Theorem 1.3, that gave
information for all graphs but only almost all eigenvalues. If we are given a
deterministic sequence of regular graphs (for instance, say, the Lubotzky—Phillips—
Sarnak Ramanujan graphs [119]), we do not know if Theorem 1.5 applies to it, as it
is an almost sure conclusion.
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Note that we emphasised Theorem 1.5 from [24] because our main concern is
the delocalisation of eigenfunctions. The main focus of [23, 24] is however on the
universality of the local spectral statistics for random regular graphs. If the valency ¢
grows mildly with N, [23] proves that the spacing between eigenvalues obeys the
same statistics as Wigner matrices; this is believed to be true also for fixed g (see
numerical experiments in [94, 110, 126, 149]).

The recent paper [22] by Backhausz and Szegedy may be interpreted as almost
completely settling the Berry conjecture transposed to the case of random regular
graphs. Their result says that for almost all random regular graphs Gy on N vertices,
and all eigenvectors qﬁj(.N)s, the value distribution of N ¢;(x) as x runs over
{1,..., N} is close to some Gaussian N (0, 0?) with 0 < 0; < 1. Proving that
o; = 1, or even just that o; # 0, is still a challenge; it would amount to proving that
eigenfunctions cannot put a fixed positive mass on any set of vertices of size o(N).
Such a statement is unfortunately not provided by Theorems 1.3 nor 1.5. This result
by Backhausz and Szegedy is the object of our last Chapter 7. I see the results of
Chapter 7 as an invitation to introduce, in more diverse contexts, some randomness
in the model to make progress on the relation between geometry and eigenfunction
(de)localisation.



