
Introduction

This book is based on Nachdiplom lectures at the ETH Zurich in Spring 2018. The
general context for these lectures is the study of derived categories of coherent
sheaves on algebraic varieties. These categories can be viewed as refining various
cohomological invariants such as de Rham cohomology or Chow groups. While a lot
of interesting questions can be asked viewing derived categories as triangulated cat-
egories, in many recent studies one has to pay attention to the natural enhancement
of this structure, which can be understood as that of a dg-category or of an A1-
category. A more specific motivation for us is to study examples in which, looking at
A1-structures, one gets some information about the moduli spaces. One can say that
in some examples, associating an A1-structure to a derived category can be viewed
as a kind of algebraic period map.

Derived categories of algebraic varieties first appeared in Grothendieck’s school
in connection with duality theory. The next chapter in their study began with two
discoveries due to Beilinson and Mukai: that the derived category of coherent sheaves
on a projective variety can be “affine”, i.e., described by the endomorphism algebra of
one object; and that derived categories of nonisomorphic varieties can be equivalent.
In the course of developing these ideas, it was realized early on that the axiomatics
of triangulated categories is somewhat deficient, e.g., since it does not give functorial
cones of morphisms. The works of Bondal–Kapranov [9] and later Toën [77] gave
frameworks for working on the enhanced level, i.e., with dg-categories.

Another impetus for the theory of derived categories came from homological
mirror symmetry proposed by Kontsevich, which states that when W and M are mir-
ror dual CY-varieties then Db Coh.W / should be equivalent to the Fukaya category
of M . The latter category is naturally defined as an A1-category, so developing this
picture requires looking atA1-structures associated with derived categories of coher-
ent sheaves.

The formalism of A1-algebras (aka strong homotopy algebras) is recalled in
Chapter 1. The reader is also referred to the excellent introductory paper by Keller
[29]. Note that A1-algebras can be viewed as generalizations of dg-algebras. They
also have a differential m1 of degree 1, a double product m2 satisfying the Leibniz
rule with respect to m1. However, m2 is not required to be associative: instead there
is a triple product m3 of degree �1, measuring the defect of the associativity of m2.
Furthermore, one has higher products mn, for n � 3, satisfying higher associativity
constraints.

There is an important construction, the so-called homological perturbation lem-
ma, that produces an A1-structure on the cohomology of a dg-algebra (say, over
a field) in a way generalizing Massey products. The obtained A1-structures are
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minimal in the sense that the corresponding differential m1 is zero. The downside is
that the construction depends on some choices, so the resulting structure is not canon-
ical: it is only canonical up to an equivalence of A1-algebras. This means that one
has to study the notion of equivalences of A1-structures, which can be expressed in
terms of an action of an infinite-dimensional gauge group. One may wonder, whether
replacing dg-algebras with the corresponding minimal A1-structure is worth the
trouble. The goal of these notes is to show that at least in some examples coming
from geometry, minimal A1-structures seem to package the information about the
equivalence class of a dg-algebra in a more succinct way.

According to a result of Bondal–van den Bergh and of Kontsevich (see [8]), the
derived category of a quasi-projective variety is generated by a single objectG (which
can be chosen to be a vector bundle). This implies that the entire derived category is
recovered from the dg-algebra of endomorphisms of G (and hence, from the corre-
spondingA1-algebra structure on Ext�.G;G/). For example, on an irreducible curve
one can takeGDO˚L, whereL is a line bundle of positive degree, orGDO˚Op ,
where p is a smooth point.

Given a projective scheme X , one can start with a nice generator of Db Coh.X/,
then compute the associated A1-algebra, and then study the corresponding moduli
space of A1-algebras. The hope is that there will only be a finite amount of data on
which this A1-algebra will depend, so that we will get some affine scheme of finite
type with a reductive group action. Then the corresponding geometric invariant theory
(GIT) picture will provide notions of stability and modular compactifications for the
moduli of X . We will implement this scheme in the case when X is a reduced projec-
tive curve. In fact, we establish an isomorphism between appropriate moduli spaces
of curves and moduli spaces of minimal A1-structures on a given finite-dimensional
associative algebra (for genus 1, such an isomorphism was first established in the
work of Lekili–Perutz [34]).

Note that studying general moduli spaces of A1-structures is quite difficult. We
make first steps in developing the theory of such moduli spaces. Namely, in Chapter 2
we prove a general representability theorem, which establishes the representability of
the functor of gauge equivalence classes of minimal A1-structures on a fixed asso-
ciative algebra A, assuming the vanishing of certain components of the Hochschild
cohomology of A.

This result turns out to be sufficient for the example arising by considering cer-
tain special generators of the derived categories of projective curves. Namely, for
a reduced projective curve C of arithmetic genus g, with smooth distinct points
p1; : : : ; pg , such that H 1.C;O.p1 C � � � C pg// D 0, one can consider the algebra
E D Ext�.G;G/, for

G D OC ˚Op1 ˚ � � � ˚Opg :
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It turns out that up to an isomorphism, the algebra E does not depend on the curve C ,
but only on the genus g. Furthermore, in Chapter 3 we show that the moduli space of
minimal A1-structures on E is an affine scheme of finite type, which is isomorphic
to the appropriate moduli space of curves (in addition to the marked points, one has
to fix nonzero tangent vectors at them to get an identification of Ext�.G; G/ with a
fixed algebra). We also generalize this result to the case of n � g marked points.

The fact that every minimal A1-structure on some algebra comes from the de-
rived category of coherent sheaves on some variety can help to establish homological
mirror symmetry in some cases. In Section 20.3 we will consider one simple example
giving a characterization of the A1-structures arising from nodal curves of arith-
metic genus 1 (which was used in [35] to prove homological mirror symmetry for
n-punctured tori).

Philosophically, A1-algebras belong to the world of noncommutative geometry,
so associating with a variety the corresponding A1-algebra describing its derived
category should be viewed as embedding some commutative moduli problem into
a noncommutative one. Thus, the above isomorphism of the moduli spaces in the
case of curves is somewhat of an exception. In fact, taking other types of genera-
tors in derived categories of coherent sheaves on curves leads to moduli spaces that
cannot be identified with some purely commutative moduli problem. One such exam-
ple is considered in Chapter 4. Namely, if we take the generator G D OC ˚ L on
an elliptic curve C , where L is a line bundle of degree n, then the corresponding
Ext-algebra Ext�.G; G/ does not depend on the curve. However, in general, not all
minimal A1-structures on this algebra come from elliptic curves or their degenera-
tions. In Chapter 4 we reformulate this problem as classification of pairs of so-called
1-spherical objects in 1-Calabi–Yau categories and study the corresponding mod-
uli problem. It turns out that the corresponding moduli space is isomorphic to the
moduli spaces parametrizing curves equipped with noncommutative orders of cer-
tain type. Another interesting connection is that the same moduli space (with the
additional constraint of cyclicity) describes solutions of the associative Yang–Baxter
equation (AYBE), an equation closely related to the much-studied classical and quan-
tum Yang–Baxter equations.

There are many interesting topics related toA1-structures and moduli spaces that
are not covered in these notes. For example, they provide a natural framework for
studying noncommutative moduli spaces of objects in derived categories, in particu-
lar, they help to understand noncommutative thickenings of moduli spaces of vector
bundles. Another interesting direction is noncommutative Hodge theory for smooth
and proper A1-algebras. In a more abstract direction related to Chapter 2, one can
study moduli spaces of A1-modules over A1-algebras. In particular, in the context
of Chapter 3 one expects that the curve can be recovered from the corresponding
A1-algebra as the appropriate moduli space of A1-modules.
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