
Chapter 1

Introduction

1.1 Background

In the last decades, we have been witnessing a growing and fruitful interaction be-
tween theoretical physics and various branches of geometry, leading to new develop-
ments in both disciplines. Enumerative geometry – an old subject and an active field
in the 19th century – has been revolutionized by new ideas from the physics of string
theory. After the categorical axiomatization of physical theories of quantum fields
[4, 5, 72], the emergence of new mathematical objects was noticed. In such an inspir-
ing context, rich structures known as Frobenius manifolds naturally arise, together
with the construction of several invariants of symplectic and algebraic varieties.

The notion of Frobenius manifolds was introduced by B. Dubrovin, who first rec-
ognized its emergence in the study of classification of two-dimensional topological
field theories [29–31]. A Frobenius manifold consists1 of a complex manifold M
whose tangent spaces admit an associative, commutative, and unital algebra structure
.TpM; ıp/, holomorphically depending on the point p 2M . The structure is further
enriched with a non-degenerate symmetric bilinear form �, whose Levi-Civita con-
nection is flat, and which is compatible with the product, that is,

�.Y ıW;Z/ D �.Y;W ıZ/

for any local vector fields Y;W;Z on M . This condition makes .TpM; ıp; �p/p2M
a family of Frobenius algebras. Pretty soon, it was understood that Frobenius man-
ifolds are a unifying notion in mathematics. These structures play a central role in
mirror symmetry, theory of unfolding spaces of singularities, and enumerative geome-
try [48,61,71]. Remarkably enough, results proved for classes of Frobenius manifolds
emerging in a certain mathematical theory turn out to be valid in general. This uni-
versality of Frobenius manifolds usually leads to unexpected connections between
the aforementioned mathematical theories [33].

Quantum cohomology, introduced by E. Witten [79] and C. Vafa [77] in their
study of topological non-linear sigma model, is one of the most interesting example
of Frobenius manifold, associated with any complex smooth projective variety X , or
a more general compact symplectic manifold [30, 58, 61]. From the physical point
of view, the space X is the target of two-dimensional fields, and the Frobenius alge-
bras that arise are a highly non-linear deformation of the classical cohomological

1Precise definitions will be given in the main body of the paper.
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ring H �.X;C/. If the classical cohomology ring of a variety encodes information
about the intersections of its subvarieties, the non-functorial construction of quan-
tum cohomology is an instrument to understand how they are related by rational
(or, in the general symplectic case, pseudo-holomorphic) curves. This information
is codified in the Gromov–Witten invariants [45, 79, 80], used to define the quan-
tum perturbation of the product. Gromov–Witten invariants count curves on X : for
each ˇ 2 H2.X;Z/=torsion, and cycles Z1; : : : ; Zn � X in general position, the
Gromov–Witten invariant2

hPD.Z1/; : : : ;PD.Zn/iXg;n;ˇ 2 Q

heuristically equals the number of curves C � X , of genus g, with homology class
ŒC � D ˇ, and intersecting all the cycles Zi . Consider the generating function

FX0 ./ D

1X
nD0

X
ˇ

1

nŠ
h; : : : ;„ ƒ‚ …
n times

i
X
0;n;ˇ ;  2 H �.X;C/;

of genus 0 Gromov–Witten invariants of X , and assume that this sum is convergent
on a non-empty domain � � H �.X;C/. The quantum cohomology QH �.X/ is the
Frobenius manifold structure on �, the flat metric � being given by the Poincaré
pairing

�.Y;W / WD

Z
X

Y [W

for any local vector fields3 Y;W on �, and the product Y ıW of vector fields being
defined by the identity

�.Y ıW;Z/ D .Y WZ/FX0

for arbitrary flat local vector fields Y;W;Z on �.

1.2 The main problem

At the core of the analytic theory of Frobenius manifolds, there is the local identifica-
tion of semisimple4 points p 2M with the parameters of isomonodromic deforma-
tions of ordinary differential equations with rational coefficients. Such an identifica-
tion – one of the main points of the theory of Dubrovin – was originally established
in [30–32], and subsequently extended in [22–25].

2Here PD.˛/ denotes the Poincaré dual class of ˛.
3The tangent space Tp� is canonically identified with H�.X;C/ for any p 2 �. Thus the

[-product Y [W of local vector fields is well defined.
4A point p 2M is semisimple if the Frobenius algebra .TpM; ıp; �p/ is with no nilpotents.
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In this paper, we mainly consider the example of analytic Frobenius manifolds
given by the quantum cohomology QH �.X/ of a complex smooth projective vari-
etyX , see [30,58,61]. In such a case, points p 2 QH �.X/ are parameters of isomon-
odromic deformations of a linear system of differential equations of the form

@

@z
�.z; p/ D

�
U.p/C

1

z
�.p/

�
�.z; p/: (1.2.1)

Here � is a z-dependent vector field ofQH �.X/, whereas U and � are .1; 1/-tensors
on QH �.X/: the first5 is the operator of quantum multiplication by the Euler vector
field –a distinguished vector field on QH �.X/ which equals the first Chern class
c1.X/ along the locus of small quantum cohomology – the second, called grading
operator, keeps track of the non-vanishing degrees of H �.X;C/.

Equation (1.2.1) is a rich object associated with the variety X : it encapsulates
information not only about its Gromov–Witten theory, but also (conjecturally) about
its topology, its algebraic geometry, and their mutual relations. The study of the mon-
odromy of solutions of (1.2.1) is the way to disclose such an amount of information,
see [21, 31, 36]. In this paper we address the following:

Main Problem. Find integral representations of solutions of (1.2.1) for Fano com-
plete intersections in Fano varieties.

We split the main problem into two parts:

(1) reduce the system of differential equations (1.2.1) to a distinguished scalar
linear differential equation, the master differential equation,

(2) find integral representations of solutions of master differential equations.

The study of these questions leads us to introduce some relevant notions, both in
the analytic theory of Frobenius manifolds and in the theory of integral transforms.
The first three ingredients are the notions of cyclic stratum, master differential equa-
tions and master functions of a Frobenius manifold. The second new analytical tool
is a pair of integral multilinear transforms of functions, that we call Borel–Laplace
.˛;ˇ/-multitransforms. We are going to briefly outline these objects.

1.3 Master functions and master differential equations

The rich geometry of a Frobenius manifold M is (almost) completely encoded in
integrability conditions of the extended deformed connection or first structural con-
nection ofM (see [30,32,61]). This is a flat meromorphic connection yr defined on the
pullback ��TM of the tangent bundle ofM on the extended manifold yM WDC��M ,

5Precise definitions will be given in the main body of the paper.
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by the natural projection � W yM !M . Equation (1.2.1) is equivalent to the equation

yr @
@z
� D 0; � 2 �.��T �M/; (1.3.1)

the one-form � and the vector field � being identified via a flat metric � on M . We
call master function at p 2M any function6 ˆ� 2 O.fC�/ of the form

ˆ�.z/ D z
�d2 h�.z; p/; e.p/i;

where � is as in (1.3.1), and d is the charge of the Frobenius manifold M .
In the first part of the paper, we address the problem of reducing the system of dif-

ferential equations (1.3.1) to a scalar differential equation, whose coefficients depend
on the point p 2M . This is a well-known problem in the theory of ordinary differ-
ential equations, equivalent to the choice of a cyclic vector [28, Lemma II.1.3]. On
Frobenius manifold, however, we have a natural candidate, namely the unit vector
field e 2 �.TM/.

In Chapter 2 we introduce the cyclic stratum yM cyc � yM defined as the set of
points .z; p/ at which the iterated covariant derivatives

e; yr @
@z
e; yr2@

@z

e; : : : ; yrn�1@
@z

e; n WD dimC M; (1.3.2)

define a basis of the fiber ��TM j.z;p/. The complement of yM cyc in P1 �M admits
a natural stratification, whose study is addressed in Section 2.6. A particular role is
played by the Aƒ-stratum of M , defined as the set of points p 2M such that

C� � ¹pº � yM n yM cyc:

Introducing the cyclic coframe !0; : : : ; !n�1 2 �.��T �M/ as the dual frame of the
iterated covariant derivatives (1.3.2), the system of differential equations (1.3.1), spe-
cialized at points p 2M nAƒ, reduces to a scalar differential equation – the master
differential equation – in the function h�; ei. Hence, at points p 2M nAƒ, we obtain
a one-to-one correspondence

¹Solutions � of system (1.3.1) specialized at pº” ¹Master functions ˆ� at pº:

See Theorems 2.7.4 and 2.7.6. Thus, if integral representations for a basis of master
functions are found, the main problem is solved at points in M nAƒ.

Some motivational comments for introducing these new tools are in order. The
notions of master functions and master differential equations define analogs, for an
arbitrary Frobenius manifold, of well-known objects in Gromov–Witten and quantum
cohomology theories. Namely, in the case of quantum cohomology the components of
Givental’s J -function (with respect to an arbitrary cohomology basis) define a gen-

6Here fC� denotes the universal cover of C�.
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erating set of master functions. Moreover, the master differential equation is (up to
re-scaling of the unknown function) a quantum differential equation as defined, e.g.,
in [27, Section 10.3], see Chapter 5. In our opinion the concepts of cyclic stratum,
master functions, and master differential equations may represent relevant notions
in the analytic theory of Frobenius manifolds. For example, any contingent relations
with the geometry of distinguished subsets of Frobenius manifolds (e.g., bifurcation
diagram, Maxwell stratum, caustic) deserve further investigations. In that regard, it
would be interesting to study relations with results of [22,23], concerning the isomon-
odromic description of Frobenius manifolds at semisimple coalescing points. This
point will be addressed in a future publication.

1.4 Borel–Laplace multitransforms

In Chapter 6, we introduce a pair of multilinear transforms in both a formal and an
analytical setting.

For h 2 N�, and a given h-tuple � 2 .C�/h, we introduce a ring F�.A/ of
Ribenboim generalized power series [68, 69] with both coefficients and exponents in
a finite-dimensional, commutative, associative, and unitary C-algebra A. The num-
bers �i play a role of “weights” for the exponents of the power series. In such a formal
setting, given ˛;ˇ 2 .C�/h, we introduce the Borel–Laplace .˛;ˇ/-multitransforms
as two A-multilinear maps rescaling the weights

B˛;ˇW

hO
jD1

F�j .A/!F
˛�1�ˇ�1��

.A/; ˛�1 � ˇ�1 � � WD

�
�1

˛1ˇ1
; : : : ;

�h

˛hˇh

�
;

L˛;ˇW

hO
jD1

F�j .A/!F˛�ˇ��.A/; ˛ � ˇ � � WD .˛1ˇ1�1; : : : ; ˛hˇh�h/:

See Sections 6.2 and 6.3 for precise definitions.
In the analytical setting, given h functions ˆ1; : : : ; ˆhWfC� ! A, we define their

Borel–Laplace .˛;ˇ/-multitransforms by

B˛;ˇŒˆ1; : : : ; ˆh�.z/ WD
1

2�i

Z


hY
jD1

ĵ

�
z

1

j̨ ǰ �� ǰ
�
e�
d�

�
;

L˛;ˇŒˆ1; : : : ; ˆh�.z/ WD

Z 1
0

hY
iD1

ˆi .z
˛iˇi�ˇi /e�� d�;

provided that the integrals exist. The contour  is a Hankel-type contour beginning
from �1, circling the origin once in the positive direction, and returning to �1 (see
Figure 6.1).
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1.5 Main results

Consider a Fano smooth projective variety X , and let �WY ! X be a Fano subvariety
defined as the zero locus of a regular section of a vector bundle E ! X . The clas-
sical cohomology groups H k.Y;C/ can be (partially) recovered by the cohomology
groupsH k.X;C/ by the Lefschetz hyperplane theorem. The quantum Lefschetz the-
orem is a quantum improvement of the classical result: it describes how to reconstruct
the Gromov–Witten theory of Y starting from the Gromov–Witten theory of X (see
[15, 17, 60]).

In this paper, by using the quantum Lefschetz theorem, we give explicit integral
representations of master functions of Y in terms of Laplace .˛;ˇ/-multitransforms
of master functions of the ambient space X under the following assumptions on X
and E:

Case 1. We assume that E is a direct sum of fractional powers of the determinant
bundle detTX of X .

Case 2. We assume that X D X1 � � � � �Xh is a product of Fano varieties Xi , and
that E is the external tensor product of fractional powers of the determinant bundles
detTXi .

Our first main result concerns Case 1. Our Theorem 7.2.1 asserts that any master
function of Y , at points ��ı 2 H 2.Y;C/ of its small quantum cohomology, can be
expressed in terms of iterated Laplace .˛; ˇ/-transforms (simple transforms of a sin-
gle function) of master functions of X at the point ı 2 H 2.X;C/. More precisely,
if E D

Lr
jD1L

˝dj , and detTX D L` for an ample line bundle L, then any master
function of Y at ��ı is a C-linear combination of integrals of the form

e�cızL `�
Ps
iD1

di
ds

; ds

`�
Ps�1
iD1

di

ı � � � ıL `�d1�d2
d2

;
d2
`�d1

ıL `�d1
d1

;
d1
`

Œˆ�

D e�cız
Z 1
0

: : :

Z 1
0

ˆ

 
z
`�

Pr
jD1

dj

`

rY
iD1

�
di
`

i

!
e�

Pr
iD1 �i d�1 : : : d�r ;

where ˆ is a master function of X at ı, and cı 2 C is a complex number depending
on ı.

Our second main result concerns Case 2. In particular, Theorem 7.3.1 asserts that
any master function of Y , at points ��ı 2 H 2.Y;C/ of the small quantum locus, can
be expressed in terms of Laplace .˛;ˇ/-multitransforms of master functions of Xj at
the point ıj 2 H 2.X;C/, where

ı D

hX
jD1

1˝ � � � ˝ ıj ˝ � � � ˝ 1:
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More precisely, if E D �hjD1L
˝dj
j and detTXj D L j̀

j for ample line bundles Lj ,
any master function of Y at ��ı is a C-linear combination of integrals of the form

e�cızL˛;ˇŒˆ1; : : : ; ˆh�.z/ D e
�cız

Z 1
0

hY
jD1

ĵ

�
z
j̀�dj

j̀ �

dj

j̀

�
e�� d�;

where .˛;ˇ/ D . `1�d1
d1

; : : : ; `h�dh
dh
I
d1
`1
; : : : ; dh

`h
/, ĵ is a master function of Xj at ıj ,

and cı 2 C is a complex number depending on ı.
Assumptions of Cases 1 and 2 are clearly satisfied when the varieties X and Xj

have Picard rank one. Therefore, Theorems 7.2.1 and 7.3.1 can be applied to all Fano
complete intersections in Pn and Fano hypersurfaces in products of projective spaces,
in order to obtain explicit Mellin–Barnes integral representations of master functions.
In particular, if Y � Pn�1 is a Fano complete intersection defined by homogeneous
polynomials of degrees d1; : : : ; dh, our Theorem 7.4.1 asserts that any master func-
tion of Y at 0 2 H �.Y;C/ is a linear combination of one-dimensional Mellin–Barnes
integrals (j D 0; : : : ; n � 1)

Gj .z/ WD
e�cz

2�
p
�1

Z


�.s/n
hY
kD1

�.1 � dks/z
�.n�

Ph
kD1 dk/s'j .s/ ds;

where c 2 Q,  is a parabola (of the form Re s D ��1.Im s/2 C �2, for suitable
�1; �2 2 RC) encircling the poles of the factor �.s/n and separating them from the
poles of the factors �.1 � dks/, and the function 'j .s/ are defined by

'j .s/ WD

´
exp.2�

p
�1js/; n even,

exp.2�
p
�1js C �

p
�1s/; n odd:

In the case of a Fano hypersurface Y � Pn1�1 � � � � � Pnh�1 defined by a homoge-
neous polynomial of multi-degree .d1; : : : ; dh/, then our Theorem 7.4.2 asserts that
any master function of Y at 0 2 H �.Y;C/ is a linear combination of the h-dimen-
sional Mellin–Barnes integrals (j D 0; : : : ; n � 1)

Hj .z/ WD
e�cz

.2�
p
�1/h

Z
�i

"
hY
iD1

�.si /
ni'iji .si /

#
�

 
1 �

hX
iD1

disi

!
� z�

Ph
iD1.ni�di /si ds1 : : : dsh;

where c 2 Q, i are parabolas (of the form Re si D ��1;i .Im si /
2 C �2;i , for suitable

�1;i ; �2;i 2 RC) encircling the poles of the factors �.si /ni , and the functions 'iji .si /
are defined by

'iji .si / WD

´
exp.2�

p
�1jisi /; ni even;

exp.2�
p
�1jisi C �

p
�1si /; ni odd;

for any h-tuple j D .j1; : : : ; jh/ with 0 6 jh 6 ni � 1.
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Some comments are in order. Given a Fano variety X , Mirror Symmetry pro-
vides other kinds of integral representations of solutions of equation (1.3.1).7 These
are complex oscillating integrals associated with the Landau–Ginzburg models mir-
ror to X , see [35, 39–41, 50, 57]. In these representations the cycles of integration are
multi-dimensional.8 This fact typically makes more difficult the study of the asymp-
totic expansions of solutions, and of the determination of the corresponding validity
sectors in fC�. Furthermore, let us recall another technical issue which may be faced:
Landau–Ginzburg models may not have enough critical points, and suitable com-
pactification procedures have to be applied in order to recover the right number, see
[43, 66, 70]. This could represent a delicate point for the computation of the Stokes
bases of solutions of equation (1.2.1), whose exponential growth is ruled by the criti-
cal values of the Landau–Ginzburg potential.

We believe that one-dimensional Mellin–Barnes integrals of Theorem 7.4.1 repre-
sent a more advantageous representation of the solutions to the purpose of asymptotic
analysis. Moreover, even for multi-dimensional Mellin–Barnes integrals of Theorem
7.4.2 the study of their asymptotics is tame: it is equivalent to the study of the asymp-
totics of one-dimensional generalized Faxén integrals

I.�I c1; : : : ; cr/ WD

Z 1
0

exp

"
��

 
x� C

rX
kD1

ckx
mk

!#
dx;

with � > m1 > m2 > � � � > mr > 0, which have saddle points whose exponential
contributions dominate algebraic terms in the asymptotic expansion. See [65, Chap-
ter 7], [53, Section 5] for a detailed asymptotic analysis, and also [7,13,81] for some
special cases. This will be exemplified in Section 11.6.

1.6 Dubrovin conjecture for Hirzebruch surfaces

Equation (1.2.1) has two singularities: a Fuchsian singularity at z D 0 and an irregular
singularity at z D1 of Poincaré rank 1. The monodromy of its solutions is quantified
by a finite set of matrices:

• a monodromy matrix M0, quantifying the monodromy of solutions of (1.2.1) at
z D 0,

7More precisely, for the equations yr @
@t˛
� D 0, where t1; : : : ; tn are coordinates on

QH�.X/, and not with respect to the spectral parameter z.
8Notice, for example, that already in the case of Pn these oscillating integrals are over

n-dimensional cycles. On the other hand, one-dimensional Mellin–Barnes integral represen-
tations of solutions of equation (1.2.1) associated with Pn were obtained in [46]. Their
asymptotics in sectors of fC� is easier to study.
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• a Stokes matrix S , describing the Stokes phenomenon at z D1,

• and a central connection matrix C gluing the monodromy data M0 and S at the
two singularities.

Remarkably, the monodromy data define a sort of “system of coordinates” in the space
of solutions of WDVV equations: from the knowledge of their numerical values,
the whole Frobenius manifold structure can be reconstructed via a Riemann–Hilbert
problem [30, 32, 47].

In [31], B. Dubrovin formulated an intriguing conjecture concerning the geo-
metrical meaning of the numerical values of the monodromy data of quantum coho-
mologies of Fano varieties. In the qualitative part of the conjecture, for a given Fano
varietyX , the semisimplicity condition ofQH �.X/ is claimed to be equivalent to the
existence of full exceptional collections in the derived category Db.X/ of coherent
sheaves on X . Moreover, in the refined quantitative part of the conjecture, formu-
lated in [21, Conjecture 5.2], the Stokes and central connection matrices .Sp; Cp/
computed at any point p 2 QH �.X/ are claimed to be determined by characteristic
classes of X and of objects of a full exceptional collection Ep in Db.X/.

In particular, the central connection matrix Cp is claimed to equal the matrix
associated with the morphism

D�X WK0.X/C ! H �.X;C/;

F 7!
.
p
�1/d

.2�/
d
2

y��X exp.��
p
�1c1.X//Ch.F /;

(1.6.1)

where d D dimC X , d is its residue class modulo 2, y��X is the characteristic class
of X defined by

y��X WD

dimC XY
jD1

�.1 � ıj /; ıj Chern roots of TX ,

where

�.1 � t / D exp

 
 t C

1X
nD2

�.n/

n
tn

!
;

and Ch.F / is the graded Chern character defined on vector bundles by the formula
Ch.V / WD

PrkV
jD1 exp.2�

p
�1"j /, "j being the Chern roots of V . The matrix of D�X

is computed with respect to the exceptional basis ŒEp� of K0.X/C , defined by the
K-theoretical classes of objects of Ep , and an arbitrary9 basis of H �.X;C/. Further-
more, if the central connection matrix Cp is related to the morphism D�X as explained
above, then the Stokes matrix Sp automatically equals the inverse of the Gram matrix

9The choice of a basis of H�.X;C/ in (1.6.1) corresponds to the choice of a system of flat
coordinates onQH�.X/ with respect to which the monodromy data .M0; S; C / are computed.
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of the Grothendieck–Euler–Poincaré �-pairing on K0.X/ with respect to the excep-
tional basis ŒEp�, see [21, Corollary 5.8].

It is important to stress that the monodromy data .M0; S; C / are defined up to
several choices: the choice of a system of flat coordinates on the Frobenius mani-
fold QH �.X/, choices of normalizations (at both z D 0 and z D1) of solutions
of equation (1.2.1), and the choice of an “admissible ray” in C�. Remarkably, all
these operations have a geometrical counterpart in derived categories, see [21, The-
orem 5.9]. Deserving special mention is �-conjecture II of [36]: it consists of an
equivalent conjectural statement about the central connection matrix, though with
respect to a choice of a solution in “Levelt form” at z D 0 not natural from the point
of view of the theory of Frobenius manifolds. See [21, Section 5.6] for details.

The explicit computation of the monodromy data of quantum cohomologies is
typically a rather delicate operation. To the best knowledge of the author, the only
cases in which the computation of the complete set of monodromy data .S; C / of
equation (1.2.1) has been carried out in all the details (including the determination
of the corresponding full exceptional collections) are the cases of projective spaces
[32, 46] and of complex Grassmannians [21, 36]. We believe that the main results of
the current paper, namely the integral representations described in Theorems 7.2.1,
7.3.1, 7.4.1, and 7.4.2, will represent a fundamental tool for the development of this
study [20].

As an application, in Chapters 10 and 11, we will show how to use the Laplace
.˛;ˇ/-multitransform, and the main results described above, in order to prove the
quantitative part of the Dubrovin conjecture for Hirzebruch surfaces [49]. These are
surfaces Fk , k 2 Z, defined as the total space of the projective bundle P .O ˚O.�k//

on P1. The interest of this example is highlighted by the fact that

• only two Hirzebruch surfaces are Fano varieties (namely F0 and F1),

• all others Hirzebruch surfaces are deformation equivalent to either F0 or F1.

Results of A. Bayer already suggested the non-necessity of the Fano assumption
for the validity of the qualitative part of the Dubrovin conjecture, see [9]. More-
over, X. Hu proved that, in a smooth family of complete varieties, the existence of
full exceptional collection on a fiber preserves for the fibers in a neighborhood, see
[51]. See also [11, Corollary B] for an analogue result for arbitrary semiorthogonal
decompositions. To the best of our knowledge, the study of the monodromy of the
isomonodromic systems (1.2.1) associated with Hirzebruch surfaces, developed in
Chapters 10 and 11, represents the first example in literature which addresses also the
quantitative part of the Dubrovin conjecture, in both the non-Fano case and the case
of deformations of the complex structures.

The case of Hirzebruch surfaces F2k (resp. F2kC1) can be reduced to the single
case of F0 D P1 � P1 (resp. F1 D BlptP2). The monodromy data of QH �.F0/ can
easily be reconstructed from the monodromy data ofQH �.P1/, see Theorem 10.3.3.
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In the case of QH �.F1/, the computation is more delicate, and reduces to the study
of the quantum differential equation

.283z � 24/#4ˆC .283z2 � 590z C 24/#3ˆC .�2264z2 C 192z C 3/#2ˆ

� 4z2.2547z2 C 350z � 104/#ˆ

C z2.�3113z3 � 9924z2 C 1476z C 192/ˆ D 0;

where # WD z d
dz

. In Section 11.4, we show that the solutions of this equation can be
expressed as linear combinations of integrals of the form

e�zL.1;2I 12 ;
1
3 /
Œˆ1; ˆ2I z� D e

�z

Z 1
0

ˆ1
�
z
1
2�

1
2

�
ˆ2
�
z
2
3�

1
3

�
e��d�;

where ˆ1 and ˆ2 are solutions of quantum differential equations of P1 and P2,
respectively, that is,

#2ˆ1 D 4z
2ˆ1; #3ˆ2 D 27z

3ˆ2:

This allows the study of the asymptotics of solutions in sectors of fC�, to reconstruct
the Stokes bases of solutions of the quantum differential equation of F1, and finally to
the computation of both Stokes and central connection matrices, see Theorem 11.8.2.

From these results, the quantitative part of the Dubrovin conjecture is proved for
all Hirzebruch surfaces Fk , by making explicit the exceptional collections in Db.Fk/
which arise from the monodromy data, see Theorems 10.3.3 and 11.8.3.

1.7 Plan of the paper

The paper is organized as follows. In Chapter 2, we introduce the notion of cyclic stra-
tum in the general context of Frobenius manifolds theory. A first study of the geom-
etry of the cyclic stratum, and its complement in the extended manifold C� �M ,
is addressed.

In Chapter 3, we recall basic definitions in Gromov–Witten theory, including
the definition of the Frobenius manifold structure on the quantum cohomology of
a smooth projective variety. In Chapter 4, we recall the definitions of topological-
enumerative solution of the isomonodromic system (1.2.1), and also of its mon-
odromy data. We also recall the main properties and natural transformations of the
complete set of monodromy data.

In Chapter 5, we recall the definition of Givental’s J -function, and we explain
how it is related to the space of master functions, see Theorem 5.1.2 and Corol-
lary 5.1.3. We recall the formulation of the quantum Lefschetz theorem, and we obtain
an upper bound for the dimension of the space of master functions of a Fano hyper-
surface of a smooth projective variety X , see Theorem 5.4.1.
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In Chapter 6, we recall the notion of generalized power series in the sense of
P. Ribenboim, and we introduce the ring F�.A/ of generalized power series with
coefficients and exponents in a finite-dimensional C-algebra. We introduce the no-
tions of Borel–Laplace .˛;ˇ/-multitransforms, in both formal and analytic setting,
and we prove the compatibility of the two definitions, see Theorem 6.5.1.

In Chapter 7, we explain how the J -function can be identified (in several ways)
with elements of rings of Ribenboim generalized power series. We prove the main
results of this paper, Theorems 7.2.1, 7.3.1, 7.4.1 and 7.4.2.

In Chapter 8, we recall the notions of exceptional collections in derived categories
of coherent sheaves, exceptional bases in K-theory, their mutations and helices. We
then describe the refined statement of the Dubrovin conjecture, as formulated in [21].

In Chapter 9, we describe the classical and quantum cohomology rings of Hirze-
bruch surfaces.

In Chapter 10, we explicitly compute the monodromy data of the quantum coho-
mologies QH �.F2k/, and we prove the Dubrovin conjecture for Hirzebruch sur-
faces F2k .

In Chapter 11, we address the study of the quantum differential equations of
Hirzebruch surfaces F2kC1. We show how to use the Laplace .1; 2I 1

2
; 1
3
/-multitrans-

form in order to give integral representations of solutions, how to reconstruct Stokes
fundamental solutions, and hence how to compute the monodromy data. This leads
to a proof of the Dubrovin conjecture for Hirzebruch surfaces F2kC1.


