
Chapter 2

Cyclic stratum of Frobenius manifolds

2.1 Frobenius manifolds

Given a complex manifold M , we denote by TM (resp. T �M ) its holomorphic tan-
gent (resp. cotangent) bundle. If E is a holomorphic vector bundle on M , we denote
by
Jk

E its k-th symmetrized tensor power, and by �.E/ the vector space of global
holomorphic sections of E.

Definition 2.1.1. A Frobenius manifold structure on a complex manifold M of di-
mension n is defined by giving
(FM1) a symmetric O.M/-bilinear form � 2 �.

J2
T �M/, called metric,1 whose

corresponding Levi-Civita connection r is flat,
(FM2) a .1; 2/-tensor c 2 �.TM ˝

J2
T �M/ such that

(a) the induced multiplication of vector fields X ı Y WD c.�; X; Y /, for
X; Y 2 �.TM/, is associative,

(b) c[ 2 �.
J3

T �M/,
(c) rc[ 2 �.

J4
T �M/,

(FM3) a vector field e 2 �.TM/, called the unity vector field, such that
(a) the bundle morphism c.�; e;�/WTM ! TM is the identity morphism,
(b) re D 0,

(FM4) a vector field E 2 �.TM/, called the Euler vector field, such that
(a) LEc D c,
(b) LE� D .2 � d/ � �, where d 2 C is called the charge of the Frobenius

manifold.

1In what follows, we will denote by .�/[ and .�/] the musical isomorphisms induced
by the metric �. These are the isomorphisms between vector spaces of mixed tensors. If
v 2 �.TM/, the one-form v[ 2 �.T �M/ is defined by v[.w/ D �.w; v/, where w 2 �.TM/.
Conversely, if � 2 �.T �M/, the vector field �] 2 �.TM/ is uniquely defined by the identity

�.w/D �.w; �]/;

wherew 2�.TM/. Thus, .�/[W�.TM/!�.T �M/ and .�/]W�.T �M/!�.TM/ are mutu-
ally inverse. In components, these operations are also known as “lowering” and “raising” of
indices, respectively. These operations naturally extend to mixed tensors. For example, given
a .1; 2/-tensor c 2 �.TM ˝ T �M ˝ T �M/, the tensor c[ is the .0; 3/-tensor defined by

c[.v1; v2; v3/ D �.v1; c.v2; v3//;

where v1; v2; v3 2 �.TM/.
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At any point p 2M the triple .TpM;�p; ıp/ is a complex Frobenius algebra,
namely an associative commutative algebra with unity whose product is compatible
with the metric, in the sense that

�p.a ıp b; c/ D �p.a; b ıp c/ for all a; b; c 2 TpM;

by axioms (FM2-a), (FM2-b), (FM3-a). Moreover, there exist an open neighborhood
� �M of p and a function F W�! C such that

c[ D r3F;

� D rer
2F:

This follows from axiom (FM2-b). Any such a function F will be called potential
of M .

Remark 2.1.2. The Euler vector field E is an affine vector field, i.e.

r
2E D 0:

This follows2 from axioms (FM1) and (FM4-b).

Convention. In this paper, we assume that the flat endomorphism X 7! rXE of
TM is diagonalizable. By introducing r-flat coordinates t D .t˛/n˛D1 on M , with
respect to which the metric � is constant and the connection r coincides with partial
derivatives, we have that

E D

nX
˛D1

..1 � q˛/t
˛
C r˛/

@

@t˛
; q˛; r˛ 2 C:

Following [30–32], we choose flat coordinates t so that @
@t1
� e and r˛ ¤ 0 only if

q˛ D 1. This can always be done, up to an affine change of coordinates.

2For a generic vector field X on a pseudo-Riemannian manifold .M; g/, a simple compu-
tation (invoking the first Bianchi identities) shows that

rˇr˛X� D
X
�

R�˛ˇ�X
�
C
1

2
.rˇK˛� Cr˛Kˇ� � r�K˛ˇ/;

where
K˛ˇ D .LXg/˛ˇ D r˛Xˇ CrˇX˛:

If X is Killing conformal, and LXg D !g for a function !, then

rˇr˛X� D
X
�

R�˛ˇ�X
�
C
1

2
.g˛�@ˇ! C gˇ�@˛! � g˛ˇ@�!/:

In our case R D 0 and ! is a constant function.
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Remark 2.1.3. The associativity of the algebra is equivalent to the following condi-
tions for F , called WDVV-equations:

nX
;ıD1

@˛@ˇ@F �ı@ı@�@�F D

nX
;ıD1

@�@ˇ@F �ı@ı@�@˛F;

while axiom (FM4) is equivalent to

�˛ˇ D @1@˛@ˇF; LEF D .3 � d/F CQ.t/;

with Q.t/ a quadratic expression in parameters t˛ . Conversely, given a solution of
the WDVV equations, satisfying the quasi-homogeneity conditions above, a structure
of Frobenius manifold is naturally defined on an open subset of the space of parame-
ters t˛ .

Definition 2.1.4. Define the grading operator of M to be the tensor � 2 �.TM ˝
T �M/ defined by

�.Y / WD
2 � d

2
Y � rYE; Y 2 �.TM/:

In what follows we will also denote by U the .1;1/-tensor defined by ı-multiplication
by the Euler vector field, i.e.

U.Y / WD E ı Y; Y 2 �.TM/:

We denote by � and U the matrices of components of the tensors �, and U, respec-
tively, with respect to the system t of r-flat coordinates.

2.2 Semisimple points and bifurcation set

Definition 2.2.1. A point p 2M is semisimple if and only if the corresponding
Frobenius algebra .TpM;�p; �p; @

@t1
jp/ is without nilpotents. Denote byMss the open

dense subset of M of semisimple points.

In this paper, only generically semisimple Frobenius manifolds are considered. In
other words, we will always assume Mss ¤ ;.

OnMss there are n well-defined idempotent vector fields �1; : : : ; �n 2 �.TMss/,
satisfying

�i � �j D ıij�i ; �.�i ; �j / D ıij�.�i ; �i /; i; j D 1; : : : ; n:

Theorem 2.2.2 ([29, 30, 32]). The idempotent vector fields pairwise commute, that
is, Œ�i ; �j � D 0 for i; j D 1; : : : ; n. Hence, there exist holomorphic local coordinates
.u1; : : : ; un/ on Mss such that @

@ui
D �i for i D 1; : : : ; n.
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Definition 2.2.3. The coordinates .u1; : : : ; un/ of Theorem 2.2.2 are called canoni-
cal coordinates.

Proposition 2.2.4 ([30,32]). Canonical coordinates are uniquely defined up to order-
ing and shifts by constants. The eigenvalues of the tensor U define a system of
canonical coordinates in a neighborhood of any semisimple point of Mss.

Definition 2.2.5. Given a Frobenius manifold M , we call bifurcation set of M the
set BM of points p 2M at which the spectrum of the operator U.p/ is not simple,
i.e. ui .p/ D uj .p/ for some i ¤ j .

Following the terminology of [21,23,25], the points of BM which are semisimple
are called semisimple coalescing points. We define the3 Maxwell stratum of M to be
the closure of the set of semisimple coalescing points, i.e. MM WDMss \BM .

The caustic of M is the set-theoretic difference KM WD BM nMss.

Lemma 2.2.6. We have BM DMM [KM .

Definition 2.2.7. We call orthonormalized idempotent frame a frame .fi /niD1 ofTMss

defined by
fi WD �.�i ; �i /

� 12�i ; i D 1; : : : ; n; (2.2.1)

for arbitrary choices of signs of the square roots. The‰-matrix is the matrix of change
of tangent frames .‰i˛/ni;˛D1, defined by

@

@t˛
D

nX
iD1

‰i˛fi ; ˛ D 1; : : : ; n:

Remark 2.2.8. In the orthonormalized idempotent frame, the operator U is repre-
sented by a diagonal matrix, and the operator � by an antisymmetric matrix:

U WD diag.u1; : : : ; un/; ‰U‰�1 D U;

V WD ‰�‰�1; V T C V D 0:

2.3 Extended deformed connection

Given a Frobenius manifoldM , we introduce the extended manifold yM WD C� �M ,
and consider the pullback ��TM of the tangent bundle of M along the obvious pro-
jection � W yM !M . We will denote the natural lifts on yM of the tensors �, c, e,E,�,
U by the same symbols. Moreover, we also denote by r the pull-backed Levi-Civita
connection: it is the connection on the vector bundle ��TM , uniquely defined by the

3The name is taken from singularity theory: for Frobenius structures defined on the univer-
sal space of unfoldings of singularities the two notions coincide, see [1–3].
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further requirement that

r @
@z
Y D 0 for all Y 2 ��1TM ;

where z denotes the natural coordinate on C�, and TM denotes the tangent sheaf of
M . We are going now to define a second connection br on ��TM which is a defor-
mation of r.

Definition 2.3.1. We define the extended deformed connection yr as the connection
on ��TM given by

brXY D rXY C zX ı Y; br @
@z
Y D r @

@z
Y CU.Y / �

1

z
�.Y /

for all X; Y 2 �.��TM/.

Theorem 2.3.2 ([32]). The extended deformed connection br is flat. More precisely,
its flatness is equivalent to the totality of the following conditions:

(1) rc[ 2 �.ˇ4T �M/,

(2) the product on each tangent space of M is associative,

(3) r2E D 0,

(4) LEc D c.

The connection br induces a flat connection on ��T �M , denoted by the same
symbol.

2.4 Cyclic stratum, and cyclic (co)frame

Definition 2.4.1. Given a Frobenius manifold M , we define infinitely many sections
ej 2 �.�

�TM/ as
ek WD brk@

@z

e; k 2 N:

We will call the cyclic stratum yM cyc to be the maximal open subset U of yM such
that the bundle ��TM jU is trivial and the collection of sections .ekjU /n�1kD0

defines
a basis of each fiber. On yM cyc we will also introduce the dual coframe .!j /n�1jD0, by
imposing

h!j ; eki D ıjk : (2.4.1)

The frame .ek/n�1kD0
will be called cyclic frame, and its dual .!j /n�1jD0 cyclic coframe.

Definition 2.4.2. Define the matrix-valued function ƒ D .ƒi˛.z; p//, holomorphic
on yM cyc, by the equation

@

@t˛
D

n�1X
iD0

ƒi˛ei ; ˛ D 1; : : : ; n: (2.4.2)
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Remark 2.4.3. Theƒ-matrix should be thought as an analogue of the‰-matrix. The
former matrix relates the flat coordinate frame . @

@t˛
/n˛D1 to the cyclic frame .ei /n�1iD0 ,

and the latter matrix relates the flat coordinate frame . @
@t˛
/n˛D1 to the normalized

idempotent frame .fi /niD1.

Lemma 2.4.4. For j D 1; : : : ; n � 1, we have

br @
@z
!j D �!j�1:

Proof. From (2.4.1), for any k D 0; : : : ; n � 2, we have

hbr @
@z
!j ; eki C h!j ; ekC1i D 0 H) br @

@z
!j ; eki D �ıj;kC1

H) br @
@z
!j D �!j�1:

Proposition 2.4.5. The vector fields ek , with k 2 N, have the following form:

ek D

kX
jD0

1

zj
pkj .E/;

where the vector fields pkj .E/ do not depend on z and satisfy the difference equations

pkC10 .E/ D E ı pk0 .E/;

pkC1j .E/ D E ı pkj .E/ � �.p
k
j�1.E//C .1 � j /p

k
j�1.E/; j D 1; : : : ; k;

pkC1
kC1

.E/ D ��.pkk .E// � kp
k
k .E/;

with the only initial datum p0j .E/ D ı0j � e.

2.5 Properties of the function detƒ

The holomorphic function detƒW yM cyc ! C� extends meromorphically to a function
on P1 �M .

Theorem 2.5.1. The function detƒ is a meromorphic function on P1 �M of the
form

detƒ.z; p/ D
z.
n�1
2 /

z.
n�1
2 /A0.p/C � � � C A.n�12 /

.p/
;

where A0; : : : ; A�n�1
2

� are holomorphic functions on M . Moreover, if n > 2 and if the
eigenvalues of the grading operator � are not pairwise distinct, then the function
A�n�1

2

� is identically zero.

We need a preliminary result.
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Lemma 2.5.2. For k 2 ¹0; : : : ; n � 1º, the polyvector field

e0 ^ � � � ^ ek 2 �
�^kC1

��TM
�

admits a pole at ¹0º �M of order at most
�
k
2

�
. More precisely, we have

e0 ^ � � � ^ ek D w0 C
1

z
w1 C � � � C

1

z.
k
2/
w.k2/

; wj 2 �
�^kC1

��TM
�
;

with
w.k2/

D .�1/.
k
2/ e ^E ^ �.E/ ^ �2.E/ ^ � � � ^ �k�1.E/:

Proof. By induction on k. For the base cases k D 0 and k D 1, we have e0 D e and
e0 ^ e1 D e ^E, respectively. So, for k D 0; 1 the claim holds true.

Assume that e0 ^ � � � ^ ek�1 is of the form

e0 ^ � � � ^ ek�1 D w0 C
1

z
w1 C � � � C

1

z.
k�1
2 /
w.k�12 /

with
w.k�12 /

D .�1/.
k�1
2 / e ^E ^ �.E/ ^ �2.E/ ^ � � � ^ �k�2.E/:

We have

e0 ^ � � � ^ ek D

 .k�12 /X
jD0

z�jwj

!
^

 
kX
`D0

z�`pk` .E/

!
:

We claim that the coefficient w.k�12 /
^ pk

k
.E/ of z�.

k�1
2 /�k vanishes. Indeed, pk

k
.E/

is proportional to e: we have

pkk .E/ D
d

2

�
d

2
� 1

�
� � �

�
d

2
� k C 1

�
e; k > 0;

as it can easily be seen by induction (the key property is �.e/ D �d
2
e, together with

the last difference equation of Proposition 2.4.5). Consequently, we have

w.k�12 /
^ pkk .E/ D c � .e ^ � � � ^ e/ D 0:

Hence, the (possibly non-vanishing) most polar term of e0 ^ � � � ^ ek equals

z�.
k�1
2 /�kC1 � w.k�12 /

^ pkk�1.E/ D z
�.k2/ � w.k�12 /

^ ..�1/k�1�k�1.E//

D z�.
k
2/.�1/.

k
2/ e ^E ^ �.E/ ^ � � � ^ �k�1.E/:

For the first equality we have used the difference equation for pk
k�1

.E/ of Proposi-
tion 2.4.5.

Proof of Theorem 2.5.1. The polyvector field e0 ^ � � � ^ en�1 has the form

e0 ^ � � � ^ en�1 D w0.p/C
1

z
w1.p/C � � � C

1

z.
n�1
2 /
w.n�12 /

.p/; (2.5.1)
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where w0; w1; : : : ; w�n�1
2

� are holomorphic n-vector fields on M , by Lemma 2.5.2.
Introduce holomorphic functions A0.p/; : : : ; A�n�1

2

�.p/ such that

wj .p/ D Aj .p/ �
@

@t1
^ � � � ^

@

@tn
:

From the identity

@

@t1
^ � � � ^

@

@tn
D detƒ � e0 ^ � � � ^ en�1;

we deduce

1 D detƒ.z; p/
�
A0.p/C

1

z
A1.p/C : : :

1

z.
n�1
2 /
A.n�12 /

.p/

�
:

The last statement on A�n�1
2

� follows from the explicit formula for w�n�1
2

� given in
Lemma 2.5.2.

Theorem 2.5.3. We have

A0.p/ D

Q
i<j .uj .p/ � ui .p//

Jac.p/
; Jac.p/ WD det

�
@ui

@t˛

�ˇ̌̌̌
p

:

Proof. The polyvector field w0 in equation (2.5.1) is

w0 D

n�1̂

jD0

p
j
0 .E/:

By Proposition 2.4.5, we have

p
j
0 .E/ D E

ıj ; j 2 N;

and using the idempotent vielbein . @
@ui
/niD1, we can write w0 as follows:

w0 D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
1 : : : 1

u1 : : : un
u21 : : : u2n

:::

un�11 : : : un�1n

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
@

@u1
^ � � � ^

@

@un

D

�Y
i<j

.uj � ui /

�
@

@u1
^ � � � ^

@

@un

D

�Y
i<j

.uj � ui /

�
�
1

Jac
�
@

@t1
^ � � � ^

@

@tn
:

Remark 2.5.4. We also have
@

@t1
^ � � � ^

@

@tn
D det‰f1 ^ � � � ^ fn D

det‰Qn
iD1 �.

@
@ui
; @
@ui
/
1
2

@

@u1
^ � � � ^

@

@un
;
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so that

Jac.p/ D
det‰Qn

iD1 �.
@
@ui
; @
@ui
/
1
2

ˇ̌̌̌
p

D
.det �/

1
2Qn

iD1 �.
@
@ui
; @
@ui
/
1
2

ˇ̌̌̌
p

:

The last equality follows from ‰T‰ D �.

2.6 Geometry of the complement of the cyclic stratum in P1 �M

Let us consider the tuple of functions .A0; : : : ; A�n�1
2

�/, and extend it to the sequence
.Ak/k2N by setting Ak D 0 for k >

�
n�1
2

�
. Set

n WD min¹j 2 N W Ah.p/ D 0 for all p 2M and all h > j º:

We necessarily have 0 6 n 6
�
n�1
2

�
. By Theorem 2.5.1, we have n <

�
n�1
2

�
if � has

not simple spectrum. The function detƒ takes the form

detƒ D
zn

znA0.p/C zn�1A1.p/ � � � C An.p/
:

Define the subsets Pƒ;M0;M1 � P1 �M and Aƒ;	
1
ƒ ;	

0
ƒ �M by

Pƒ WD ¹.z; p/ 2 yM W z
nA0.p/C � � � C An.p/ D 0º;

M0 WD ¹0º �M;

M1 WD ¹1º �M;

Aƒ WD ¹p 2M W A0.p/ D � � � D An.p/ D 0º;

	1ƒ WD ¹p 2M W A0.p/ D 0º;

	0ƒ WD ¹p 2M W An.p/ D 0º:

Lemma 2.6.1. We have the obvious inclusions

C� �Aƒ � Pƒ; Aƒ � 	0ƒ \ 	1ƒ :

The set Pƒ is an analytic subspace of P1 �M of codimension 1 along which the
function detƒ admits a pole. The function detƒ admits poles along a further analytic
subspace, namely ¹1º � 	1ƒ . See Table 2.1 and Figure 2.1.

The set Pƒ is the complement yM n yM cyc of the cyclic stratum. The complement
of yM cyc in P1 �M is the disjoint union

Pƒ [� M0 [� M1:

The geometry of Pƒ is rather complicated: in general it admits several irreducible
components. For example, Aƒ itself does, and consequently also C� �Aƒ. The pro-
jection � W yM !M , if restricted to Pƒ n .C� �Aƒ/, defines a ramified covering of
degree n.
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Poles of detƒ Pƒ [� .¹1º � 	1ƒ /

Zeros of detƒ M0 n .¹0º � 	0ƒ/

Indeterminacy locus of detƒ ¹0º � 	0ƒ

Table 2.1. Location of poles, zeros and indeterminacy locus for the meromorphic function detƒ
on P1 �M .

Figure 2.1. Configuration of the sets Pƒ, ¹1º � 	1
ƒ

, and ¹0º � 	0
ƒ

in P1 �M .

The set ¹0º � 	0ƒ is an analytic subspace of P1 �M of codimension 2 and it is
the indeterminacy locus of the function detƒ.

Each of the sets 	1ƒ ;	
0
ƒ;Aƒ seems to be strictly related to other distinguished

subsets of the Frobenius manifold M , namely its bifurcation set BM , and its two
components, the Maxwell stratum MM and the caustic KM . We limit to the following
observation.

Theorem 2.6.2. We have 	1ƒ � BM .

Proof. Let p … BM . On the complement of BM , the eigenvalues .u1; : : : ; un/ define
a holomorphic system of coordinates. Hence, Jac.p/ ¤ 0. Moreover, by definition we
have

Q
i<j .uj .p/ � ui .p// ¤ 0. Hence, p … 	1ƒ by Theorem 2.5.3.

In order to obtain more precise results on contingent relations between the sets
	1ƒ , 	0ƒ, Aƒ and BM , MM , KM a more detailed study of the polyvector fields
pkj .E/ of Proposition 2.4.5 is needed. We plan to address this problem in a future
project. We conclude this section with three low-dimensional examples.

Example. For two-dimensional Frobenius manifolds, we have 	1ƒ D BM . In this
case, indeed, we have

e0 D e; e1 D E C
d

2z
e H) e0 ^ e1 D e ^E:

The bivector e ^E vanishes if and only if u1 D u2.
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Example. Consider the A3-Frobenius manifold, that is, the space M Š C3 of poly-
nomials f .x; a/ D x4 C a2x2 C a1x C a0, where a D .a0; a1; a2/ 2 C3 are natural
coordinate. Fix ao 2M , and define the Kodaira–Spencer isomorphism

�WTaoM ! CŒx�=h@xf .x; ao/i

by identifying @ai with the class of the partial derivative @aif .x; ao/. This allows
to pull back the product of the Jacobi–Milnor algebra CŒx�=h@xf .x; ao/i on TaoM .
Consider the Grothendieck residue metric

�a

�
@

@ai
;
@

@aj

�
WD

1

2�i

Z
�a

@f
@ai

@f
@aj

@f
@x

ˇ̌̌̌
.u;a/

du;

where �a is a circle, positively oriented, bounding a disc containing all the roots
of @f

@x
.u; a/. One can show that the coordinates t D .t1; t2; t3/ given by

t1 D a0 �
1

8
a22; t2 D a1; t3 D a2;

are flat for the metric �. In t-coordinates, the Euler vector field is given by

E D t1
@

@t1
C
3t2

4

@

@t2
C
t3

2

@

@t3
:

The Maxwell stratum is the set ¹t2 D 0º, and the caustic is the set ¹8t33 C 27t
2
2 D 0º.

We have the following formulas for the ƒ-matrix and for detƒ: Setting

a WD z2t53 � 21z
2t22 t

2
3 � 64z

2t21 t3 � 12t3 � 18zt
2
2 � 72z

2t1t
2
2

and

b WD �3z2t43 � 16zt
2
3 � 64z

2t1t
2
3 C 63z

2t22 t3 C 192z
2t21 C 48zt1 C 48;

we get

ƒ.z; t/ D

0BBBB@
1 a

2zt2.8zt
3
3
�6t3C27zt

2
2
/

b

4z.8zt3
3
�6t3C27zt

2
2
/

0
4.9zt2

2
C16zt1t3/

t2.8zt
3
3
�6t3C27zt

2
2
/
�
4.�4zt2

3
C24zt1C3/

8zt3
3
�6t3C27zt

2
2

0 �
32zt3

t2.8zt
3
3
�6t3C27zt

2
2
/

48z

8zt3
3
�6t3C27zt

2
2

1CCCCA
and

detƒ.z; t/ D
64z

.8t2t
3
3 C 27t

3
2 /z � 6t2t3

:

We have
	1ƒ D BM ; 	0ƒ DMM [ ¹t3 D 0º; Aƒ DMM :

Example. The A2 � A2-Frobenius manifold is the Frobenius structure M on C4,
with flat coordinates .t; s/ D .t0; t1; s0; s1/, defined by the WDVV–potential

F.t; s/ D
1

2
.t20 t1 C s

2
0s1/C

1

24
.t41 C s

4
1/:
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In these coordinates, the unit vector field is e D @
@t0
C

@
@s0

, and the flat metric � has
components

� D

0BB@
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1CCA :
The Euler field equals

E D t0
@

@t0
C
2

3
t1
@

@t1
C s0

@

@s0
C
2

3
s1
@

@s1
:

The bifurcation diagram BM equals BMDMM [KM , where the Maxwell stratum is

MM D
®
�8t31

�
9.s0 � t0/

2
C 4s31

�
C
�
4s31 � 9.s0 � t0/

2
�2
C 16t61 D 0

¯
;

and the caustic is
KM D ¹t1 D 0º [ ¹s1 D 0º:

After some computations, one finds that

detƒ.z; t; s/ D 729z2 �
�
4s1t1.z

2.�8t31 .9.s0 � t0/
2
C 4s31/

C .4s31 � 9.s0 � t0/
2/2 C 16t61 /C 45.s0 � t0/

2/
��1

:

We have

	1ƒ D BM ; 	0ƒ DKM [ ¹s0 D t0º; Aƒ DKM [ ¹s0 D t0; s
3
1 D t

3
1 º:

2.7 Master differential equation and master functions

Let � 2 �.��T �M/ be a yr-flat section. Consider the corresponding vector field
� 2 �.��TM/ via musical isomorphism, i.e. such that

�.v/ D �.�; v/

for all v 2 �.��TM/.
The vector field � satisfies the following system4 of equations:

@

@t˛
� D zC˛�; ˛ D 1; : : : ; n; (2.7.1)

@

@z
� D

�
UC

1

z
�

�
�: (2.7.2)

Here C˛ is the .1; 1/-tensor defined by .C˛/
ˇ
 WD c

ˇ
˛ .

4We consider the joint system (2.7.1)–(2.7.2) in matrix notations (� is a column vector
whose entries are the components �˛.z; t/ with respect to @

@t˛
). Bases of solutions are arranged

in invertible n � n-matrices, called fundamental systems of solutions.
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Multiply by � (on the left) the left-hand and right-hand sides of (2.7.1)–(2.7.2):
we obtain the equivalent system of differential equations8̂̂<̂

:̂
@

@t˛
� D zCT˛ �; ˛ D 1; : : : ; n;

@

@z
� D

�
UT
�
1

z
�

�
�;

(2.7.3)

where � is a column vector whose entries are the components �˛.z; t/ with respect
to dt˛ . At points .z; p/ 2 yM cyc, let us introduce the column vector � by

� D .ƒ�1/T �; (2.7.4)

where ƒ is defined as in (2.4.2). The entries of � are the components �j with respect
to the cyclic coframe !j . The vector � satisfies the system8̂̂̂<̂

ˆ̂:
@�

@t˛
D

�
z.ƒ�1/TC˛ƒ

T
C
@.ƒ�1/T

@t˛
ƒT

�
�;

@�

@z
D

�
.ƒ�1/TUTƒT �

1

z
.ƒ�1/T�ƒT C

@.ƒ�1/T

@z
ƒT

�
�:

(2.7.5)

Proposition 2.7.1. Let � 2 �.��T �M/ be a yr-flat section, and let .�j .z; p//
n�1
jD0 be

its components with respect to the cyclic co-frame, i.e. � D
P
j �j!j . We have

@�j

@z
D �jC1; j D 0; : : : ; n � 2:

Proof. We have

0 D yr @
@z
� D

X
j

@�j

@z
!j C

X
j

�j
yr @
@z
!j

D

X
j

@�j

@z
!j �

X
j

�j!j�1;

by Lemma 2.4.4. The claim follows.

Corollary 2.7.2. The system of differential equations (2.7.5) is the companion system
of a scalar differential equation in �0.

Remark 2.7.3. Note that �1 D �0. Indeed, we have e0 D e D @
@t1

, so thatƒi1 D ıi1.
The claim then follows from (2.7.4).

Theorem 2.7.4. Consider the system of differential equations (2.7.3), specialized at
a point p 2M nAƒ. The system can be reduced to a single scalar ordinary differen-
tial equation of order n in the unknown function �1. The scalar differential equation
admits at most

�
n�1
2

�
apparent singularities.
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Proof. If p 2M nAƒ, then there exist n complex numbers z1; : : : ; zn, not necessar-
ily distinct, such that .zi ; p/ …cM cyc. The numbers zi are the zeros of the denominator
of the function detƒ.z; p/.

The scalar differential equation to which system (2.7.3) can be reduced will be
called the master differential equation of M .

Definition 2.7.5. Fix a point p 2M . Consider the system of differential equations
(2.7.3) specialized at p, and set Xp be the C-vector space of its solutions. Then let
�pWXp ! O.fC�/ be the morphism defined by

� 7! ˆ�.z/; ˆ�.z/ WD z
�d2 h�.z; p/; e.p/i;

where d is the charge of the Frobenius manifold. Set �p.M/ WD im.�p/. Elements of
�p.M/ will be called master functions at p.

Theorem 2.7.6. At points p 2M nAƒ the morphism �p is injective.

Proof. Givenˆ� 2 �p.M/, the function �1.z/ D z
d
2ˆ�.z/ is a solution of the master

differential equation at p. By Theorem 2.7.4, the solution �.z/ can be reconstructed
from the component �1.z/ only.


