Chapter 2

Cyclic stratum of Frobenius manifolds

2.1 Frobenius manifolds

Given a complex manifold M, we denote by TM (resp. T* M) its holomorphic tan-
gent (resp. cotangent) bundle. If E is a holomorphic vector bundle on M, we denote
by @k E its k-th symmetrized tensor power, and by I"(E) the vector space of global
holomorphic sections of E.

Definition 2.1.1. A Frobenius manifold structure on a complex manifold M of di-
mension 7 is defined by giving

(FM1) a symmetric @ (M )-bilinear form n € F(C)2 T*M), called metric," whose
corresponding Levi-Civita connection V is flat,

(FM2) a (1,2)-tensor ¢ € I'(TM ® (O* T*M) such that
(a) the induced multiplication of vector fields X oY :=¢(—, X,Y), for
X,Y € I'(TM), is associative,
(b) * e (O’ T*M),
) Ve e (O T*M),
(FM3) avector field e € I'(T M), called the unity vector field, such that
(a) the bundle morphism c(—, e,—): TM — TM is the identity morphism,

(b) Ve =0,
(FM4) avector field E € T'(TM), called the Euler vector field, such that
(@ Rgc=c,
(b) Len=(2—d)-n,whered e C is called the charge of the Frobenius
manifold.

'In what follows, we will denote by (—)" and (—)* the musical isomorphisms induced
by the metric 1. These are the isomorphisms between vector spaces of mixed tensors. If
v € I'(TM), the one-form v® € I'(T* M) is defined by v*(w) = n(w, v), where w € I'(TM).
Conversely, if &£ € ['(T* M), the vector field £* € I'(T'M) is uniquely defined by the identity

E(w) =n(w, £F),
where w € T'(TM). Thus, (—)*: T(TM) — T'(T*M) and (—)*: T(T*M) — T'(T M) are mutu-
ally inverse. In components, these operations are also known as “lowering” and “raising” of
indices, respectively. These operations naturally extend to mixed tensors. For example, given
a(1,2)-tensor c € T(TM ® T*M ® T*M), the tensor c” is the (0, 3)-tensor defined by
?(1,v2,v3) = n(v1, c(v2,v3)),
where vy, v2,v3 € I'(TM).
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At any point p € M the triple (T, M, np,0p) is a complex Frobenius algebra,
namely an associative commutative algebra with unity whose product is compatible
with the metric, in the sense that

nplaopb,c) =np(a,bo,c) foralla,b,c e T,M,

by axioms (FM2-a), (FM2-b), (FM3-a). Moreover, there exist an open neighborhood
Q € M of p and a function F: Q2 — C such that

¢’ =V3F,
n = V,V2F.
This follows from axiom (FM2-b). Any such a function F' will be called potential

of M.

Remark 2.1.2. The Euler vector field E is an affine vector field, i.e.
V2E =0.
This follows” from axioms (FM1) and (FM4-b).

Convention. In this paper, we assume that the flat endomorphism X — Vy E of
TM is diagonalizable. By introducing V-flat coordinates ¢ = (1*);,_, on M, with
respect to which the metric 7 is constant and the connection V coincides with partial
derivatives, we have that

n
d
E = Z((l_qa)ta"_ra)ﬁa Ga,Ta € C.

a=1

Following [30-32], we choose flat coordinates ¢ so that azil = e and ry # 0 only if
qo = 1. This can always be done, up to an affine change of coordinates.

%For a generic vector field X on a pseudo-Riemannian manifold (M, g), a simple compu-
tation (invoking the first Bianchi identities) shows that

1
VeVaXa =Y Ruapu X" + 5 (VeKax + VaKpr = VaKap).
M

where
Ko = (8x8)ag = VaXp + VgXu.

If X is Killing conformal, and £ x g = wg for a function w, then
w1
VeVaXn =Y Ruapu X" + 5 (8a20p® + 8p20u® — gapdrw).
yva

In our case R = 0 and w is a constant function.
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Remark 2.1.3. The associativity of the algebra is equivalent to the following condi-
tions for F', called WDV V-equations:

D" 0a0p0y F 07005060, F = Y 0,080y F n"°050¢0q F.

y,6=1 y,6=1
while axiom (FM4) is equivalent to
Nap =alaaaﬂF7 LeF =0@-d)F + 0(1).

with Q(t) a quadratic expression in parameters f,. Conversely, given a solution of
the WDVV equations, satisfying the quasi-homogeneity conditions above, a structure
of Frobenius manifold is naturally defined on an open subset of the space of parame-
ters ¢%.

Definition 2.1.4. Define the grading operator of M to be the tensor u € I'(TM ®
T*M) defined by

2 —
w(Y) = TdY —VyE, Y eT(TM).

In what follows we will also denote by U the (1, 1)-tensor defined by o-multiplication
by the Euler vector field, i.e.

U(Y):=EoY, Y eTD(TM).

We denote by p and U the matrices of components of the tensors ., and U, respec-
tively, with respect to the system ¢ of V-flat coordinates.

2.2 Semisimple points and bifurcation set

Definition 2.2.1. A point p € M is semisimple if and only if the corresponding
Frobenius algebra (T, M, *p, np, 8% |p) is without nilpotents. Denote by M, the open
dense subset of M of semisimple points.

In this paper, only generically semisimple Frobenius manifolds are considered. In
other words, we will always assume M, # @.

On M there are n well-defined idempotent vector fields ny, ..., 7, € I'(TMj;),
satisfying

mi x 7wy = mi, 0w, i) = 6iin(wi, i), i, j=1,...,n.

Theorem 2.2.2 ([29, 30, 32]). The idempotent vector fields pairwise commute, that
is, [m;, ;] = 0fori, j = 1,...,n. Hence, there exist holomorphic local coordinates
(U1,...,uy) on Mg suchthata%i =mfori =1,...,n.
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Definition 2.2.3. The coordinates (u1, ..., u,) of Theorem 2.2.2 are called canoni-
cal coordinates.

Proposition 2.2.4 ([30,32]). Canonical coordinates are uniquely defined up to order-
ing and shifts by constants. The eigenvalues of the tensor U define a system of
canonical coordinates in a neighborhood of any semisimple point of M.

Definition 2.2.5. Given a Frobenius manifold M, we call bifurcation set of M the
set By of points p € M at which the spectrum of the operator U(p) is not simple,
ie.u;(p) =u;(p)forsomei # j.

Following the terminology of [21,23,25], the points of B3, which are semisimple
are called semisimple coalescing points. We define the® Maxwell stratum of M to be
the closure of the set of semisimple coalescing points, i.e. Mps := My N Byy.

The caustic of M is the set-theoretic difference Kps := Bys \ M.

Lemma 2.2.6. We have By = My U K. [ ]

Definition 2.2.7. We call orthonormalized idempotent frame a frame ( f;)7_, of T M,
defined by

fii= (g, ) i, i=1,....n, 2.2.1)
for arbitrary choices of signs of the square roots. The W-matrix is the matrix of change
of tangent frames (V;q) defined by

n
i,a=1"

9
ore

n
=leliafi, a=1,...,n.

i=1

Remark 2.2.8. In the orthonormalized idempotent frame, the operator U is repre-
sented by a diagonal matrix, and the operator g by an antisymmetric matrix:

U :=diag(uy, ..., u,), YUY =U,
Vo= wpw!, vT +v=o.

2.3 Extended deformed connection

Given a Frobenius manifold M, we introduce the extended manifold M:=C*xM ,
and consider the pullback 7*TM of the tangent bundle of M along the obvious pro-
jection 7: M — M. We will denote the natural lifts on M of the tensors n,c,e, E,p,
U by the same symbols. Moreover, we also denote by V the pull-backed Levi-Civita
connection: it is the connection on the vector bundle 7 *T'M , uniquely defined by the

3The name is taken from singularity theory: for Frobenius structures defined on the univer-
sal space of unfoldings of singularities the two notions coincide, see [1-3].



Cyclic stratum, and cyclic (co)frame 17

further requirement that
VaY =0 forallY e 7' Iy,

where z denotes the natural coordinate on C*, and .7, denotes the tangent sheaf of
M . We are going now to define a second connection V on 7*TM which is a defor-
mation of V.

Definition 2.3.1. We define the extended deformed connection V as the connection
on m*TM given by

~ ~ 1
VY =Vx¥ +zXoY, Va¥=VaY+UQY)-—pd)
0z z zZ

forall X,Y e '(n*TM).

Theorem 2.3.2 ([32]). The extended deformed connection v is flat. More precisely,
its flatness is equivalent to the totality of the following conditions:

(1) Ve? e T(O*T*M),

(2) the product on each tangent space of M is associative,

(3) V2E =0,

4) Lgc =c. m

The connection V induces a flat connection on 7*T*M , denoted by the same
symbol.

2.4 Cyclic stratum, and cyclic (co)frame

Definition 2.4.1. Given a Frobenius manifold M, we define infinitely many sections
ej e '(n*TM) as
ey 1= Vka e, keN.
9z

We will call the cyclic stratum M®* to be the maximal open subset U of M such
that the bundle 7*TM |y iAs trivial and the collection of sections (eg |U)Z;i) defines
a basis of each fiber. On M ¢ we will also introduce the dual coframe (w; )7;(1), by
imposing

(wj,ex) =8jk. 2.4.1)

The frame (ek)z;}) will be called cyclic frame, and its dual (w; ;-’;(1) cyclic coframe.

Definition 2.4.2. Define the matrix-valued function A = (A;4(z, p)), holomorphic
on M, by the equation

0

n—1
W:ZAiaei, a=1,....n. (2.4.2)
i=0
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Remark 2.4.3. The A-matrix should be thought as an analogue of the W-matrix. The

former matrix relates the flat coordinate frame (a%)gzl to the cyclic frame (ei)l’.‘;é,

and the latter matrix relates the flat coordinate frame (3%)2=1 to the normalized
idempotent frame ( f;)7_,.
Lemma244. For j = 1,...,n — 1, we have

Viwj = —Wj-1.
0z

Proof. From (2.4.1), forany k =0, ...,n — 2, we have
(§a%w,~,ek) + (wj. k1) =0 = 68%60/,%) = —bjk+1
— ﬁaia)jz—a)j_l. ]
Proposition 2.4.5. The vector fields e, with k € N, have the following form:

k

1
=) —pE)

j=0
where the vector fields pjl.c (E) do not depend on z and satisfy the difference equations
o (E) = E o p5(E),
PiYUE) = Eo pf(E) — p(pf_(E) + (1 = j)pf_(E), j=1,....k,
PETIE) = —u(pk(E)) — kpi (E),

with the only initial datum pj‘?(E) = 8o - e. ]

2.5 Properties of the function det A

The holomorphic function det A: M — C* extends meromorphically to a function
onP! x M.

Theorem 2.5.1. The function det A is a meromorphic function on P' x M of the
form

2("2Y
detA(z, p) = —— ,
22D Ao(p) + -+ A1) ()
where Ao, ..., A(;") are holomorphic functions on M. Moreover, if n > 2 and if the

eigenvalues of the grading operator p are not pairwise distinct, then the function
A(r5") is identically zero.

We need a preliminary result.



Properties of the functiondet A 19

Lemma 2.5.2. Fork €{0,...,n — 1}, the polyvector field
k+1
Con-Aep € F(/\ n*TM)

admits a pole at {0} x M of order at most (g) More precisely, we have
1 1 k+1
60/\"'/\€k:U)0+—wl+"'+—kw(k), wjef‘(/\ g TM),
z Z(z) 2
with
= (=n® 2 N
w(g)—( D2 eAEAu(E)YAR“(EYAN--- A" (E).

Proof. By induction on k. For the base cases k = 0 and k = 1, we have ey = e and
eo N e1 = e A E, respectively. So, for k = 0, 1 the claim holds true.
Assume that eg A - -+ A ej_1 is of the form

1 1
AN AN€p_1 = — e R _
€o €Ck—1 wo + ZU)] + + Z(kgl) U)(kzl)
with -
w1y = D) e AE A R(E) A RZE) A -+ A pF2(E).
‘We have

3

k
eg N Aep = ( Z z_]wj)/\(ZZ_ZP?(E))
j=0 £=0

e claim that the coefficient w -1y A p of z=(*2)% vanishes. Indee , D
We claim that the coefficient wx—1) A pf (E) of (*2)* vanishes. Indeed, pk(E)
is proportional to e: we have

d(d d
k — (= _ Y >
Pi (E) 2(2 1) (2 k + l)e, k=0,

as it can easily be seen by induction (the key property is u(e) = —%e, together with
the last difference equation of Proposition 2.4.5). Consequently, we have

Wk 1y /\p,’i(E) =c-(en---ne)=0.
Hence, the (possibly non-vanishing) most polar term of eg A - -+ A ex equals
k=1 _ _(k _ _
G ey A pE (B) = 2B way A (CDF R (E))
=2 OB enEn R(E) A A pF~Y(E).

For the first equality we have used the difference equation for p’,j_l (E) of Proposi-
tion 2.4.5. ]

Proof of Theorem 2.5.1. The polyvector field ey A - -+ A e,—; has the form

1 1
eg N Aep—1 = wo(p) + ;wl(p) + -+ mIU(ngl)(p), 2.5.1)
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where wg, Wy, ..., w() are holomorphic n-vector fields on M, by Lemma 2.5.2.
Introduce holomorphic functions Ag(p), . .., A(";')(p) such that
ad 0
wi(p) = A7 (p) - 5 Ao A o
From the identity
d

ad
m/\"'/\al—n=detA'€0/\"'/\€n_1,

we deduce
1 1
1 = det A(z. p) (Ao(p) + - Ai(p) + ...WA(n;)(p))-
zU2

The last statement on A1) follows from the explicit formula for w(»>1) given in
Lemma 2.5.2. u

Theorem 2.5.3. We have
i<j U —Uj u;
Ao(p) = [lic;(u(p) (P))’ Jac(p) = det(a%)‘ ‘
P

Jac(p)
Proof. The polyvector field wg in equation (2.5.1) is

n—1

wo = /\ py(E).

j=0
By Proposition 2.4.5, we have
PYE)=E*, jeN,

and using the idempotent vielbein (%)” we can write wq as follows:
1

i=1

1 1
IZ5} u
S B B O I
0= ? ouq ou,
VLU T
0 0
= (l_[(uj—ui))a—A 3
i<j Ui Un
l_[( 1 d 0 .
= u—u - —_— e —— RN
LYY ! Jac or! o
i<j
Remark 2.5.4. We also have
0 0 det ¥ 0 0
a—l/\"'/\a—n=detlpf1 /\fn— © la_/\”/\a y
t ! l_[l—l (Bu,’au,)2 Un
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so that

et det W (det)®
ac p = 1 = 1 ’
MGl i) b TGl i)t b

The last equality follows from W7 ¥ = 7,

2.6 Geometry of the complement of the cyclic stratum in P! x M

Let us consider the tuple of functions (4, ..., A(ﬂ;l)), and extend it to the sequence
(Ak)keN by Setting Ak = 0fork > (n;l) Set

n:=min{j € N: Ap(p) =0forall p e M andall h > j}.

We necessarily have 0 < 77 < (*}'). By Theorem 2.5.1, we have 71 < ("} ') if u has
not simple spectrum. The function det A takes the form

7
Z"Ao(p) + 2" 1 Ai(p) -+ + Aw(p)

Define the subsets Pa, Mo, Moo € P! x M and sp, I, I € M by

Pr = {(z.p) € M : 2" Ao(p) + -+ + An(p) = O},

detA =

M() = {0} X M,
Moo := {00} X M,
Ap:={peM:Ao(p) = - = Ar(p) = 0},

I :={peM:A(p) =0}
I?\ ={peM: Az(p) = 0}.

Lemma 2.6.1. We have the obvious inclusions
C* x Ap C P, AAEIOAHIZO. [

The set &5 is an analytic subspace of P! x M of codimension 1 along which the
function det A admits a pole. The function det A admits poles along a further analytic
subspace, namely {oo} x I%°. See Table 2.1 and Figure 2.1.

The set P, is the complement M \ M®¢ of the cyclic stratum. The complement
of M in P! x M is the disjoint union

Pa Y My U M.

The geometry of &, is rather complicated: in general it admits several irreducible
components. For example, +4  itself does, and consequently also C* x + . The pro-
jection 7: M — M, if restricted to Py \ (C* x Ap), defines a ramified covering of
degree 7.
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Poles of det A Pa Y (oo} x I)
Zeros of det A Mo\ ({0} x I%)
Indeterminacy locus of det A {0} x T ?\

Table 2.1. Location of poles, zeros and indeterminacy locus for the meromorphic function det A
onP! x M.

10y x 19 L 2 /] foopx I

Mo\ \ /Moo

Pl x M

Figure 2.1. Configuration of the sets 5, {oo} x I3°, and {0} x 19\ inP!x M.

The set {0} x T ?\ is an analytic subspace of P! x M of codimension 2 and it is
the indeterminacy locus of the function det A.

Each of the sets IT%°, T g, A seems to be strictly related to other distinguished
subsets of the Frobenius manifold M, namely its bifurcation set Bjs, and its two

components, the Maxwell stratum M and the caustic K ps. We limit to the following
observation.

Theorem 2.6.2. We have I3° C Byy.

Proof. Let p ¢ 8. On the complement of By, the eigenvalues (u1, ..., u,) define
a holomorphic system of coordinates. Hence, Jac(p) # 0. Moreover, by definition we
have [];_;(u;(p) —ui(p)) # 0. Hence, p ¢ I7° by Theorem 2.5.3. ]

In order to obtain more precise results on contingent relations between the sets
e, I ?\, A and Bys, My, K a more detailed study of the polyvector fields
pj’.c (E) of Proposition 2.4.5 is needed. We plan to address this problem in a future
project. We conclude this section with three low-dimensional examples.

Example. For two-dimensional Frobenius manifolds, we have I° = Bjs. In this

case, indeed, we have

d
ey =e, e1=E+2—e — egNer =eANE.
z

The bivector e A E vanishes if and only if u; = u5,.
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Example. Consider the A3-Frobenius manifold, that is, the space M = C3 of poly-
nomials f(x,a) = x* + a,x? + a;x + ag, where a = (ag, a1, a,) € C3 are natural
coordinate. Fix a, € M, and define the Kodaira—Spencer isomorphism

K. Ta(,M — C[x]/(0x f(x,a,))

by identifying d,, with the class of the partial derivative d4; f(x, a,). This allows
to pull back the product of the Jacobi—Milnor algebra C[x]/(dx f(x,a,)) on To, M.
Consider the Grothendieck residue metric

of of

ENERTRNV
e\ Ba;” da; ) 2mi Jr, U
: ox

du,
(u,a)

where ', is a circle, positively oriented, bounding a disc containing all the roots
of %(u, a). One can show that the coordinates t = (¢1, t2, t3) given by

2
I =ap— §a2, Ih =ay, 13=ay,

are flat for the metric 7. In #-coordinates, the Euler vector field is given by
0 3t 0 t3 0
E=t—+——+-—.
18l1 + 4 0ty + 2 013
The Maxwell stratum is the set {f, = 0}, and the caustic is the set {8t33 + 271,‘22 = 0}.
We have the following formulas for the A-matrix and for det A: Setting

a:=z%t; — 21221213 — 642%t3 1 — 1213 — 18215 — 122°1,43

and
b= =322t — 16215 — 642°1115 + 632%1513 + 1922217 + 48z1; + 48,
we get
a b
22t5(8zt3—613+272t3)  4z(8zt3—6t3+27zt3)
4(9z12+16z11t 4(—4zt32 424z +3
A(Z,t): 0 (Z%2+ 213)2 _ ( f3+ Z]+2)
12(8zt5—6t3+27z1t5) 8zt3—613+27z15
_ 32z13 48z
t2(8zt3—6t3+27zt3) 8zt —6t3+27z13
and 64
z
detA(z,t) = 3 3 .
(81215 + 2715)z — 6213
We have

I =8y, I\ =My U{tz3 =0}, Apx=My.
Example. The A, x A,-Frobenius manifold is the Frobenius structure M on C*4,
with flat coordinates (¢, s) = (o, t1, So, S1), defined by the WDV V—potential

1 1
F(t,s) = E(lgll + s2s1) + ﬁ(t{‘ + 51).
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In these coordinates, the unit vector field is e = a 70 + 8s , and the flat metric 1 has
components

=

Il
c o=
R N

The Euler field equals

E=rl 1200 160 &
= — + 51—
%90 T35 T 0% T 3% 0y,

The bifurcation diagram By equals Bys = Mps U K, where the Maxwell stratum is
= {813 (9(s0 — 10)> + 4s3) + (457 — U(s0 —10)?)” + 1617 = 0},

and the caustic is
Ky = {[1 = 0} U {S] = 0}

After some computations, one finds that
det A(z,t,s) = 729z - (4s111(z*(=8t7 (9(so — 10)* + 457)
+ (453 — 9(s0 — 10)2)? + 1610) + 45(s9 — 10)%))
We have

IR =8u. I\ =XKmUl{so=1to}, Axr=KnUlso=1o.5] =1}

2.7 Master differential equation and master functions

Let £ e T'(w*T*M) be a V-flat section. Consider the corresponding vector field
¢ € T(7x*TM) via musical isomorphism, i.e. such that

§() =n(v)

forallv € I'(w*TM).
The vector field ¢ satisfies the following system* of equations:

8ta§-z€§ a=1,...,n, 2.7.1)

L (u + lﬂ);_ 272)
0z z

Here €, is the (1, 1)-tensor defined by (‘Ca)ff = cgy.

4We consider the joint system (2.7.1)=(2.7.2) in matrix notations ( is a column vector
whose entries are the components £%(z, t) with respect to %). Bases of solutions are arranged
in invertible # x n-matrices, called fundamental systems of solutions.
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Multiply by n (on the left) the left-hand and right-hand sides of (2.7.1)—(2.7.2):
we obtain the equivalent system of differential equations

0
Pl —Z‘C’TS a=1,...,n,

_(qr_1
e = (=2

where £ is a column vector whose entries are the components &,(z, ¢) with respect
to dt®. At points (z, p) € M, let us introduce the column vector £ by

£=(ATHTE, (2.7.4)

where A is defined as in (2.4.2). The entries of & are the components §j with respect
to the cyclic coframe w;. The vector £ satisfies the system

9 _ (Z(A—I)TxeaAT + 8(/;;)TAT)§’

(2.7.3)

ot 27.5)

gg ((A NTYTAT — (A—I)TMAT " a(Aa_Zl)TAT)E.

Proposition 2.7.1. Let§ € T(z*T*M) be a v -flat section, and let (EJ (z, p))” ! be
its components with respect to the cyclic co-frame, i.e. &£ =) . j E jwj. We have

Proof. We have

by Lemma 2.4.4. The claim follows. |

Corollary 2.7.2. The system of differential equations (2.7.5) is the companion system
of a scalar differential equation in &,. |

Remark 2.7.3. Note that §; = 50. Indeed, we have ey = ¢ =
The claim then follows from (2.7.4).

3 1 ,sothat A;; = 6;1.

Theorem 2.7.4. Consider the system of differential equations (2.7.3), specialized at
apoint p € M \ Ap. The system can be reduced to a single scalar ordinary differen-
tial equation of order n in the unknown function &,. The scalar differential equation
admits at most (" ;1) apparent singularities.
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Proof. If p € M \ 4, then there exist n complex numbers z1, . .., Zz, NOt necessar-
ily distinct, such that (z;, p) ¢ M “°. The numbers z; are the zeros of the denominator
of the function det A(z, p). ]

The scalar differential equation to which system (2.7.3) can be reduced will be
called the master differential equation of M .

Definition 2.7.5. Fix a point p € M. Consider the system of differential equations
(2.7.3) specialized at p, and set Xp be the C-vector space of its solutions. Then let
vp: Xp — O(C*) be the morphism defined by

> De(z), De(z) =275 (E(z, p),e(p)),

where d is the charge of the Frobenius manifold. Set §, (M) := im(v,). Elements of
S, (M) will be called master functions at p.

Theorem 2.7.6. At points p € M \ A, the morphism v, is injective.

Proof. Given ®¢ € §,(M), the function §;(z) = 2% ®¢(z) is a solution of the master
differential equation at p. By Theorem 2.7.4, the solution £(z) can be reconstructed
from the component &, (z) only. ]



